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Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions
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A velocity Verlet algorithm for velocity dependent forces is described for modeling a suspension of rigid
body inclusions. The rigid body motion is determined from the quaternion-based scheme of Omelyan [Comput.
Phys. 12, 97 (1998)]. An iterative method to determine angular velocity in a self-consistent fashion for this
quaternion-based algorithm is presented. This method is tested for the case of liquid water. We also describe
a method for evaluating the stress tensor for a system of rigid bodies that is consistent with the velocity Verlet
alogorithm. Results are compared to the constraint-based rattle algorithm of Anderson [J. Comput. Phys. 52, 24

(1993)]. [S1063-651X(99)13203-3]

PACS number(s): 47.11.+j
1. INTRODUCTION

There has been recent interest in mesoscopic models of
complex fluids called dissipative particle dynamics (DPD)
that blend cellular automata ideas with molecular dynamics
methods [1]. The original DPD algorithm utilized symmetry
properties such as conservation of mass, momentum, and
Galilean invariance to obtain hydrodynamic behavior for a
system of ‘‘mesoscopic’’ particles which can be thought of
as representing clusters of molecules or ‘‘lumps’” of fluid.
Later modifications of the DPD algorithm resulted in a more
rigorous formulation which was consistent with the fluctua-
tion dissipation theorem [2]. Improvements to the tempera-
ture behavior of the DPD algorithm were made by modifica-
tion of a stocastic forcing term and incorporating a velocity
Verlet algorithm which allowed a larger time step while still
producing a satisfactory temperature control [3]. An algo-
rithm for modeling the motion of arbitrarily shaped objects
subject to hydrodynamic interactions by DPD was suggested
by Koelman and Hoogerbrugge [4]. The rigid body is ap-
proximated by “‘freezing”’ a set of randomly placed particles
where the solid inclusion is located and updating their posi-
tion according to the Euler equations. The original DPD al-
gorithm used an Euler algorithm for updating the positions of
free particles, and a leap frog algorithm for updating the
position of the rigid body. A motivation of this work was to
develop an efficient algorithm to update both the free par-
ticles, and the rigid body position in a manner consistent
with the velocity Verlet algorithm.

A commonly used velocity Verlet-based algorithm for up-
dating the position of rigid bodies is the so called rattle al-
gorithm [5]. The rattle routine solves a set of constraint equa-
tions that fix the relative positions of particles comprising the
rigid body by a relaxation method. Further, the stress tensor
(from an atomic view) can be directly obtained from the
constraint forces calculated in the algorithm, and is com-
pletely symmetric. While the rattle routine is of order N?
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(where N is the number of particles in the inclusion) and,
hence, can be prohibitively slow for the case of modeling the
motion of solid inclusions composed of large numbers of
particles, it serves as an accurate benchmark to test other
algorithms.

In this Brief Report we show how the use of quaternions
to represent the orientation of such objects [6,7] can greatly
increase the computational efficiency of DPD simulations.
Quaternions provide a convenient way to represent the ori-
entation of rigid objects, since, in contrast to a representation
in Euler angles, the transformations between body-fixed and
laboratory coordinate reference frames contain no singulari-
ties when expressed as quaternions. First, we review the de-
velopment of the equations of motion for the quaternions.
Next we indicate how to efficiently apply the velocity Verlet
algorithm [8,9] to the quaternion equations [10], and demon-
strate its use in the simulation of water. We then discuss the
modifications of the algorithm needed to include the velocity
dependent dissipative forces in DPD simulations. A proce-
dure for determining the rigid body’s contribution to the
stress tensor, consistent with the velocity Verlet algorithm, is
given and compared to that derived from the rattle routine.

II. EQUATIONS OF MOTION

The equations of motion for the quaternions have been
discussed by several authors {7,11-13] with varying degrees
of completeness. Note that the explicit form for the matrix
connecting the angular velocity of the object in the body-
fixed frame and the time derivatives of the quaternions is not
treated with a uniform notation, so care must be taken when
comparing the elements of this matrix as presented by dif-
ferent authors. For this reason, we present the development
of the equations of motion in detail.

The quaternion parameters, x, %, &, and ¢ for a individual
body are related to the Euler angles, as described by Gold-
stein [14], by [7]

x = cos( 6/2)cos(( ¥+ ¢)/2),
7= sin( 8/2)cos((¢— ¢)/2),
£=sin( 0/2)sin{(r— ¢)/2),
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{=cos(8/2)sin(( ¢+ ¢)/2).
The quaternions satisfy the constraint
X+t E+ =1 1)

The connection of the quaternions with the description of the
dynamics of the rigid object is through the matrix equation
that connects the time derivatives of the quaternions with the
principal angular velocity @, ,

E - g? — X 77, f Wpy
7" X = g’ - és 7 Wpy
| = 2
¢ & o oxe ()] o
\ X/ Al - 7177 §7 _é’ X! ) 0 f

The 4 X4 matrix in this equation is orthogonal, so that the
transformation is singularity free.

Equations of motion for the quaternions are obtained by
transforming the Euler equations for a rigid body that has the
center of mass fixed, and is subject to torques N, in the
principal frame,

d)px=Nx/IX+ Wpy@p (1, = I,

djpy=Ny/Iy+wpzwpx(lz—lx)/ly, (3)

d)pZ=NZ/IZ+ 0py @ (1= I )1,

into a quaternion form using the following sequence of ma-
trix operations. First, define matrices @=(¢,7,{, X7 and
W=(wpys, 0py,wp, ,0)7 so that Eq. (2) becomes

Qa:%MaﬂWﬂ7 (4)
where repeated Greek indices are summed. Now
W,=2M,0, )
and
T s WT oA
W,=2M.,0,+2M,,0,=7,, 6)

where T is obtained from the right-hand side of Eq. (3) with
7T,=0. This reduces to

Qp=5Mp,T,~Mp, M ,0,, )

which in turn simplifies to
0p=1Mp,T,~ 04(0aQ0), (®)

when the conditions Q0 ,Q,=1 and Q,0,=0 are applied.

Note that the explicit form of the matrix M depends on the
order of the quaternion parameters in the matrix Q, and that
different authors have made different choices. The general
form for the equations of motion for Q, is independent of
this choice, but any given implementation must be internally
consistent.
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III. INTEGRATION OF THE EQUATIONS OF MOTION

The velocity Verlet algorithm [8] was initially introduced
to improve the numerical stability of the leap frog scheme
[15]. The velocity Verlet algorithm has subsequently been
derived in a systematic way by means of a time-reversible
partitioning of the Louville operator from Ref. [9], and is
now widely used in simulations. It is an example of a second

order symplectic integrator. It has the forms

(51%)

x(8t)=x(0)+x(0) 6t + )

a(0),

)
. . ot
x(6)=x(0)+ -—2—[a(0)+a( on],

where a(0) is the acceleration term evaluated using x(0).
While the systematic derivation for translational degrees
of freedom does not apply to rotation of a rigid body, one
can still propose a velocity-Verlet-like algorithm for the
quaternions. Here we adopt the scheme proposed by Ome-
lyan [10]. The conditions on the quaternions, 2,0 ,=1 and

0,0,=0, are incorporated into the coefficient A of a con-
straint force with the form f,=—2AQ, so that the integra-
tor for Q, takes the form

Qa(81)=0,(0)+0,(0) 5t

(61)°
7

(81)?
2

+ 0(0)+f4(0) (10)

The condition @ ,(8t)Q,(5t)=1 leads to an explicit expres-
sion for the coefficient A, namely,

(61)2A=1—s5,(61)’12

—1=5,(8) %= 5,( 1) — (53— 57)( 1) ¥4,
(11)

where the s; terms are sums: s5,=0,(0)0,(0), s,

=0,(0)0,(0), and 53=0,0)0,(0). For small &, A
—5,6t/2.

The updated values for Q,(6t) and 0 ,(8t) are obtained
using Egs. (4) and (8), with values for w,,, 0,,, and w,, at
8t obtained by solving the Euler equations [Eqs. (3)]. Since
cbpa is proportional to @,zw,,, it is necessary to iterate the
second member of Eq. (3) in order to obtain a self-consistent
result. Here we suggest a scheme that converges rapidly.

First determine the w-independent part of ® pa(St) which
involves just the torques [Eq. (3)], and call it T,(6t). A
zeroth estimate for w,,(6t) is then

«@

) _ ot .
W, (81)=w,,(0)+ g[wpa(0)+Ta(5t)]- (12)

This estimate for w,,(6t) is then used to estimate the
w-dependent part of the right-hand side of Eq. (3), say
g P[w@(5t)]. The first estimate for w,,(8t) is then
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FIG. 1. The departures from the average energy for SPC/E water
over a 20-ps time interval are shown for the algorithm discussed
above as a line with circles, and for an algorithm where the con-
straints on the quaternions are imposed by scaling as a line with
squares.

(0)(5t)+ 5 gg‘”. (13)

wl)(6t)=
Now use w“)(ﬁr) to construct g(l)[w”)(ét)], and then to
generate thc second estimate for a)pa(ét):

w)(8t)= w(o)(5t)+ 3 gﬁ,‘)_ (14)

This process can be continued until the desired level of con-
vergence has been reached. We find that three iterations are
sufficient for the examples discussed in Sec. IV. Equations
(10)—(14) constitute the ‘‘constraint force algorithm.”’

A related algorithm for integrating the equations of mo-
tion for quaternions, that is patterned after the original Verlet
algorithm, was described by Svanberg [16]. His ‘‘mid-step
implicit algorithm’” is similar to a velocity Verlet algorithm
that iterates Q, and imposes the @,0,=1 and Q,0,=0
conditions by scaling. Omelyan [10] showed that a velocity
Verlet algorithm with scaling for quaternions is inferior to
the version described above. This is illustrated by the ex-
ample discussed next.

IV. ENERGY CONSERVATION FOR WATER

The constraint force algorithm has been used to integrate
the equations of motion of 216 SPC/E [17] water molecules
at ambient conditions with a time step 6t=2 fs. Results for a
20-ps interval are displayed in Fig. 1 as a ragged line with
circles. The quantity (E) is the average energy for the 20-ps
interval, and AE=E(z)—(E). The sloping line with squares
is for the same system using a ‘‘scaling algorithm,”” where a
velocity Verlet algorithm is used to integrate Q, and Q.
with scaling to impose the constraints. Clearly this demon-
strates the superiority of the constraint force algorithm over
the scaling algorithm. Note that a similar figure was given by
Omelyan [10]. However, in this case the running average
(E(t)) instead of (E) is used in the denominator. Use of the
running average can be misleading because it can mask a
systematic drift in energy.
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V. DPD MOTION OF LARGE RIGID BODIES

Forces in DPD depend both on the relative positions and
velocities of particles. Hence a predictor velocity must be
estimated to input into the force calculations. A reasonable
approach to determine a predictor velocity could be based on
an estimate of angular velocity at = 6t/2 derived from the
quaternion equations of motion. However, to match more
closely the trajectories obtained from the rattle routine that
strictly follow the velocity Verlet algorithm, the predictor
velocity was simply based on the average velocity obtained
in moving from position x(0) to x(&t) in Eq. (9). Otherwise,
the quaternion and rattle routines may not be consistent ex-
cept in the limit of infinitesimally small time step.

The following modifications were then made to velocity
equation in Eq. (9):

x(-i—t) —5(0) 4\ 81 a(0)~ 2N =X(0)

ot (13)

and

St St
x(8)=x(0)+ —| a(0)+a(5t x( 3 ))] (16)

for the rattle routine and for the center of mass motion of the
rigid body when using the quaternion-based algorithm. In
addition Eq. (15) is used to determine the DPD forces be-
tween particles for both the rattle and quaternion algorithm.
The final position and velocity of the solid body’s constituent
particles is derived from the quaternion equations. We used

= 1 for our simulations. For further discussion of the effect
of varying \, see Ref. [3].

While the rigid body contribution to the stress tensor is
readily calculated from the rattle routine, the constraint
forces contributions are not immediately obtained from our
quaternion algorithm. However, because the motion of the
rigid body closely follows the trajectory obtained by the
rattle routine, we can approximate the constraint forces con-
tributions by considering the velocity Verlet algorithm. Let
a;(0) be the acceleration of particle i on the rigid body
which results from the sum of nonconstraint forces due to all
particles (including those in the rigid body) and the con-

straint forces from particles in the rigid body. That is, m&,-

=F,= F™;+ F*,, where the superscripts nc and ¢ correspond
to nonconstraint forces and the constraint forces, respec-
tively. Since all the nonconstraint forces are known, as well
as the velocity and positions of the particle at t=0 and ¢
= &§t, the sum of the constraint forces on particle i can be
derived by assuming that particles follow the same time evo-
lution as that derived from the rattle routine using Egs. (9)
and (16).

We now show that the sum of the constraint forces on
each particle is all that is needed to determine correctly the
constraint force contribution to the stress tensor. First, the
contribution to the stress tensor from constraint forces is

UZB=%Z Ffja(;i“;j)p (17)
ij
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where i and j correspond to all particles in the rigid body.
Note that f“ij= - [T*Cﬁ,
on particle i due to particles j is Ff=2jﬁfj.
write

and that the sum of constraint forces
We can then

. IR
foﬁ‘itzj F:':ja(ri_rj)ﬂ
-1 = 1 -
=12 Fijariy~ 32 Fijaj,
1. 1.j
1 g 1 =
=1 Fiari,* > Fiarj,
i j
_ c 7
—21_: Fiariﬁ-

Since F"¢ is known and a; can be estimated from Egs. (9)

and (16), we can determine F€ to the accuracy of the algo-
rithm, and determine contributions to the stress tensor from
the two parts of the velocity Verlet algorithm. Comparing
stress tensor values between the rattle and our quaternion
algorithm, we found agreement to six significant figures and,
further, that the stress tensor was symmetric to the same
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order. Indeed, for the time step used here, dr=0.01, out re-
sults are consistent with (81%), the accuracy of the velocity
Verlet algorithm.

VI. CONCLUSION

We have developed and tested a velocity Verlet algorithm
for a dissipative-particle-dynamics-based model describing
the motion of rigid body inclusions. A simple procedure for
calculating the stress tensor contribution from the rigid body
which is consistent with the velocity Verlet algorithm was
given. The velocity Verlet algorithm for DPD is less sensi-
tive to variation in time step size than the Euler algorithm
presented in the original DPD papers, thus significantly im-
proving numerical accuracy at little computational cost. Al-
though the original motivation of the paper was to improve
upon the original DPD algorithm such that the DPD particles
which represent a solvent and the rigid body motion are
treated in a self-consistent fashion, the numerical techniques
presented in this paper should not be limited to DPD.
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