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The BBGKY formalism is utilized to obtain a set of moment equations to be satisfied
by the collision operator in an energy conserving discrete Boltzmann equation for the
case of a nonlocal interaction potential. A modified BGK form of the collision operator
consistent with these moment equations is described. In the regime of isothermal flows,
a previous proposed nonideal gas model is recovered. Other approaches to constructing
the collision operator are discussed. Numerical implementation of the modified BGK
form, using a thermal lattice Boltzmann model, is illustrated as an example. The time
dependence of the density autocorrelation function was studied for this model and found,
at early times, to be strongly aflected by the constraint of total energy conservation. The
long time behavior of the density autocorrelation function was consistent with the theory
of hydrodynamic fluctuations.
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1. Introduction

Discrete Boltzmann methods have emerged as a powerful technique for the compu-
tational modeling of a wide variety of complex fluid flow problems including sin-
gle and multiphase flow in complex geometries.!~” While much progress has been
made in the construction of discrete Boltzmann based models that describe single
phase fluid flow with heat transport, isothermal fluids that undergo liquid/vapor
phase transitions, and the phase separation of binary mixtures, until now no self-
consistent model exists that conserves energy when a molecular interaction potential
is included. Some computational fluid dynamics (CFD) based algorithms,® which
describe nonideal gas systems. can be explicitly constructed to conserve mass, mo-
mentum, and energy. However. in this case, information about the effects of molec-
ular interactions are incorporated into a modified stress tensor that is derived from
a phenomenological Cahn Hilliard free energy which is typically expressed in terms
of an expansion of density and density gradients.
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1368 N. S. Martys

In this paper it will be shown how energy conservation for a nonideal system
can be incorporated into a discrete Boltzmann model. The basic idea is to properly
construct the collision operator, used in the discrete Boltzmann equations, so
as to account for momentum and energy transfer due to a molecular interac-
tions. Information about momentum and energy transfer can be directly obtained
from the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)®!? formalism. This
method should serve as an ideal mesoscopic approach that bridges microscopic
phenomena with the continuum macroscopic equations. Further, it can be di-
rectly implemented as a numerical method to model the time evolution of such
systems.

An outline of this paper goes as follows. First, pertinent results obtained from
the BBGKY equations will be reviewed including construction of moments of the
collision operator and demonstration of energy conservation. A modified Bhatnagar,
Gross and Krook!! (BGK) representation of the collision operator that is consis-
tent with energy conservation will then be described. An earlier model of Shan and
Chen* describing an isothermal nonideal gas as well as other mean-field approaches
to modeling nonideal systems, will be shown to be consistent with this formalism.
A more general Hermite polynomial'? representation of the collision operator will
be presented and shown to be consistent with the modified BGK form up to
2nd order. An example of a numerical implementation of the modified BGK form
will be given. The paper will conclude with a discussion concerning methods for
further improvement of the numerical implementation and of other potential appli-
cations.

2. The BBGKY Hierarchy

Counsider the first two equations associated with the BBGKY hierarchy!3 which de-
scribe the time evolution of single and two particle distribution functions Pi(r, k, t)
and Pz(l‘l Jki,r2, ko, t)l.

6,P1+k1-VP1+F~VkP1=Q, (1)
( k
0: Py + E_l._(?_+_2.é_ Py, - 912P;
m Or, m Ory
= /d3r3d:’k3(613 + ©23)P3(r1, ki1, T2, ko, 13, ks, t) (2)

where

oViry) 0 av(r a3

eij: ( l])_+ ( l])____‘ (3)
61’1 Gk, Brj 81(]

P; is the three particle distribution function, F is an external force, k; is the

microscopic momentum, ¢ is time, V is the interparticle potential, and the collision
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term QO is

i,
0= /d3k2dsr261 2(!’1,1‘2.}(1.1(2,15) 6V(T‘12) (4)

9k, T on

with rio = r; — ro.

In the BBGKY hierarchy of equations the time evolution of a single particle dis-
tribution is expressed in terms of the two particle distribution function and so forth.
Solving for the one through n particle distribution functions involves approximating
the form of the n+1 particle distribution function to obtain closure of the hierarchy.
A variety of techniques and approximations have been developed to obtain closure,
some of which are mentioned later in this paper.

2.1. Moments of coliision term
Consider moments of ! which are related to conserved quantities.

dC 9V(r1z)
ok, or

where C is a function of position or momentum. Here we have integrated by parts
and assumed that P, goes to zero in the limit of large k.

For C equal to a constant the integral in Eq. (5) is equal to zero corresponding
to conservation of mass. For the momentum moment (C = k) we have
8k1 6‘/’(7‘12)
dk;  On

/ d3k;C(r1, k1, 1)Q = / d3k1d%rod ky Pa(ry, vo, ki, ko, t) (5)

/d:’klklﬂ = /d3k1d3r2d3k2P2(r1,r2 ki, ko.t) =

=- / d*raPy(ry, 12, 1) é(r:”) (6)
where Pp(ry,ra,t) = fd3k1d3k2P2(r1 .ra. ki, ko, £).
The kinetic energy moment (C = k?/2m) is

/d3 LS -—/d3k1d3r;>d3k2P2(r1.rg,kl,kg,t)l—(l A
' ™m ar,

In the regime of low to moderate densities where multiple collisions between
atoms can be ignored the molecular chaos approximation is valid.!®}> Here

Py(r1,r2. ki, ko) = Pi(ry, k) Py(r2, ke)g(r1,r2)

(7)

and g(r;,r2) is the two point correlation function. Then Egs. (6) and (7) become

(9V(r12)

aP = / FhikiQ = — Py (ry / Py (r2)g(ry, r2) otr12) ()

and

O Ee = /dskl‘_“‘ﬂ = - Py(r /d3r2P1 r9)g(r1, r2)vy - 0(:112). (9)
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For the case of nonlocal interactions neither the momentum or energy are con-
served at a point as a fluid region responds to the forces from neighboring areas.
Equations (8) and (9) respectively represent the change of momentum and the rate
work is done on the fluid due to an effective averaged force field. Note that the
moments depend on the two point correlation function. As mentioned above, this
function could in principle be approximated by solving a closed set of the BBGKY
hierarchy of equations. For this paper we will assume that g(ry,r;) or, for that
matter, g(ry, r2, ki, k2) is known or can be obtained by other simulation techniques
like molecular dynamics.!817

While momentum and energy are not conserved locally, they are conserved
globally. For example, to show that total energy is globally conserved, first note
that the local potential energy is given by

-
¢(T) = %/ d3r1d3r2P(r1,rg,t)é(a)(rl - l')V(Tlg).

The total energy. E, of this system is then given by the volumetric integral of the
kinetic and potential energy,

E = /d3rd3k£—P1(r,k) + -21- /dsrd3r1d3r2P(r1,rg,t)d(a)(rl —-r)V(riz). (10)

The time derivative of the local potential energy can be obtained from the
BBGKY equations since

A d(r) = % / d3r1d®ry8¢ P(ry, 1, )63 (1) — 1)V (r12)

so that we can utilize Eq. (2). Terms with ©,; integrate out to zero. Integration by
parts of the remaining terms obtains

05(r) = 5 [ Eridndradkad(n — 5 Palrr.v2 o ko 0

(K aV(ri2) ka aV(rlz))
m dry m ara

- —;—V-//d3r1d3k1d3r2d3k2k1V(r,g)Pg(rx,rg.kl.kg.t).

/d3r3gd>= —-/d3ratEke

thus proving global conservation of energy.

In addition, it can be shown that® &,P and 8,F. + 0;¢ can be written as the
divergence of a function so that, in a numerical implementation, total momentum
and energy are easily conserved in a closed system.

It is then easy to see that
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Here the momentum moment of the collision operator is written as

/dakkﬂ =-V- '1-/0!37‘1(137‘253(1'1 - P)rl,n:maV (r12)
2 driz

0

Z (~r12- Vo))"

n=1

P(ry,r1 +r12) (11)

and the kinetic energy moment is

/d3k—-—Q_-6t¢ V- (ov)

-V- % /d3r1d3k1d3r2d3k2P2(r1,r24kl.k2)63(r1 —-1r)V(r2)

k;

vV
X (“" b V) + ';'V . /d3T1d3k1d3T12d3k253(!‘1 — )8 (1‘12) T2

m ory2

1
X (T12 :) {Z :l—‘(—ru-V.-,)""l] P(r;,rl +r12,k1,k2).

n=1

(12)

In the Yimit of small variation of P, over a range L > r;o, where L is the charac-
teristic length of density fluctuation, terms with n > 1 can be ignored. Then

/dskkﬂ ~-V. l: /d3r1d3r26 (1‘1 - l‘)!’lzflga‘a(r 2)P( )}

or
«
/d3kk9 ~-V- B. (13)
Similarly, for the kinetic energy moment, including the n = 1 term only obtains
3, ki’ . o
/d klﬁﬁz—8t¢——V-((Dv)—V<(B-v+qv) (14)
where

1 A
axt) =5 /d3r1d3r2d3k1d3k2P(rl,rg:kx.kg,t)om

x (r; = r)(ky/m — v) - (V(r2) 1 ~V'(rig)rip " rarn) . (15)

Using the molecular chaos approximation
Bi(rt) = / B, dr Py (r1) Py (r2)6®

X (ry = £)g(ry, r2)V' (r12)r127 (121 )s(r21), (16)

and q, = 0 indicating that without velocity correlations, currents associated with
potential energy are zero.
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Again, since only the divergence of B and q, are present in Eqs. (13) and (14),
it is easy to numerically implement momentum and energy conservation.

For later reference the collision operator moments are summarized below.%-10
/ kN =0, (17a)
>
/dskkﬂ =-V- W, (17b)
3, k2
/d ks = 00—V (0v) -V - Z (17¢)

where —V- V? is equal to the righthand side of Eq. (11) and —V - Z is equal to the
last two terms on the righthand side of Eq. (12). This represents a conservatlve

form of the moment equations. In the case of n = 1 only, W B and Z B V +Qy-

3. Modified BGK Form of Collision Term

With the basic equations and methodology for obtaining moments of the collision
operator laid out, a modified BGK form of the collision term is suggested:

Qz—%(P—Pe“'). (18)
Here we take the “equilibrium” distribution, P9’ to have the following form:
) n' (k - k')?
f 2 R — RS 19
(2rmKT')D/? ex"( ImKT (19)

and n',k’, and T" are determined by the moment equations.
Using the modified BGK collision operator in Eq. (17a) gives n' = n (the number
of particles per unit volume). The momentum moment of Eq. (18) obtains:

/d3ka - —/dSkké(P S Py = R oK) = R -v) (20)

where v = (k)/m is the average velocity and p = mn is the density. Then Eq. (17b)
implies

v’=v~f\-V~I;. (21)
p
Finally noting that the kinetic energy moment of P s
[ < 2L S, (22)
Eq. (17c) gives -
Qm/\

KT =

(00 - V- (9v) =V 2)+ (0 =) (23)



- Energy Conserving Discrete Boltzrnann Equation for Nonideal Systems 1373

Hence to preserve global energy conservation the local temperature must be
rescaled.

In addition, this modified BGK form, in the isothermal limit, can recover the
Shan Chen? model where, as in Eq. (21), the equilibrium velocity is shifted to ac-
count for nonlocal interactions. In their model, Ij; was approximated by an effective
potential which is a function of density:

). (24)

The modified BGK collision operator [Eq. (19)] can now be incorporated into
a discrete Boltzmann model for numerical simulation by, for example, expanding
P=¥ in terms of Hermite polynomials and discretizing the velocity space by quadra-
ture methods.!? Similarly, other realizations of a thermal equilibrium distribution
can be easily adopted to this approach by appropriately shifting the velocity and
temnperature in a manner described above.

While the above modified BGK formalism can accommodate the three conserved
quantities: mass, momentum, and energy, information from other moments of the
collision operator may not be present. For example, correlations in the velocity field
are not properly accounted for in the Gaussian form of the equilibrium distribu-
tion. Extra constraints may be accounted for in a more general locally anisotropic

“equilibrium” distribution the ES or ellipsoidal statistical model:*#
‘ det A
F%l =" 3 exp[—A,-j(ki - k:)(kJ - k;)] .
b ]

The A,; are determined from the 2nd order moment equations. Note, the ES
distribution was originally used to model systems with variable Prandtl number. '8
For the case when the molecular chaos approximation is valid, the moment

J@rrks = —m [ @ PwPE o) T
1

X [(1,0, + 61;0,)i + (G205 + 60;1)] + (G3evy + Saz00)k]  (25)

may be properly accounted for in the BGK form.

4. Alternate Methods of Representing Collision Term

The collision term  may be represented as a Hermite expansion!?1%19 ¢ = k /m:

o0

2 =0(©) Y 2o (@ OHO(E), (26)

n=0
where the weight function
w(€) = (1/2m)P"? exp(-£7/2). (27)

Here, the microscopic velocity, £ is in units of ¢, = /K7,/m, and T, and m,
are units of the temperature and mass respectively. A dimensionless temperature
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may be represented by 8 = T'm,/T,m. Readers are referred to Refs. 7 and 12 for
more background and details. The generalized Hermite polynomials {#(™} form a
complete ortho-normal basis in £-space with respect to the weight function w(&):

/ P EVHHSY = Gmabis (28)

where ¢ = (i1,42,...,9m), J = (J1,J2,---,Jn), and &;; = 1 when j is a permutation
of 1, and 8;; = 0 otherwise. Thus the coeflicients p{™ can be determined from the
above orthogonal relation [Eq. (28)]:

p™ = / deH™Q. (29)

The generalized Hermite polynomial %(™ and coefficient p(™ in the expansion are
symmetric tensors of rank n. An element of these tensors is denoted by the same
symbol, H™ or p(™, with n subscripts for n > 1. And in the case of n = 0,
the subscript is omitted. The product p{™H(™ denote contraction on all the n
subscripts. The first three generalized Hermite polynomials are

HO =1, (30a)
HY =g, (30b)
HD =g -6 (30c)

The p™ may be directly obtained, to any order, from the moment equations where
pPP=0,p =V W and so forth. When expanding P and P*9 in Hermite polyno-
mials the modified BGK form is found to be equivalent, to second order, to Hermite
representation of the collision operator [Eq. (26)] when derived from the moments
associated with conserved quantities because the first two moments of P are the
same as the unscaled equilibrium distribution. Because the Hermite expansion is
orthonormal, higher order terms will not directly affect the conserved quantities
associated with the first and second moments.

Since the BGK formalism lends itself to analysis of the hydrodynamic limit,
another useful form of the collision operator is

a-= —§<P—Peq’)+w(e>§%wm<x,t>w<"’<¢). (31)

In this case, the mean velocity and temperature in the equilibrium distribution
are not rescaled. The %™ would be determined by the moment equations. A similar
form has been suggested in regards to the revised Enskog kinetic theory (RET).?0
Note, the RET is limited to the case of hard sphere collisions so that all the energy
is kinetic. However, it should be pointed out that there is a potential energy current
associated with the transfer of energy due to collisions.
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It is easy to see the relation between the BGK form with correction terms
[Eq. (31)] and the modified BGK [Eq. (18)] form by expanding P®? about the
microscopic velocity € and temperature. First write

__(_£_+_“L) _ (32)

P = n exp | —
= @rR(T + AT “P\ T3R(T 1 AT)

Here u = —v/ = —(v + Au) with Au = —(A\/p)V- W, and

/ 2\ 1
AT=T'-T= EE(_at¢_ V- (¢v) -V -Z)~ —3—R5(QAu-v+ Au?). (33)
Note, in this example, £ is not rescaled in units of ¢, = \/KT,/m,. Next, expand
P=% to0 second order in velocity and first order in temperature,

r

}_x:i.—v +u‘a_w+AT§_“.).+_l. .u._qz_u_{.+...
n Y Ex; ar T 2" B

where w(£. T) = (1/(2rRT)%/?) exp(—£2/2RT). Separating terms with AT and Au,
we can then write the collision operator 1 [Eq. (18)] as

_ _rp_paya Y p (i€ w66
=-3P-P)~ A(P m(1+RT+2RT<6"+RT>))

wAu-§ w duv; + 0, Auj + Au Ay, s
"YNRT "o RT %+ Rr
w AT 6,‘6,
+ HEXT ("—6“ + ﬁ) . (34)

Equation (34) can be written as
Q= —-}(P— Py 4

where

9 (14 8 20U (s GG
Peqwnu<1+RT+2RT<5,J‘r ))
and 2 can be identified with the Hermite expansion in Eq. (31)Indeed, this
expansion still satisfies the moment Egs. (17a)-(17¢) so that mass, momentum and
energy are conserved.
Similar results were obtained by considering a Hermite expansion expressed as
a function of the peculiar velocity, (¢ = £ — v), instead of the microscopic velocity
€. Here P*9’ was written as

o n (c+ Au)?
P* = G+ am)p78 P (‘ 2R(T + AT)) '
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Again the moment Eqs. (17a)-(17c) were satisfied when expanding to order
Au? and AT.

A minimal version of §' that satisfies the moment Eqs. (17a)-{(17c¢) is

_wV- v‘i; € w
mRT 3mRT

= (+00+V -(¢v) + V- 2) (“6"”%) .
However to be consistent with the moments of the collision operator described in
Eq. (25), the collision operator should also include the terms with Au,v; as found

in the expansion of the modified BGK form.

4.1. Mean-field approaches

Here it is useful to discuss mean field models of nonideal systems. First, returning
to the BBGKY collision operator [Eq. (4)] and making the molecular chaos
approximation we have

_OP(r,k

11_9_ 3 3V(T12)
7716[(1 / d T2p(f2, t)g(rh ra, t) arl . (35)

Q=

This approximation of the collision operator is of the form of the body force
term, F'- Vi P, in Eq. (1). Absorbing the collision term into the body force is called
the Vlasov approximation. For |r; — ro| > d where d is of order a few “effective”
hard sphere diameters, g(r;,r2) = 1. After expanding p about r;, the contribution
to the collision operator associated with the attractive intermolecular interaction,
(0 can be approximated by, Q,, = VV,,, - VP, where V,, = 2ap(r;) + «V%p(r;)
with a = (1/2) [, d*rV(r) and & = (1/6) [, d*rr?V (r). Vin can be thought of as a
mean field potential produced by neighboring particles and —VV,, is the associated
mean-field force. Note that this approximation of V,, ignores corrections due to
spatial gradients in g(r;, ry), which implicitly depends on r through the interaction
potential and temperature field. The contribution of this attractive intermolecular
interaction to the pressure tensor can be written as

e d

Bm= [—ap2 +K (%Npl"’ + szp)] I-xVpVp.

This form of pressure tensor has been explored®* for the case of isothermal sys-
tems. A second contribution to the forcing, ., is due to the repulsion of molecules
and corresponds to evaluation of the collision operator for For |r; — ra] < d.

48Px(1'1)

fri—rzi<d aVi(r
Q, = _"”/ d’rap(r, t)g(ry, T2, t) riz)
dk,

81'1

(36)

Again, expanding p(rz) about ry, it is easy to see that p? corrections to the
pressure tensor will be obtained. A similar result is obtained in the Enskog hard
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sphere model.!® Addition corrections will result from consideration of gradient ex-
pansions of g(ry,re,t)(3V(r12)/0r;). Finally, long and short range contributions
from the potential energy may be determined in a like fashion.

4.2. Macroscopic equations

At the continuum level, use of the BGK approximation {Eq. (31)] will obtain the
following Euler equations,

dp

a = PV
dv Ay
W _ g po
pdt v

de _ _po.%
pdt N ’

where A;; = (1/2)(0v:/3z;) + (Ov;/0z,) the internal energy, e = (3/2)(K/m)T +
(¢/p) and the pressures tensor Pg == nKTé;; + By; is modified to include the inter-
molecular forces. The next order correction to the Euler equations entails solving
for 6P, = P, — P® to determine corrections to the transport equations from viscous
effects and thermal conductivity. At this order the additional terms in the Hermite
expansion do not contribute to the viscosity, u, and the thermal conductivity, K,
so that the usual expressions p = nAKT and K; = (5/2)nAK?T/m are obtained.
While this result holds for the continuum case, corrections would appear in the
lattice Boltzmann methods due to discretization. Finally, if needed, generaliza-
tion to different Prandtl number can be obtained using the ellipsoidal Equilibrium
distribution or multiple relaxation times.2®

5. Numerical Example

In the previous sections, several methods for the incorporation of full energy con-
servation in discrete Boltzmann methods were described. At this point it would
be useful to illustrate these ideas with a numerical example and verify that, for
example, the total energy is conserved. Here the method of rescaling the velocity
and temperature {or internal energy) in a thermal equilibrium distribution in order
to construct the modified BGK collision term will be utilized.

Consider the case of a low deusity system of particles governed by a 6-12
Lennard-Jones (LJ) interaction potential. In this low density regime we make use of
the molecular chaos approximation and, for simplicity, approximate the two point
correlation function, to lowest order, by g(r) = exp[~BV(r)] where 3 = 1/KT.*
It is assumed that the density varies slowly over the range the LJ interaction. It
is then easy to numerically evaluate ¢, Z, and B Note B is diagonal for this case
since V(r) is a central potential. Once ¢, Z, and E are evaluated the velocity and
temperature are rescaled according to Egs. (21) and (23). The time derivative of ¢
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was numerically determined to first order using information stored from the previ-
ous time step. Although a crude approximation, it serves to illustrate the method.
The details of the thermal lattice Boltzmann model are given in the appendix.

The fluid system is initialized with a small random perturbation in the density
and then allowed to relax to equilibrium. To demonstrate energy conservation,
the global change of potential energy AP and change in kinetic energy, AKE
as a function of time is shown in Fig. 1. Note the sum A® + AKE = 0 to the
numerical accuracy of the computer. Similar results concerning conservation of
mass and momentum were obtained. For this simulation it should be noted that
a significant fraction of the exchange of potential energy and kinetic energy took
place over 1 to 2 mean free collision times. This result is similar to that predicted
in a study of LJ fluids.?®

20

A ENERGY
o
|

-10 4 !

~20 . ‘ - , , 1 ,
0 5 10 15 20
t

Fig. 1. The global change in potential energy and kinetic energy for a fluid system initially subject
to a small density perturbation. The system size studied was 1213 in lattice units, Az. Energy is
in units of m(Az/At)? where m = 1 and the time step At = 1 for simplicity in this simulation.
The solid line corresponds to the change in kinetic energy and the dashed line corresponds to the
potential energy change at each time step. The sum of A% and AK E (dotted line) is clearly equal
to zero demonstrating the algorithm conserves energy.

It is interesting to see how introducing total energy conservation effects the time
decay of a density fluctuation autocorrelation function, G(t) = (6p(t)?). Figure 2
shows the time decay of G(t) for different Lennard-Jones interaction strengths.
Here. results are presented for the case of a quasi-two dimensional systemn (1024 x
1024 x 2) to help reduce finite size effects. Clearly, the constraint of conserving both
kinetic and potential energy slows the decay of G(t). This effect diminishes over
long times {and for weaker interaction strength) as the system approaches thermal
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-3.0

-7.0 = S S N A E R
0.0 0.5 1.0 1.5 2.0 2.5 3.0
logwt
Fig. 2. The density autocorrelation function, G(t), versus time, ¢, for a fluid system initially
subject to a small density perturbation. The solid curves correspond to the fully energy conserving
equation for different Lennard-Jones interaction strengths. From top to bottom the strength of
interaction is 0.04, 0.03, 0.02, 0.004, and 0.0 in units of KT. The straight line has a slope of -1

to help guide the eye. The dashed line corresponds to the Shan-Chen model with interaction
strength equal to 0.04.

equilibrium. The simulations carried out were consistent with G(t) ~ t~! at long
times. Such scaling behavior is associated with the decay of the thermal diffusivity
mode in the study of hydrodynamic fluctuations®” which predicts G(t) ~ t~P/2
where D is the spatial dimension.

Figure 2 also includes G(t) for the case where the constraint of energy conserva-
tion is removed while still including a forcing due to the interaction potential. This
case is similar to the Shan-Chen model. Comparing to the fully energy-conserving
case with the same LJ interaction strength, there is a clear difference in the early
rate of decay of G(t) indicating that the short time behavior of this system strongly
depends on whether or not one imposes energy conservation. This may be an impor-
tant consideration when modeling systems that are dynamically driven and subject
to frequent perturbations over time.

6. Discussion and Conclusion

To properly construct a collision operator, based on the BBGKY equations, the
pair potential and two point correlation function are needed as input. Any model,
whether discrete Boltzmann or CFD/free energy approaches, must at minimum
make an implicit assumption about pair correlations since they are related to
the equation of state, chemical potential and the transport properties of the fluid
modeled.
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The two point correlation function, which in turn depend on the pair poten-
tial, can be approximated by a variety of methods based on either closure of the
BBGKY hierarchy or by molecular dynamics simulations. For the case of BBGKY
closure, methods’* of approximating the pair correlation function such as Percus
Yevick (PY) theory and the Hypernetted chain (HNC) theory work well for many
low to moderate density fluids. At the lowest order approximation the equilibrium
two point correlation function coupled with the molecular chaos assumption could
be utilized. To go to a higher order approximation or model dense fluids, a better
understanding of the nonequilibrium form of pair correlations and velocity cor-
relations is needed. In this case, molecular dynamics may prove a valuable tool
for probing the functional form of velocity correlations or other interesting be-
havior like the vortex motion found in hard sphere simulations.!® In addition,
experimental data from neutron scattering, which can also provide information
about both pair and velocity correlations, could help guide construction of the
collision operator.

The methods described in this paper should be readily adaptable to existing
thermal discrete Boltzmann models.!? Rescaling the temperature via Eq. (5) with-
out explicit reference to the potential energy ¢ may be subject to large numerical
error. It may be preferable to use Eq. (8) and estimate 8,4 by a numerical algorithm
such as predictor-corrector since ¢ can be determined at every time step.

While a few numerical tests of the above scheme have been performed in the
regime of low density, demonstrating that energy was clearly conserved to the
numerical accuracy of the computer, further tests are needed to examine the sta-
bility of such numerical algorithms especially near a critical temperature or for
the case of a deep quench where density variations can be large. Indeed, ther-
mal lattice Boltzmann methods are notoriously unstable.?? To better model more
realistic systems with greater density or density gradients other implementations
of the discrete Boltzmann method such as finite difference or volumetric methods
should be considered.

It would also be interesting to examine the effect of resolution on simulations. At
a coarse resolution the above system of equations should describe the time evolution
of a macroscopic fluid element. At finer resolution, density variations at the atomic
level could be probed although computational requirements for such studies may
be prohibitive.

In summary. starting with the BBGKY formalism, the moments to be satisfied
by the collision operator so that energy conservation in a discrete Boltzmann equa-
tion is rigorously maintained were presented. Several methods for constructing the
collision operator based on these moment conditions were described. To illustrate
the method, a simple numerical simulation was described. The decay of the density
autocorrelation function was found to be consistent with the theory of hydrody-
namic fluctuations. It was also shown that the isothermal nonideal gas model of
Shan and Chen was recovered by this more general approach.
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Appendix: Thermal Lattice Boltzmann Model

The thermal lattice Boltzmann model used in this paper was constructed such that
the lowest 26 moments of the equilibrium distribution match those of the Maxwell-
Boltzmann distribution in order to obtain closure of the mass, momentum and
energy equations (thermal only).?2-2? The coefficients of the equilibrium distribution
were worked out for a 4D FCHC lattice and then projected to 3D. The resulting
3D lattice vectors, j; are all the permutations of (1, +1,0),(£1,0,0), (£1, £1, £1),
(+2,0,0) and (0,0,0) where 1 <i <12, 13 <7< 18,19 <1 <26, 27 <1< 32,
and 33 < ¢ < 34 respectively (note due to a degeneracy in projecting from 4D to
3D there are two rest mass particles). The equilibrium distribution was solved for
to fourth order in velocity and has the following form

nS = tip(as + bii - v + et? + di(Gi - v)? + ey - v)vP

+ filGi - v)® + 9:Gs ~v)"’v2 + hsv?)

where the coefficients are for 1 < i < 18,a; = (2e—(3/2)e?)/24, b; = (2—(3/2)e)/12,
e ={(3/2)e—2)/24,di=(1-e)/d,e; = —1/8, fi = 1/12, g; = —1/16, h; = 1/48.
For19 <1 < 32,a; = (—e+(3/2)e?) /48, b; = (—1+(3/2)e)/24, ¢; = (1—(3/2)e)/48,
d, = (2¢ —1)/32, ¢; = 0. f; = 1/96, g; = 1/64, h; = —1/96 also n33 = ts3p(ass +
caav? +hazv?) with azz = (—e+(3/2)e?)/48, c33 = (1—(3/2)e)/48, haz = —1/96 and
n33 = tzap(ass+caqv? +haav?) with azg = (1+(3/4)e?—(3/2)e), c35 = —(3/4)(1—e),
hag =1/8.t; =1for1 <i<12,1, =2for12<i<26.t; =2 for 19 <{ < 26. and
t: =1for 27 <4 <32, t33 =2, and t34 = 1.

In projection from 4D to 3D the assumption is made that there is no net flux
and no gradients of any quantity in the fourth dimension. However, there is still an
internal degree of freedom associated with a fourth component so that the internal
energy, €, is actually given by

1 . 1 .
pe=3 Yl -v)® + 3 Y onsG)?
where the j' account for contributions to the internal energy associated with a

fourth dimension. For this model, j, = 0 for 1 <1 < 12, 57 = 1 for 18 < i < 26,
Jl=0for27<i<32 j/=2fori=33 and j; =0 fori = 34.
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