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The progress and challenges in thermal lattice-Boltzmann modeling are discussed. In par-
ticular, momentum and energy closures schemes are contrasted. Higher order symmetric
(but no longer space filling) velocity lattices are constructed for both 2D and 3D flows
and shown to have superior stability properties to the standard (but lower) symmetry
lattices. While this decouples the velocity lattice from the spatial grid, the interpolation
required following free-streaming is just 1D. The connection between fixed lattice vectors
and temperature-dependent lattice vectors (obtained in the Gauss~Hermite quadrature
approach) is discussed. Some (compressible) Rayleigh~Benard simulations on the 2D
octagonal lattice are presented for extended BGK collision operators that allow for ar-
bitrary Prandtl numbers.
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1. Introduction

Lattice-Boltzmann modeling (LBM) of fluids has been under extensive research for
over ten years,! 4 with excellent results reported for incompressible flows. However,
the extension of LBM to allow closure at the energy moment level has met with
some difficulties. While a kinetic approach to the highly collisional (fluid) regime
appears to be inverse statistical mechanics because of the redundancy in phase space
information, LBM poses as a discretized molecular dynamics that retains minimal
phase space information. The beauty of LBM rests in its ideal parallelization on
multiple PE’s and its avoidance of the nonlinear Riemann problem which in CFD
takes over 30% of the total CPU. In LBM, a kinetic equation is solved for f(x,¢,t),

*This paper was presented at the 7th Int. Conf. on the Discrete Simulation of Fluids held at the
University of Oxford, 14-18 July 1998.
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which in its continuum representation,

[0 +&-VIf =Q(f) (1)
in which the collision operator has the simple linear BGK-form (or its extension)
1 ]

) = ——1f = £, 2)

T governs the relaxation rate at which f is driven to an f®9. The linear advection,
in Eq. (1), can be handled by explicit schemes and here we will uti}'ze a Lagrangian
scheme at marginal stability, with CFL = 1. For linear advection, t::~ @ -.:iis in no
numerical dissipation or diffusion.

There are several distinct questions that LBM must handle: (a) closure of the
kinetic equation, and (b) continuum — discrete representation. Here, we follow the
standard discretization of LBM (with f¢4 — N®9) — but now on a nonspacing filling
but higher order isotropy velocity lattice. We consider both the 2D octagonal and
its 3D extension and examine the linear stability of these higher isotropy lattices.
Some results for Rayleigh-Benard convection will be presented (for a 2D octagonal
lattice, which allows us to simulate Rayleigh numbers > 108). Some comments will
then be made on the recent discretization using Gauss-Hermite quadratures.

2. Discretization of Velocity Phase Space

On integrating Eqs. (1) and (2) along unperturbed orbits, we have

(#) = Ft)

t+4-5t t+-8t
F(x+ €6t £+ 6t) — f(x,8) :/ dt’ Q') = —/+ ar? 3)
t t T

One must now approximate the collision integral in Eq. (3). The standard approx-
imation has been to evaluate this integral just at the lower terminal

/H‘” g S —FO) _ f) - feq(t)5t+0(5tzy___) (4)

T T

resulting in a lst-order explicit scheme. A econd-order scheme

/”‘” g i) ) 1 [f(t +6t) — £t + 5t)

T 2 T

N i(t_):Tfff_@gt +O@t,...) (5)

can be readily transformed® into an explicit scheme like that generated by Eq. (4),
but with the relaxation rate identification

T(5) = T(4) — 0.5 (6)
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We turn now to the conventional phase velocity £-discretization and introduce
the notation

continuum -»  discrete
3 — Cpi (7)
f(xa E.) t) — Np’i (X, t) )

where the index i, ¢ = 1,..., b, labels the allowed lattice links at a given speed
index p. For a square lattice b, = 4, while b, = 6 for a hexagonal lattice. While
these (2D) lattices are space filling, it is important to realize this is not essential. If
one chooses a nonspacing filling lattice (e.g., the octagonal lattice® in 2D), this will
automatically decouple the spatial grid from the velocity lattice. This decoupling
has already been encountered in LBM studies that involve nonuniform spatial grids’
and in finite difference schemes,® but these studies were restricted to the standard
space-filling velocity lattices.

3. Closure Schemes

On taking moments of the discretized kinetic equation conservation equations one
must choose a velocity lattice of sufficient symmetry so as to avoid any discrete
lattice symmetry effects from plaguing the final (continuously symmetric) fluid
conservation equations. This question of symmetry will also place constraints on
the form of the relaxation distribution function N°9.® In normalized lattice units,
the discretized BGK equation takes the form

Npi(X + Cpint + 1) = Nps(x,8) = —%[N,,i(x, t) — Ny (x,t)] (8)

with the zero and first moments

p= Np=) N5 pu=> Nycp=Y Nilcy. )
e pi i 2

pi

If one wants to impose closure at the momentum level, this is achieved by
defining the second moment to be a function of p and pu only:

Z sz’ Cpia Cpig = L N;? Cpia Cpiff = Pci 6045 + puaug (10)
i pi
so that the “pressure” p = pc?, where c; is a sound speed.

On the otherhand, if one wants to close at the energy level, the internal energy
e is defined by the 2nd moment (here D is dimensionality of the space)

2
Z Nyt Cpia Cpig = BPe dap + pUaus (11)
i

and then closure is enforced on the 3rd and 4th moments:

. 2
Z N cpia Cpig Cpiy = Bpe(ua‘sﬁv + uglya + Uydap) + PUalipty (12)
pt
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4D+ 2 2
> N5 i cpig €5 = ‘17)2_)»0 e? 8ap + 5p6u25aﬂ
pi
2(D +4
+ '(—'B’“lpeuauﬁ + pugugu’. (13)

The internal energy e is related to the kinetic temperature ¢ by e = D6/2. The
ideal gas law is p = pf. The moments, Eqs. (11)-(13), are invariant to whether one
uses N or N°®9,

To exactly satisfy these constraints, Egs. (9)-(13), one is forced into a polyno-
mial representation for N®9. For energy closure, and to ensure the absence of higher
order nonlinearities in the moment equations,® N°? is taken in the form

N;;l = plAp(e) + Bp(e)cpi - u+ Cple)(cp: - u)? + Dy(e)u?
+ Ep(e)cpi - uu? + Fple)(cpi - u)g + Gp(e)(cpi - u)2u2 + Hp(e)u4] , (14)

where the coeflicients Ay(e) .. . Hy(e) are polynomial functions of the internal energy
e. The number of different speed lattices, p, that need to be introduced depends
critically on the particular chosen velocity lattice.

For closure at the momentum level, the usual form of N*Thas B, =0 =..- =
H,,, with the internal energy e being simply an external parameter. This standard
closure will introduce triple order nonlinearities in the momentum equation — but
these spurious terms can be immediately eliminated® by allowing E, and F}, to be
nonzero.

It is evident from Eq. (14) that as we proceed from a momentum closure physics
to an energy closure physics the only change to LBM is to simply increase the order
of expansion u in the N®-representation (as well as the number of speed-lattices
p). This is a clear indicator why TLBM will be more numerically unstable than
LBM.

4. Lattice Symmetries for

The choice of velocity lattice plays a critical role in the numerical stability of TLBM,
as is evident from substituting Eq. (14) into Egs. (9)-(13). In particular we will need
to evaluate the nth-lattice velocity moments

T =D Tpudc =D D Cria ™" Coig (15)
14 1

P

and note there are no spurious nonlinearties introduced into the moment equations
if we can ensure T(®)-isotropy. For arbitrary regular lattices

4
T 55 = UpYasvs + Gp(0apbys +c.p)
6
T;S,(zﬁwésc = WpYapyse¢ + Ap(8apvye=¢ +€.p)

+@,(8asTigh + ), (16)
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where .. is the higher rank Kronecker tenssor (7. = 1 if all indices are equal, 0
otherwise) and is anisotropic. ¢y, - - - ®, are lattice geometry-dependent coefficients
and “c.p” denotes the cyclic permutation of indices. The 2D lattice vectors are (for
integer p)

27t — 1 2t —1
Cpi =P (cos f—7—r—[?—i~—]-, sin j%___]) , Where
2D square: i=1---L=4
2D hexagonal: i=1.---L =6 (17)
2D octagonal: i=1---L =28

so that the isotropy properties of T(*) are
2D square: 1, 0= T1§4) is not isotropic
2D hexagonal: ¥, =0, but ¥, #0= T,§4) isotropic, but not TISG)
2D octagonal: ¢, =0=V,=A, = T156) isotropic.

From this we can immediately conclude that the minimum number of bits of
velocity space information required for the specified closure level are:

2D Square 2D Hexagonal 2D Octagonal

Momentum closure 9 (2-speed) 7 (1-speed) 9 (1-speed)
Energy closure 13 (3-speed) 13 (2-speed) 17 (2-speed)

If one wishes to eliminate the spurious cubic nonlinearities in the conservation
equations, then one must use a 17-bit mode TLBM on a 2D square lattice. However,
we have found this 17-bit model to be extremely numerically unstable. However
the 2D octagonal 17-bit model will automatically guarantee the elimination of this
spurious nonlinearity because of the higher order isotropy of this lattice.

4.1. Lattice symmetries for 3D

In 3D, there are no such generic isotropic lattices. Typically, one has resorted to
the 3D projection of the 4D FCHC.! These lattice only have enough symmetry
to support T®-isotropy, a symmetry that is just adequate to recover TLBM (but
with the spurious triple order nonlinearities present in the conservation equations).

A canonical basis in D dimensions will consist of a D-dimensional vector with
components being permutations of +1 or 0. The index “p” now will label the number
of nonzero components of that lattice vector grouping, and integer & allows for
integer multiples of these base vectors : cpr; = kcpi. A 4D FCHC vector basis
consists of the rest particles (p = 0) and 3 canonical bases: p = 2, k = 1 [i.e., 24
vectors formed from the permutations of (£1,41,0,0}],; p =4, k = 1 [16 vectors
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formed from the permutations of (+1,£1,+1,+1)] and p = 1, k = 2 [8 vectors from
the permutations of k. (£1,0,0,0)]. Since the macroscopic variables (p, pu,e) are
3D, the 49-bit 4-vectors must be projected onto 3D space. The 4-vectors with +1
component values in the fourth dimension have the same 3D projection (degeneracy
2), so that the resulting TLBM is a 34-bit model

4D : (p, k) 3D Projection {p,k)  Degeneracy by (# bits)

p=0 p=0 1 1
p=2k=1 p=1,k=1 2 6
p=2k=1 1 12

p=4,k=1 p=3 k=1 2 8
p=1k=1 p=0 2 1
p=1k=2 1 6

This model differs from that constructed directly from 3D composed regular
lattices in the appearance of “rest energy particles”, i.e., particles possessing energy
but not moving in physical space. It is important to note that this 34-bit TLBM
rigorously satisfies the constraints Eqs. (9)-(14) — unlike the McNamara et al.!?
3D model or that of He et al.®

We now proceed to extend the ideas of the 2D octagonal lattice to 3D so that
the resulting TLBM model can, for the first time, enforce T® isotropy. The 3D
extension is nontrivial. We first introduce a scaling factor 7y, that will be used in
the construction of a new basis set

Coki = TpkkCpi, 1=1---bp (18)
so that
]c;klz = C;i = Pk277§k§ Ypk = k‘477;;k¢p3 ok = k477f,k¢p- (19)

The requirement that ¢, vanishes for each group & can now be formally writ-
ten as

S e =0=>_ E'ni. (20)
p 4

In 3D, the lattice constants in Eq. (16) (for k = 1)

S

bp Yp  Pp ¥p Ap &

W=
o
()
|
N
[o s N ]
|
%]}
[ &)
(== . =}

128 —16
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while the leading order coefficients in N° must satisfy the following constraints:

#10D Ay =1
pk
#2 D bpe Ape = 2e > bpc B = D
pk pk
#3 D Gprdpr =4€?/D* S @B =2¢/D > ¢puCpi = 1/2
prk pk pk
#4 Z wpk:Apk =0 z wpkBpk =0 Z"/)pkcpk =0
pk pk pk
#5 > ®pkCpx =e/D
pk
#6 > WpkCpk =0
pk
#7 > " ApkCpr =0
pk

where the constraints #5-#7 above ensure the isotropy of T,

There are several things to note:

(a) type p = 1 particles must always be present in each group k since v¥; > 0 while

o3 < 0,

(b) at least 5 different (p.k) — sets are required so that constraints #3-#7 can be

satisfied,

(c) at least one p = 2 basis must be included, since only ®; # 0.

In the following table, we list two possible 3D TLBM models that yield 7(-

isotropy:

Pk Tpk ok
41-bit model p=Lk=1 1 1
p=3k=1 273/4 10299
p=1,k=2 1 2
p=2,k=2 271/2 2
p=3,k=2 0.5 1.7321
53-bit model p=1Lk=1 1 1
p=2k=1 2°1/2 1
p=3,k=1 0.5 0.8660
p=1,k=2 1 2
p=2k=2 271/2 2
p=3k=2 0.5 1.7321
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One of the consequences of enforcing T isotropy in 3D is the decoupling of
the velocity lattice from the spatial grid. This will require interpolation following
the free-streaming TLBM step in order to evaluate the distribution function at the
spatial node site. Because of our free-streaming formulation, the interpolation need
only be 1D. It has been verified for the 2D octagonal lattice that the transport
coefficients are invariant to second order interpolation.®

5. TLBM Linear Stability Analysis'!
In a linear stability analysis about the unperturbed state

p(x)=po, u{x)=0, e(x)=e (21)
we linearize N®9

N;? = plAp(e) + Bple) cpi - u+ O(u2)]

with  Ap(e) = apo +apie +ape?, By(e) =bp +bye (22)

about the unperturbed distribution function

NPt = A(D = Ay (eq), for all x. (23)

Note that only the lower order coefficients Apr and By in Eq. (14) with Ay, =
A, Bpi, = By, (for all p in each group k) appear. Hence one can drop the k-index
in what follows.

At t = 0 a small perturbation is applied to the distribution function

t=0: NP(x) = A + 0N () (24)

After one lattice-Boltzmann time-step, the perturbed distribution function (after
streaming and collisional relaxation)

(¢} — ar(D) 0
SN, (%) = N, (%) - AP

1 c2 dAY
=2 |7 {AS” + (—5’— - ) — t+(em ) B o (25)

a,j

1
+ (1 - ;) 5,,q5ij] SNID(x — ¢g5) -

Hence the linear stability of TLBM is determined from the eigenvalues of the (real)
iterated map

=@+ — csEW (26)
where C is the (block diagonal) collisional relaxation matrix, and 8 is the streaming

matrix (which is nothing but a shift operator). For a 13-bit 2D hexagonal or square
lattice on a 512 x 512 grid, the matrix [CS] = 3.41e+ 06 x 3.41e+ 06, while for the
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53-bit 3D model on a 64 x 64 x 64 grid, the matrix [CS] = 1.39e + 07 x 1.39e +
07 x 1.39¢ + 07.

However, an efficient numerical algorithm will take into account that the C-
matrix consists of J identical ns x ng X - -- blocks, where J is the total number of
spatial grid points and n, is the number of velocity bits in the TLBM. The S-matrix
is used between successive iterations and is simply a shit operation.

The linear stability analysis proceeds via the method of powers to determine
the spectral radius py. For the 2D hexagonal lattice, an empirical scaling for p) has
been determined!!

e[3]

where Ly is the TLBM time iteration at which the distribution function at some
grid node becomes negative. Marginal stability corresponds to Ly — 00, px — 1+.

The following stability windows in the internal energy e have been determined
for the 4D FCHC projected onto 3D and the 3D “octagonal” TLBM:

Relaxation rate 4D FCHC - 34 bit 3D “Octagonal” 53-bit
(T -isotropy) (T®)-isotropy)
7 = 0.505 - 028 < e<0.65
7 =0.55 0.67 <e<0.69 0.24 <e<0.70
T =0.60 0.67<e <095 0.23<e<0.70
T =0.70 0.66 <e <1.06 0.09 <e<0.78
7= 1.00 0.60 <e <130 0.03<e<091

7 — 0.5+ corresponds to the viscosity i — 0 and Reynolds number Re — oo [see
Eq. (30)].

6. Variable Prandtl Number TLBM

If one restricts the TLBM to a single relaxation time 7 then the viscosity and the
thermal conductivity transport coeflicients are necessarily correlated, resulting in
a fixed Prandtl number simulation. To model variable Prandtl number flows, one
needs only introduce multiple relaxation times into the collision operator 213

Qpi = — Y _ Xij[Np; — N7, (28)
J
where the circulant matrix X;;
1 w
Xz'j == ;(Sij + -g;cgcm' * Cpj - (29)

The first term in Eq. (29) is the standard BGK collision term, while a second
parameter w is introduced into the second term. Since the matrix X is analyti-
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cally invertible, one can immediately determine the transport coefficients from a
Chapman-Enskog analysis!?

1 T 1
[,l,—p(f(’l'—‘é), H—2p€<m-§> (30)

However it is a fundamental result of statistical mechanics that ¢ and k are density-
independent. This can be readily achieved by forcing 7 and w to be functions of p.
If one introduces parameters ug{e) and xg(e)

_ pole) 1 o dp(x,t) 2
T p(x,t) 2 ’ B kole) + p(x,t) T ’ (31)

then the final temperature-dependent transport coeficients

u=uole)e, &= rolele, (32)

where p1g and &g have the same temperature dependence. The Prandt]l number Pr =
/K = po/Ko is an arbitrary constant. It should also be noted that we can recover
any temperature dependence for the transport coefficients. Thus this extended BGK
collision operator can readily model the transport coeflicients obtained from the
detailed nonlinear Boltzmann collision
- Wi(e)
e) = Wi(a)elet3)/2(e-1) . pr= #e) _ = const. 33
/1'( ) 1( ) n(e) Wz(a) ( )
with the intermolecular force law = r~®. For hard sphere collisions (@ — o0),
p(e) — e'/2 while for Maxwell molecules (a = 5), u(e) — e.

7. Rayleigh-Benard Convection

TLBM can be readily extended to handle the Rayleigh-Benard problem in which
there is fluid under gravity between plates separated by a distance H. The lower
plate is held at the higher temperature, ey, while the upper plate temperature

is held at a lower temperature: e; < ep. The buoyancy versus diffusion effect is
handled by the Rayleigh number Ra, which in TLBM is

GH3(€0 - €1> - Pr
e2, . (r—0.5)?

McNamara et ol.19 had such numerical instability problems in their 3D code that
they had to lower the number of constraints, Eqs. (9)—(13), that were to be enforced.
In their 2D simulation on a 150 x 150 hexagonal lattice, numerical instabilities
occurred for Ra > 3.2e+ 04 — even though a Lax Wendroff scheme was introduced
with arbitrary time-step.

On our octagonal lattice, however, we have been able to run for Ra > 1.0e 4 08
on a 128 x 128 grid and with a temperature range eo/e; = 2.5. A 3D simulation
has been performed on a 121 x 121 x 3 grid using the 34-bit model for Ra = 105. In
Figs. 1 and 2 we show the results of various Prandtl numbers on Rayleigh-Benard
convection at Reynolds number of 1200. For Ra = 2 x 10° and Pr = u/k = 0.1

R,a:
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Fr:ﬂ_-", R= 12“,.“.! t=05], k=01, p=0il
Ra = 200 000 gl

- - e i i

=0 40 B0 B0 100 120 20 40 60 80 100 120
=35000

0.40

20 40 B0 8O 100 120 20 40 BD B0 100 120
Fig. 1. HRayleigh-Benard coovection at Reynolds oumber 1200 and Ra = & x 1, The color
surfaces are the intecnal eneciy (Ltempecatuns) while the contour lines are the vocticity, The kewer
flate (%y = 17} is at temperature 0.5 while the upper plate {*y = 190%)] iz at termpernture 0.4,
The time-stess are in TLEM time iterations. MNete that a quasi-steady stabe is achieved by 36 K
ILEE AL HENIS.
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Pr=5, R = 1200, =051, k=0.002, u=10.01
Ra = 10 000 000 e et

80 B0 100 120
35000

2

1a)

Fig. 2. The corresponding temperatures susfaoes and veclicity contours when the conductivity
is reduced by a fastor of B {leading Lo Ra = 107), The fow is mo longer lsminar and exhibits
turbulent bussia, This can be readily seen nz 31 K lteratisns in the vocticity contours for Ba =
£ x 107 {Fig. 1} and R = 107 {Fig. 2).
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Pr=5,R=1200, (continued)
Ra =10 DDD 000

E=45000

20 40 'E‘D a0 104
=a0000

0 40 &0 80 100 12E|' 20 40 60 32 100 120
t=a5000 =70000

20 40 &0 80 100 120 20 40 &0 80 100 120

ih)

Fig. 2. {Continuad)
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one sees, Fig. 1, the development of steady-state convection rolls (color plot is the
temperature and the contours are the vorticity plots). However, by decreasing the
conductivity by a factor of 50 (and thereby increasing the Pr = 5 and Ra = 107)
one sees the convection rolls giving way to turbulent bursts. It should be mentioned
that the typical density variations range from 0.8 to 1.3.

8. Gaussian-Hermite Quadrature Formulation

The Taylor series representation, Eq. (14), has obvious limitations in the achiev-
able Mach number (although with the 2D octagonal grid we can achieve Mach
numbers of 0.5). Moreover, this series representation is nonunique (even for a fixed-
bit model). An attempt has been made to achieve!® a unique (for fixed number
of bits) representation for N°9 in LBM using Gaussian-Hermite quadratures. This
approach can be readily applied to TLBM. Consider the continuum representation
Eq. (1) and (2), with Maxwellian f°4 (in 2D):

eq __ P (6”“)2
fq—me"p[‘“‘ﬁ*]

z—%exp [_5_2} -{1+§—'02—|—(62.9‘;)2—‘21—;+---+O(u5)} ,  (34)

20

where we have expanded up to fifth order in the mean velocity in order to avoid the
spurious third order nonlinearities in the conservation equations. The expansion is
needed in order to exactly conserve the moments p,pu, and 6: i.e., one must be
able to exactly evaluate (in cartesian coordinates)

/dggg €59 for ptg<2 (35)
and thus find an exact representation for
/ d¢¢™exp(—C?), m<6 where &, =(20)%C. (36)
— O
Now when Gauss-Hermite quadratures are applied to an arbitrary function f(¢)
oC M
[ der©exn(=¢) = 3w f(Ga) + O], (37)
% m=1

there is an error term dependent on the 2A/th derivative of f. {,, are the zeros of
the Hermite polynomial Hps and the weights wm,
oM+I AL 71/2
T Hy 1 G2
However, for TLBM f is a polynomial — so that for sufficiently large M the quadra-

tures in Eq. (37) are exact. In particular a minimal TLBM is 16-bit with M = 4,
but this model does not include a rest particle. The 25-bit, M = 5 model does have

with Huy(Cm)=0. (38)
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a rest particle since one of the roots of Ham+1(¢) is ¢ = 0. In the Guass-Hermite
representation, the lattice vectors will always be temperature-dependent, with

ey =(€,€), with =0, &x=+096(20)"%, £ip=+2.02(20)"2.
(39)

However, the coefficients A,, By, ... in the resulting N*9 will no longer be functions
of q. This is somewhat appealing since the Taylor series in 8 of the coefficients clearly
indicate somewhat restricted stability bounds on temperature.

It is interesting to note that in the standard polynomial representation, Eq. (14),
the lattice vectors are fixed while the coefficients A, B,... are functions of 4.
However, if we transform the standard TLBM vectors into lattice vectors with
#'/2-dependence, then the coefficients become independent of #. While this is very
encouraging, it does raise the question of how to accurately handle nonconstant
lattice vectors.
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