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Abstract

This chapter describes how digital images of porous materials can be
analyzed to give information about the structure and properties of the
material and the various ways 3-D digital-image-based models can be
generated to help understand real porous materials.

1.1 Introduction to Porous Materials and Digital images

Holes in objects may be desirable or undesirable. For instance, when we
unwrap a piece of clothing that was ordered from an expensive mail-order
catalog, and find that there are unwanted holes in it, we usually send it right
back, with a more or less polite demand for a refund or an exchange. And
everyone knows the effect of holes in bicycle or automobile tires. However,
holes in the middle of records (remember records?) enable them to be played
on a phonograph, and holes in the middle of bagels and doughnuts not only
climinate the hard-to-cook part, but also allow ease of handling by clumsy
fingers. So holes can indeed sometimes be useful.

A porous material is simply some kind of solid material that has holes in
it. The holes are also called pores. However, if asked, most peoplc would
make a distinction between a pair of socks with three holes in the toes, an
empty closed cardboard box, and a household sponge. The socks and the
box would not generally be considered to be porous materials, while the
sponge would be. To call a material a porous material, there is usually some
kind of implicit assumption of homogenization and length scale.

Attempting to state this intuitive feeling more quantitatively is difficult.
We might in general say that the holes must be small enough, compared to
the typical size of the piece of material that is considered, so that it is
reasonable to consider the material as a mixture of solid framework and
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2 DIGITAL IMAGES AND COMPUTER MODELING

pores. Also, the holes must be distributed fairly evenly throughout the
material. Therefore, if the length scale of the sample is large compared to
the typical pore size, and the pores are distributed reasonably uniformly
throughout the material, then the material is a porous material. We use
these qualitative ideas as a working definition of most porous materials in
this and later chapters.

Common porous materials, some of which are considered in the chapters
of this book, include concrete [1]; paper [2]; ceramics (with natural [3] or
artificially created pores [4]); clays [5]; porous semiconductors [6]; chro-
motography materials [7]; and natural materials such as coral, bone,
sponges, rocks, and shells. Porous materials can also be reactive, such as in
charcoal gasification, acid rock dissolution, catalyst deactivation [8], and
concrete [1].

The purpose of this chapter is to describe a “tool kit” of mathematical and
computational tools that are available for use on digital images, in general,
and digital images of porous materials, in particular. These include tools for
measuring geometrical-and morphological quantities, tools for computing
physical properties of various kinds, and tools for generating 3-D images,
either from 2-D images or using models of various kinds. There are many
standard review papers and monographs in this area. Sahimi’s book, in
particular, is a good overall reference that covers some of the same material
as this chapter [9].

1.1.1 Porous Materials

Consider a sample of total volume V. Define the volume of the solid phase
to be ¥, and the volume of the pore phase (the holes) to be V,, with V=
V, + V,. The volume fraction is a normalized variable that is generally more
useful. The volume fraction of the pore phase is commonly called the
porosity, and is denoted ¢ = V,/V. The solid volume fraction is then (1 — ¢).

Since a porous material is a two-phase material (at least), a surface
separating the pore phase from the solid phase can be defined, with its area
denoted S,. This quantity is often called the pore surface area. A normalized
variable common for this quantity is called the specific surface area,
s, = §,/V. Note that the dimension of 1/s, is length, so that sometimes it is
thought of as a length that characterizes the length scale of the pores. A
simple example would be a collection of N mono-sized nonoverlapping
spherical pores of radius r. The inverse of the specific surface area, 1/s, =
V/S,, would be r/(3¢), which is obviously a length characteristic of the
pores. Other ways to form a length scale from pore space characteristics are
covered later in this chapter and in other chapters of this book dealing with
the transport properties of porous materials.
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In thinking about the microgeometry of porous materials, a common
approach is to consider them to be two-phase solid—pore composites, even
though the solid phase can be heterogeneous. Properties such as elastic
moduli are essentially functions of the solid phase, but are reduced and
modified by the presence of the pores. If there is a fluid that fills the pore
space, which can modify the dynamic elastic response, then both solid and
pore characteristics must be dealt with in understanding the elastic proper-
ties [10]. Elastic moduli decrease as the porosity increases. Properties such
as diffusivity and permeability are functions of pore size, shape, and
connectivity and increase as the porosity increases.

The topology of the pore space of a porous material is very important in
determining the properties of the material, and even in properly formulating
ideas about the pore space in the first place. By topology we mean how the
pores are connected, if at all. If the pores are completely isolated from each
other, then clearly one can discuss the shape and size of individual pores.
The left side of Fig. 1 shows an example of this case, in two dimensions,
where the pores are random-size, nonoverlapping circular holes. It is clear
in this case how to define the pore size distribution, a quantity that gives
the number or volume of pores of a given size.

If the pores are fully connected to each other, as shown in the right side
of Fig. 1, then there is really only one multiply connected “pore” in the

material. The number of pores is no longer a meaningful quantity, and it = -

becomes difficult to talk about the shape and size of the “pores.” However,
in this case, the idea of “throats” can be important. If the pore space in many
areas is shaped like the cartoon shown in Fig. 2, then the idea of a throat
shape and size can be loosely defined. The size of the “throat” limits the

FiG. 1. Two-dimensional picture of (left) isolated circular pores and (right) connec-
ted pores (gray = solid, white = pores).
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THROAT PORE

FiG. 2. Schematic picture defining a throat and pore in the pore space of a porous
material. ’

accessibility of the larger “pore” and is then the size of importance for many
properties of the material.

If there is such a throat structure, then a pore throat size distribution,
usually but erroneously called the pore-size distribution, can be defined.
Techniques such as nitrogen BET and mercury intrusion porosimetry (see
Chapter 3) measure a pore throat size distribution that is convolved with
the cross-sectional throat shape and the topology of the pore-throat
network [7,11]. These techniques measure an equivalent circular cross-
sectional throat diameter [7, 11]. In practice, pore—throat combinations can
only really be separated in terms of grossly simplified geometrical models of
the pore microgeometry.

In most cases, porous materials are random materials, with random pore
sizes, shapes, and topology. Because of this fact, most porous materials tend
to be isotropic. This is not always the case, however. Many rocks have
anisotropy built into them from how they were formed due to deposition of
sediment [12]. When looking at a slice of a porous material, one must of
course be aware whether the material is or is not isotropic. We assume
isotropy in the remainder of this chapter.

1.1.2 Digital Images

To our eye’s perception, an artist painting a watercolor or oil picture
makes an analog picture, although it is actually finely divided at the scale
of individual, overlapping paint pigment particles. A digital image is a
collection of individual, nonoverlapping elements or pixels that have distinct
intensities (gray scale or color) indicating the solid and pore phases of the
material. The spatial resolution of the image indicates the size of the pixels,
with high resolution meaning a small pixel is used. As the pixel size
decreases, the number of pixels per unit length increases, hence the designa-
tion “high.” A digital image can be a gray-scale image, where the intensity
of each pixel ranges from black (0) to white (N). For many imaging systems
(microscopes etc.), N = 255, corresponding to 8 bits of intensity resolution.
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A digital image can also be a color image, where each pixel contains three
values, say from 0 to 255, for red, green, and blue, forming 24 bits of color
resolution. For porous materials, if the solid part is a uniform material, all
a digital image requires is 1 bit per pixel, where pore is black (0) and solid
is white (1), or vice versa. The importance of digital images in science, as
opposed to analog paintings, is that digital images enable quantitative
analysis. Old-fashioned photographs and videos also must be digitized
before analysis. Modern digital cameras and scanning and transmission
electron microscopes can produce digital images directly.

Usually a rectangular array of square pixels is used in two dimensions,
although other shapes, such as a triangular lattice of hexagonal pixels, are
also possible and can be useful for special applications [13]. Actually any
area-filling collection of random shapes, on a random lattice, could be used
to make a digital image. Requiring that the pixels have uniform shape
restricts us to having them be a unit cell of one of the five Bravais lattices
in two dimensions [14]. The further requirement that the pixels be equi-
lateral forces the choice of square lattices of square pixels and triangular
lattices of hexagonal pixels. For the rest of this chapter, we discuss only
digital images made from square pixels, and in 3-D cubic lattices made up
of cubic pixels.

In two dimensions, digital images at sufficient spatial resolution portray
areas well. Figure 3 shows the same physical size circle, but digitized at
higher and higher resolutions. The real circle is centered on the middle of a
pixel. If the circles were to be centered on a pixel corner, the digitized image
would look slightly different, with no significant changes. The image appears
more circular as the resolution increases. Simple calculations show that
when 15 or more pixels are used per circle diameter, the error in the area is
always less than 1% [15].

However, the perimeter of a curved surface is usually off by a large
amount, no matter what the resolution. In Fig. 3, it is easy to see that the
perimeter of a digital circle P, obtained by counting pixel edges, is given by
P = 8r, not P = 2nr [16]. In the same way, for a 3-D digital image, where
the pixels (or voxels) are now cubes, volumes are well represented at high
resolutions, but the surface area of a sphere, obtained by counting pixel
faces, is always approximately 6nr®, not 4nr?. These corrections must be
kept in mind when trying to analyze pore surfaces based on digital images
[17].

Another important issue in analyzing digital images of random porous
materials is the ratio of image size to pore size. To get statistically
meaningful results, the image must sample a representative area of the
porous material. A more rigorous way of stating this can be formulated
using the porosity. For a random porous material, the measured porosity
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FIG. 3. Example of the effect of digital resolution on how a circle of diameter d is
represented (top: pixel length = d/3, ower left: pixel length = d/7, lower right: pixel
length = d/17).

will vary from image to image due to the randomness of the material. The
smaller the image compared to the average length scale of the pores, the
greater this fluctuation will be [18]. If the size of the images used is such that
this fluctuation from image to image is small enough, then the image is
considered to be large enough to be representative [18]. The terms “small
enough” and “large enough™ are defined for the application at hand. A rough
rule of thumb is that the image should be 5-10 times the typical pore size.

1.2 Geometrical and Topological Analysis

Assume a digital image of a cut through a porous material has been
obtained, in the form of a gray-scale image. Often the first step is to make
it into a two-phase black and white image. There are many ways this can
be done, based on analysis of the gray-scale histogram (distribution) of the
image [19]. This histogram simply tells what fraction of the pixels have
which gray-scale value. If the density of the solid phase is known, then the
porosity can also be directly measured from some kind of physical bulk
density measurement. If p; is the solid density, and p is the measured
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empty-pore or bulk density, then the porosity is simply ¢ =1 — p/p,. A
threshold gray scale can then be chosen, so that all pixels with gray levels
above this threshold are white (solid) and all below are black (porosity),
such that the correct porosity is achieved. Once a correct binary image has
been made, further analysis can be carried out. Often, one will want to
remove isolated pixels due to noise in the image acquisition process. Median
filtering or other image processing algorithms can be utilized for this
purpose [ 19].

The top left of Fig. 4 shows an example of a random image generated by
convolving a Gaussian function with a random noise image (see Section

0.015 > y r T
& oot} A
i3] :
o i '
o s
& 0.005 : ]
A
0.000 / H R \ .
0 100 200 300
Gray scale

FiG. 4. Top left: an artificial gray-scale image generated from a Gaussian convol-
ution process; middle top: the same image thresholded at a gray level of 93, so that
all pixels with a gray level less than or equal to 93 are turned black and all others
are turned white; black area fraction = 22%. Right top: the same image thresholded
ata gray level of 110, with black area fraction of 41%. Bottom: gray-scale histogram
of the original image. The y-axis is the area fraction of the image having a given gray
scale, and the gray scale runs from 0 to 255. The values of 93 and 110 are marked
by dashed lines.
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1.5.2). The bottom of Fig. 4 shows the gray-scale histogram for this image,
with dashed lines marking the gray scales of 93 and 110. In the graph, there is
a single maximum at a gray scale of about 125, out of 255. Many porous
material images would have two peaks in the gray-scale histogram, one for
each phase. The middle top image of Fig. 4 shows the result of choosing a
threshold gray level of 93, where every pixel with a gray scale lower than this
1s turned to black, and every other pixel is turned to white. The resulting
porosity (black phase) is about 22%. If the threshold is chosen to be 110, in
the top right part of Fig. 4, then the porosity turns out to be about 41%. In
these 2-D sections, the pore phase is isolated and the solid phase is connected.
The isolated islands of solid trapped within the pore phase are 2-D artifacts.

1.2.1 Stereology, Mathematical Morphology, and Fractal Analysis

There are several bodies of mathematical knowledge and techniques that
have been developed and that are actively used to mathematically analyze
and characterize the microstructure of porous materials, or indeed any
material. ) ,

Stereology is the mathematical science of predicting 3-D quantities by
measuring 2-D quantities. Books are available on this topic [20,21], with
many new articles produced each year. Stereology, combined with image
analysis [22,23], can be a powerful tool for inferring quantities such as ¢
and s, that are the same in two as in three dimensions. Stereology cannot,
however, analyze quantities that change between dimensions, such as
percolation quantities (see Section 1.2.3). Mathematical morphology is a
related and powerful tool for studying images of porous materials [24].

Another body of knowledge available for analyzing and characterizing
random materials is that of fractal mathematics. Making use of the tech-
niques of stereology, mathematical morphology, and image analysis, ques-
tions of fractal geometry [25-297 can be explored in digital images of
porous materials, whether these images are 2-D or 3-D. For an object to be
fractal, it must display scale invariance over a range of length scales. A given
digital image must have enough resolution so that it can display a reason-
able range of length scales, in order that its potential fractal character can
be analyzed. A rough rule of thumb is that scale invariance must be
displayed over at least one order of magnitude of length scale for an object
to be considered to have fractal character. Therefore the image must contain
at least that much resolution. In a digital image of a porous material, the
size of the image is L x L, and the pixel length is p. Clearly then we must
have L > 10p, since looking at length scales too close to the digital
resolution will bring in the digital “graininess,” and looking at length scales
too close to L will bring in finite size effects.
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Assuming that the image is adequate in terms of length scales and
resolution, one way to examine the possible fractal nature of an object in a
digital image is to measure how the object fills Euclidean space as a function
of the size of the region being examined. Such a property is characterized
by the mass fractal dimension d,,. In the case of a digital image, we can
count the number of pixels that are contained within a given radius. The
number of points M(r) ~ r®. Certainly, the range of r over which this
relationship could hold would be for p < r < L. If the object did fill space
uniformly, then d,, = d, the Euclidean dimension. As an example of fractal
objects, objects built up in three dimensions by diffusion-limited aggregation
or percolation networks at the percolation threshold have d,, ~ 2.54,

Another way of determining d,, is to construct a grid that covers the
digital image, of box size /. It would be easiest, in the case of a digital image,
to choose [ to be an integer number times p. By counting the number of
boxes that included part of the object, as a function of grid spacing I, one
obtains the box dimension, d, = d,,, from the relation M(]) ~ I %. Once
again, the range of grid spacing that would produce such a relation would
be between the pixel size p and the image size L.

A surface can be rough in a way such that it can also be characterized by
a fractal dimension, this time a surface fractal dimension. In a 2-D digital
image, a “compass” of opening t can be used to step around the surface
(perimeter) and measure its apparent length S(¢). If the surface fractal
dimension is d,, then S(t) ~ ¢t ™%, A grid method can also be used, similar to
the determination of the mass fractal dimension, which is defined for a 2-D
or 3-D digital image. One counts how many grid boxes have surface within
them, S(J), for various grid sizes I If the surface is fractal, then Sy ~ 1%,
where d; is again the fractal dimension of the surface.

Experimentally, one can directly determine the fractal dimension by use
of small angle scattering, whether neutron or x-ray scattering. Further
details can be found in Chapter 6.

For porous materials, the pore space itself, if it has pores over a wide
range of length scales, can be a mass fractal [30--33]. If the pore surface is
very rough, which would be the case for a high-surface-area material, then
the pore surface could form a surface fractal [30-33]. Studies of fractal
geometry have been carried out for rocks [26,34], aerogels [35], and
cement-based materials [36]. The transport properties of fractal pore spaces
have also been studied theoretically [37, 38].

1.2.2 Correlation Functions and Bounds

Beyond the empirical characterization of pore and throat sizes, the pore
geometry can be characterized in a rigorous way mathematically using



10 DIGITAL IMAGES AND COMPUTER MODELING

correlation functions, which can be measured using image analysis. Since
they are used for bounds and the reconstruction of images, topics that are
covered later in this chapter, we review them in some detail.

In 2-D, we define a function f(i, j), where (i, j) indicates the location of a
pixel in the M x N image,i=1,...,Mand j=1,...,N, and (i, j) = 0 for
solids, and f(i,j) =1 for pores. Then the first-order pore correlation
function is S, = {f(i, j)> = ¢, where

6> =53 16, B

and where 4 = M x N is the number of pixels in the image. A similar
definition holds in d dimensions. The second-order correlation function,
- 8,(x, ), is defined similarly, by

Sx%, y) = SGEDSE+ %7+ 9)- )

Writing the preceding equation in this way assumes that the system is
translation invariant, so that only the difference vector between two pixels
matters, and not the absolute location of the two pixels. If the image is also
isotropic, then with r = |(x,y)], S,(x, y) = S,(r, 0) = S,(r), so that S, is a
function of distance only. » .

The value of S,(r) carries information about how far away different parts
of the microstructure still “feel” each other. When r — 0, S, — ¢, since
G, )* = £, ). For nonzero values of r, one can think of f(i + x,j + y) as
a weighting probability factor for f(i, j). At a given value of (i, j), such that
fG, j) = 1, if there is a correlation in the system up to a distance r,, and if
r=/x*+y?<r, then f(i + x,j+ y) has a better than average (> )
chance of also having the value of 1. The overall integral will still be less
than ¢, however. As r — co, there is no causal connection between the points
(i,j) and (i + x,j + y), as long as there is no long-range order, so the
probability associated with the pixel at (i + x,j + y) being equal to unity is
just ¢, independent of (i, j). Therefore S, —+¢? in this limit. A simple
physical way of understanding S, is to think of it as the probability of
finding two randomly selected points that are both in the pore space. This
probability turns out to depend on the distance between the two points.
Clearly, S, = ¢ when r = 0 and decays to the value ¢? as r — co. The decay
length is a measure of the pore size. Because digital images have a finite size
(M x N), the actual evaluation of the two-point correlation function can be
achieved using

L MIENY SG ) fG %+ Y)
S,(x, y) = i; ,-; (M —x)}N —y) ~

3
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A simple mathematical exercise is the case of overlapping spheres, where
each identical sphere is randomly placed in three dimensions without regard
to any of the other spheres. The volume outside the solid spheres is the pore
space. This case has been solved analytically [39,40]. If p is the number of
overlapping spheres per unit volume, and R is the radius of the spheres, then

4nR?
¢=eXP<-~p 3 ) 4)
4n( . 3rR*
S,(r) =exp [-— p~3~ (R + R R)] r < 2R, (5)
8=
S,(r) = exp (-—p—j— R3) r=2R. (6)

Figure 5 shows S,(r) plotted as a function of r, where R = 1 is the radius of
the spheres and p = 0.29, so that §,(0) = $ ~0.3. One can see that S,
decreases as r increases from zero, and is always monotonically decreasing.
For systems where there are distinct grains, there are usually oscillations
after the first large decrease in §,. In this exactly solvable case, S, actually
reaches the value ¢?, as can be seen in Eq. (6) and comparing with Eq. (4).
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Fig. 5. Two-point correlation function for overlapping spheres (exact theoretical
result). The sphere radius is R = 1, and the number density of spheres was 0.29, so

the volume fraction of pore space ¢, which is the space surrounding the solid spheres,
is approximately 0.3.
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For any random isotropic pore space with smooth surfaces, the slope of the
two-point correlation function at r = 0 is given exactly by [41-43]

oS, =S, :
_é-r‘—lr-‘o - 4V - _4sp' (7)
Therefore S, is always a decreasing function of r for small r, because of this
negative initial slope.

Note that S,(r) also contains additional information when fractal geom-
etry is present [297]. In the case where the material phase considered is a
mass fractal, S,(r) ~ "3 when r is in the fractal limit (less than the image
size and greater than the pixel size), where d,, is the mass fractal dimension
(see Section 1.2.1). '

When the material phase is Euclidean, but its surface is fractal, with
dimension d,, the small r limit is given in terms of the surface fractal
dimension: S,(r) ~ ¢Br’* % + ---, where B is a constant [29]. When the
material phase is a mass fractal with a fractal surface, then other mathemat-
ical forms must be considered [29].

Higher-order correlation functions are defined similarly. Although in
practice, two-point functions are most used, three-point functions are fairly
common, but correlations past three-point are rarely used. For an isotropic
translationally invariant material, the three-point correlation function, S,, is
a function of three variables, r,,7,, and 8 where these can be thought of as
defining a triangle with two sides of length of r, and r,, with 8 being the
angle between these two sides. Then S4(r,, r,, 0) is the probability of finding
the three vertices of this triangle all in the pore phase [39].

When computing correlation functions from digital images, it is important
to correctly handle certain technical issues such as converting to polar
coordinates, especially at small r, and to consider the limitations of digital
images, such as digitizing curved surfaces, which were mentioned earlier.
References {40, 44, 457 give explanations of the methods that must be used,
the pitfalls of which to be wary, and the sources and magnitudes of possible
€ITOorS.

Other than characterizing pore geometry, one of the principal uses of
correlation functions is in the area of computing bounds for the effective
properties of composite materials [46,47]. Bounds are analytical formulas
that, for some particular property such as elastic moduli or electrical
conductivity, give the upper and lower limits for what the effective com-
posite property can be. )

Bounds are classified by their order. An nth-order bound usually includes
information from the nth order correlation function [46,47]. Of course, if
there are more than two phases, there will be more than one nth-order cor-
relation function. However, the second-order bounds for elastic moduli and
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electrical-thermal conductivity, commonly called the Hashin—Strichkman
bounds [47], are unusual in that they do not explicitly contain information
from S,, the second-order correlation function, other than S,(0) = ¢. But
the third-order bounds for these properties do have parameters computed
from S,. The first-order bounds are simply the parallel (Voigt) upper bound
and series (Reuss) lower bounds, for which the phases are arranged in a
parallel or series microstructure. These use the same information as the
second-order bounds, the volume fraction and properties of each phase, but
are wider apart than the Hashin-Strichkman bounds.

As bounds incorporate higher and higher correlation functions, they are
known to become tighter and tighter, increasing their usefulness at the
expense of a great increase of computational difficulty. In fact, it is known
that the isotropic and anisotropic electrical conductivity [46,48] and
isotropic elastic moduli [49] of a random isotropic two-phase composite can
be written down exactly in powers of the difference of the properties of the
two phases. The coefficients in the power series are functions of all the
correlation functions of any order for the composite. So, in general, the
properties of a porous material will depend on all order correlation
functions.

Bounds are most useful for composite materials where none of the phases
have zero properties. They are less useful for air-filled porous materials. This
is because in the array of nth-order bounds, the lower bound always has
something of a series character and the upper bound always has something
of a parallel character. For air-filled porous materials, this means that the
lower bound is always close to zero, because air approximates a zero-
property phase. So there is really only an upper bound for air-filled porous
materials, which may or may not be very close to the actual effective
properties. For a liquid-filled porous media, a meaningful lower bound can
exist. However, fot elastic properties, a zero shear modulus in the liquid
phase causes both the lower shear modulus and Young’s modulus bounds
to be zero.

There has been much work in the past decade or so on bounding the
permeability, which is a more difficult problem than that of bounding the
effective electrical conductivity or clastic moduli [46, 50-53]. Permeability is
different from quantities like electrical conductivity and elastic moduli. The
conductivity, for example, is defined at every point of the material, and the
overall effective conductivity is found by solving Laplace’s equation [Eq.
(9)], for the composite and averaging over this solution and the microscopic
conductivities. However, there is no microscopic permeability, because
permeability cannot be defined at a point, even in the pore space, but is
defined instead by averaging over solutions of the Navier-Stokes equations
In a porous material.
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1.2.3 Pore Connectivity

Assessing the connectivity of any phase is simple in a digital image of a
porous material. Usually, we want to know this for the pore phase, as the
solid phase must be connected to have mechanical integrity of the sample.
A simple method to use on a digital image is called a “burning algorithm”
(54, 55]. In two dimensions, only one phase at a time in a porous material
can be percolated [54, 56]. In three dimensions, several phases can simulta-
neously percolate. This fact reduces, but does not eliminate, the usefulness
of the burning algorithm in two dimensions.

The burning algorithm is a way of identifying all members of a cluster of
connected pixels that span the image. Starting on one side of an image,
“burn” one pore pixel by setting its gray scale to another number that is not
in the existing range; for example, not in the range 0-255. Then any pore
pixel that touches this pixel is also set to the same number. Continue this
process until there are no more “unburned” pore pixels left that are touching
the last burned pixels. The process is similar to classifying all pixels of a -
certain gray value as being combustible, and then touching a match to one
of them. If the “fire” burns from one side of the image to the opposite side,
then the burned pixels are said to form a spanning cluster, or percolate. This
process can be repeated by starting the fire at any unburned pixel to identify
all connected clusters, and all nonspanning clusters as well. This is an
efficient way to determine if the pore space percolates through the digital
image.

In performing the burning algorithm, one issue to consider is which pixels
constitute a neighboring pixel for propagation of the “fire.” The most
common case i$ to consider the immediate nearest neighbors (4 in two
dimensions, 6 in three dimensions). Alternately, the second nearest neigh-
bors (4 in two dimensions), or the second and third nearest neighbors (20
in three dimensions) can also be considered. The connectivity of a phase in
a digital image with square or cubic pixels has this degree of uncertainty.
We note, however, that using only the first nearest neighbors in two
dimensions resulted in good agreement of percolation thresholds, deter-
mined on digital images, with their continuum counterparts [15]. Different
numerical techniques for discretizing continuum equations on a digital
image have natural definitions of connectivity connected with them, as we
see in the next section.

It is important to note that percolation thresholds are usually larger in
two than in three dimensions. For instance, if one carries out site percolation
on a square lattice digital image, considering only nearest neighbor connec-
tions, where a random fraction x of the pixels are white and (1 — x) are
black, then the white pixels will percolate only when x > x,, where x. = 0.59
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in two dimensions, but x. = 0.31 in a 3-D simple cubic lattice [56]. If the
pore space of a real material followed these site percolation statistics, and
had a porosity of 35%, it would have a percolated pore space, but, seen in
the microscope, a 2-D slice would appear to have a disconnected pore space,
as a porosity of 35% is much less than x, = 0.59. Thus it is incorrect to study
3-D percolation quantities using 2-D images. Stereology breaks down in this
instance, as the connectivity in three dimensions and two dimensions is
fundamentally different. Real pore spaces, which generally have different
kinds of percolation statistics, will also show difference. Since the connect-
ivity of the pore space has a critical influence on transport properties such
as permeability [57], its quantification can be critical for understanding
microstructure—transport property relationships.

1.3 Computing Material Properties from Images

By the fact that it is already divided into pixels, a digital image is easily
adapted to discrete computational methods, such as finite difference, finite
element, and lattice Boltzmann methods. Since there is an underlying lattice,
any known algorithm for lattice problems can be applied. A manual
available through the Internet déscribes a collection of various programs
[58] that apply finite difference and finite element methods to any 2-D or
3-D digital images. These programs can be used to compute a variety of
material properties to compare with experiment. Later in the chapter we
discuss how the different methods can be applied to two-phase pore—solid
images, representing materials in which either the solid or the pores have a
uniform property, and the other is zero. An example of the case where the
solid is insulating and the pores are filled with a conductive fluid is Vycor™
glass filled with a liquid metal [59]. On the other hand, we could have a
conducting granular backbone and insulating pores [60]. Similarly for
elastic properties, the solid is assumed to have a uniform elastic modulus
tensor, while the pores have zero elastic modulus. For hydraulic permeabil-
ity, the fluid can only flow in the pores.

Both finite element and finite difference methods are simply means of
converting partial differential equations into a set of approximate algebraic
equations. At this point, however, it is worth noting some of the differences
between the finite element and finite difference methods discussed in this
chapter. The linear electrical conduction and linear elasticity problems can
be formulated either directly as a set of linear partial differential equations
or, indirectly, as an energy functional of partial derivatives that obeys a
variational principle. We present finite difference methods for the electrical
conduction case, and finite element methods for the elasticity case. The full
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Navier—Stokes equations are nonlinear and do not have an associated
variational principle [61]. The linearized forms of these equations, the
Stokes equations, do have a variational formulation [62]. However, we
present only finite difference methods for the fluid flow case.

In the various methods presented in this chapter, there also can be
differences in node placement. In a digital image, we want to use no more
than one node per pixel, if possible, to conserve memory. Philosophically,
this is also desirable since having more than one node per pixel would seem
to imply that more information is available than is really present in the pixel
structure. In a digital image, there are as many pixel corners as there are
pixels or pixel centers, so a reasonable choice of node location would be
either pixel corners or pixel centers. Of course, just as one can use any
coordinate system to solve a physical problem, the node placement can be
arbitrary as well. However, for example, one would not choose parabolic
coordinates to solve a problem involving the surface of an ellipsoid, because
ellipsoidal coordinates result in algebra that is much easier to work with
than parabolic coordinates in this case. In the same way, for the finite
difference and finite element methods, certain ways of choosing the node
placement result in much simpler equations.

1.3.1 Steady-State Condubtion

The important problem of steady-state conduction is a good case in which
to see the differences between finite difference and finite element methods.
The partial differential equation to solve is

V=0, ®)

where j = oF is the current flux, and E = —VV, with V being the potential
of the problem, and o the local conductivity. Inside a constant conductivity
material phase, this equation becomes the same as Laplace’s equation,

ViV = 0. )]

Between phases with different values of o, the normal flux, along with the
potential, must be continuous at a phase boundary. The energy functional
that obeys a variational principle is given as

1 Jf -Ed°r. (10)
2
When this functional is extremized, the preceding differential equation
results, with the correct boundary conditions.

In a digital image, all phase boundaries are also pixel boundaries. Having
a square array (in two dimensions) or a cubic array (in three dimensions)
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of pixels means that locally all boundaries are oriented in one of the
principal directions. Since in a direct finite difference formulation of the
partial derivatives of the problem, the derivatives are thought of as being
between the nodes, it makes sense in the finite difference formulation to
place the nodes at pixel centers, so that the boundaries are always located
exactly between nodes. To get a finite difference form of Eq. (8), we simply
expand the partial derivatives of the potential around the center of the pixel
of interest, pixel m, to obtain

stm,j(V;‘ - Vm) = Oa (1 1)

where S, ; is the conductance connecting pixels m and j, and V,, is the
voltage at pixel m. For a porous two-phase material, if pixels m and j are
both conductors, then §,, ; is just the conductance of one conducting pixel.
Otherwise, S, ;= 0. For an electrolyte-filled rock, in the case of electrical
conductivity, the pore phase is the conductor and the solid phase is the
insulator. In the case of steady-state thermal conduction of a rock with
empty pores, the solid phase becomes the conductor and the pore phase
becomes the insulator. When there are two types of conductors, the finite
difference formulation implies that S, ; becomes a series combination of the
conductances of one-half of pixel m and one-half of pixel j [58, 63]. Figure 6
shows a piece of a finite difference network superimposed on a random
image, where the gray pixels are conducting and the white pixels are
insulating. The bonds indicate conducting connections between nodes.

A finite element solution of Laplace’s equation can also be generated
using the variational principle that the correct solution gives the minimum
energy dissipated, averaged over the random structure [58]. Now the finite

FiG. 6. Finite difference grid for a piece of a digital image. The gray area has nonzero
conductivity, and the white area is insulating. The nodes are at pixel centers, and the
lines connecting the nodes indicate mathematical “bonds.”
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element nodes are placed on the corners of the pixels, with the voltages given
at the pixel corners instead of at the pixel centers. The voltage at the interior
of the pixel is found by linear interpolation of the corner voltages. Equation
(10) is then approximately computed, pixel by pixel, by integrating over
each pixel and then summing over all pixels. This converts the energy
functional into a quadratic form that involves the nodal voltages. This
functional is minimized to solve for the nodal voltages and the approximate
solution to the conduction problem. In many cases, the finite difference
method is simpler and gives results that are just as accurate. For the case
where two or more phases have a nonzero conductivity, sometimes the finite
element method can be more accurate [58]. Figure 7 shows some of the
finite element nodes superimposed on the same digital image as was shown
in Fig. 6. Again, the gray phase is the conducting phase.

As mentioned earlier, the connectivity of a digital image can vary when
different sets of neighbors are defined to be connected [64]. This can affect
the result of computations. In the finite difference cases already described,
the only mathematical connections are between nearest neighbor pixels. In
the finite element method, however, since the nodes are at the corners of a
pixel, and all the nodes on the corners of a given pixel are mathematically
connected in the quadratic form, the result is that in two dimensions, each
node is mathematically connected to nine different nodes, itself and its four
nearest and four second nearest neighbors, which are the nodes in the
corners of the four pixels that share a corner. In three dimensions, each node
is mathematically connected to 26 other nodes plus itself. Therefore a
conducting structure that is physically made up of pixels connected only by
corners would be connected electrically when using finite elements but

F1G. 7. Finite element grid for the same digital image as shown in Fig. 6. The nodes
are now at pixel corners, where variables such as voltages and elastic displacements
are evaluated. Both gray and white regions can have nonzero elastic moduli.
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disconnected electrically when using finite differences. There is not much
difference when the image resolution is high enough so that even the
smallest feature is made up of many pixels. However, for low-resolution
digital images, there can be a difference between the answer that these two
methods give, with generally no way of distinguishing which is preferred. If
the real pixel-to-pixel connections are defined beforehand in some way, so
that only certain neighbors are “really” connected, this will give insight into
which method to use. Otherwise, the choice is arbitary. However, exact
solutions for various nontrivial systems can be used to check the accuracy
of these different methods [58], in some cases distinguishing between them
in a quantitative way.

1.3.2 Fluid Flow

Fluid flow in porous materials is of great interest for many practical
reasons, including the service life of building materials, petroleum recovery,
waste containment, catalysis, and filtering [7, 26, 65]. The continuum equa-
tion for calculating flow properties is the Navier—Stokes equation [65). The
Stokes equation is the slow-flow linearized version of the full Navier- Stokes
equations. For flow through porous materials, in almost all cases, one is just
interested in this slow-flow limit. The Stokes equation, in the steady-state
limit, is given by [65]

V25 (F) = &VP(?),‘ (12)

where v (¥') is the fluid velocity at the point ¥, P(¥) is the pressure at the point
7, and p is the fluid viscosity. For incompressible fluids, an additional
condition, )

V-i(F) = 0, (13)

applies.

There are many different ways to solve the Stokes equations [66],
including both the finite difference and finite element methods. One way of
solving the Stokes equation that is well adapted to a digital image uses a
“marker-and-cell” (MAC) mesh [66]. Figure 8 shows the same image as in
Figs. 6 and 7, where gray is the pore phase through which the fluid flows.
The nodes indicate where the pressures are determined, and arrows show
where the fluid velocities are determined, in the middle of pixel sides [16].
All fluid velocities right at a gray- white (pore—solid) boundary are set to
zero, so no arrows are shown at these points in Fig. 8. This algorithm is
similarly constructed in three dimensions [57].
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FIG. 8. Part of the MAC mesh for the same digital image as was used in Figs. 6 and
7. The pressure is evaluated at the nodes, and the fluid velocities are evaluated at
the arrow tips, at pixel boundaries. The gray area is pore space and contains fluid,
and the white areas are solid. Fluid velocities are forced to be zero (no arrows
shown) at fluid -solid boundaries.

Darcy’s law [65] is found to describe macroscopic flow through porous
media: '

kAP

¥ =GE ==

(14)
where k, the permeability, has dimensions of length squared, ¥ is the average
fluid velocity in the entire volume of the sample (not just the pores), and AP
is the pressure drop over the sample length L. Darcy’s law is a macroscopic
equation, obtainable from the Stokes equation [67], which treats the porous
material as a homogeneous material defined by a certain bulk resistance to
fluid flow through it. Darcy’s law is mathematically analogous to Ohm’s
law, with p/k playing the role of the resistivity.

Since permeability has units of length squared, and the conductivity,
normalized by the conductivity of the conducting phase, is something like a
dimensionless tortuosity, there have been many attempts to generate a
length scale from the pore space that can relate the two quantities. The most
widely used of these length scales are based on the specific surface area [65],
an electrically weighted specific surface area that comes from solutions of
Laplace’s equation in the conducting pore phase [68] and a length scale
based on mercury injection [69]. A common idea has been to find a length
scale that correctly weights the parts of the pore space where the fluid
actually goes. These length scales are all reviewed and compared on the
same set of digital images in Ref. [16].
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1.3.3 Linear Elasticity

The linear elastic properties of porous media can be computed by finite
difference or a finite element méthods applied to digital images. Expressed
in terms of the elastic vector displacement, i(7), the Poisson’s ratio v of an
isotropic solid, and ignoring the effect of gravity, the vector equation to be
solved is [70]

(1 —-2wV%i + V(V i) = 0. a5)

For a two-phase image (solid and pores), where the solid has a uniform
elastic moduli tensor and both elastic moduli are zero in the pore space, a
finite difference approach can be used [71]. The boundary condition of zero
normal force at a solid—pore boundary is automatically satisfied in the finite
difference formulation [71]. When there are two or more kinds of solid
materials, or when the pore space is filled with an incompressible fluid, it is
difficult to incorporate into a finite difference formulation the boundary
conditions of continuity of elastic displacement and normal stress at
boundaries between different elastic moduli regions. It is easier to use a finite
element formulation, which makes use of the variational principle that the
correct displacement solution minimizes the elastic energy under an applied
strain [58, 72]. The finite difference method would use a grid just like that
shown in Fig. 6 with elastic displacements determined at the nodes in the
pixel centers, while the finite element method would use a grid like that in
Fig. 7 with clastic displacements determined at the pixel corners. In the . -
displacement formulation [73] of the finite element method, continuity of
displacement is satisfied automatically, but continuity of normal stresses is
only approximate. '

Figure 9 shows the component o, of the computed stress tensor
throughout the 22% porosity microstructure shown in Fig. 4, where the
solid (white) phase was fully connected with a Poisson ratio of 0.2 and a
Young’s modulus of 1.0 in arbitrary units. A horizontal strain (¢} of 0.01
has been applied across the sample. Figure 9 was obtained using a finite
element method [58]. The brighter the gray scale, the higher the stress. The
pores are shown in black, and the compressed regions are shown in an
uniform dark gray. Because of the randomness of the porous material, even
though the average strain is tensile, there will still be regions of compressive
stress. Notice that the areas of compressive stress are always near a pore.
On the other hand, the areas of high tensile stress are almost always at the
bottom or top of a pore, due to the stress concentration effects of a cavity
in a tensile strain field [74]. Figure 10 shows the corresponding stress
histogram. The area under the histogram has been adjusted to be 1, rather
than 1 — porosity, because the zero stresses in the (empty) pores have been
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FI1G. 9. The horizontal tensile stresses (o,,) for the 22% porosity microstructure
shown in Fig. 4, where the solid phase (white in Fig. 4) has a Poisson’s ratio of 0.2.
The brightness is proportional to the tensile stress magnitude, with pores shown in
black. Areas of compressive stress are in dark gray.

ignored. The effective Young’s modulus of this porous material was about
1. The effective moduli are easily determined by computing the average
stress tensor and then extracting the effective moduli using the applied strain
and well-known composite theory [46,47]. Reference [75] describes a
successful comparison with experiment using the finite element elastic
technique to compute the effective elastic and shrinkage properties of porous
Vycor™ glass.

1.3.4 Nonwetting Fluid Injection

A simple simulation of injection of a nonwetting fluid has been developed
in two dimensions [76] and three dimensions [77,78). The results can be
compared with mercury porosimetry experiments. The idea is to apply the
“equivalent sphere” concept to digital images in the following way [79]. For
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Fic. 10. Showing a stress histogram for the computed stress fields shown in Fig. 9.
The applied strain was 0.01, and Young’s modulus of the solid phase was 1.0 in
arbitrary units.

a given injection pressure P, there is a corresponding pore radius R, P ~ 1/R.
In three dimensions, a sphere with radius R is put into the image from the
outside, and moved around to cover as much volume as possible without
overlapping the solid. As the injection pressure is increased, the size of the
sphere is decreased. The amount of additional volume swept out at each
progressively smaller value of R is the pore space assigned to that pore size
or to its equivalent pressure [11,76], just as in mercury injection poros-
imetry. In two dimensions, this technique is fairly accurate, as there is only
one radius of curvature for a meniscus, and it is reasonably approximated by
a circular are. In three dimensions, however, there are two principal radi of
curvature at any point on the surface of a liquid meniscus. Thus using a
sphere to simulate the meniscus is much less reliable. Mathematical mor-
phology techniques can also be utilized in simulating these processes in
porous media [80].

Figure 11 shows a simulation of mercury intrusion (gray) in a material in
which the solid frame (white) is made up of randomly placed, rigid
overlapping monosize circles (white) [76]. The uninvaded pores are in black.
The left-hand side is for a lower pressure, where only surface intrusion has
occurred. The right-hand side shows the intrusion that occurs at higher
injection pressure, where the nonwetting fluid can get into smaller pores.
Clearly, there are large pores that are not invaded because they are only
accessible by small throats. This is the well-known “ink bottle” effect [81].
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Fic. 11. Example of the intrusion of a nonwetting fluid (gray) into the empty pore
space (black) around the solid (fixed) circles (white). Left: low-pressure intrusion;
right: high-pressure intrusion.

Moisture absorption is important in the study and use of porous
materials in atmospheric conditions (see Chapter 3). A typical quantity
measured is the sorption isotherm, which is the amount of moisture
absorbed as a function of the partial pressure of the absorbing vapor, at a
fixed temperature. A simple variation of the mercury injection simulation
can be made so as to simulate the moisture absorption-desorption pro-
cesses in any digital image of a porous material in two or three dimensions
{75,78,80].

1.3.5 Cellular Automaton Fluid Methods

Two additional computational fluid dynamics algorithms, originally
based on cellular automaton ideas, that are alternative to the direct finite
difference solution of the Stokes equation are the lattice gas [82] and lattice
Boltzmann methods [82-84], as applied to porous materials. These
methods, in contrast to the finite difference and finite element methods, do
not directly discretize the continuum Navier-Stokes equations but rather
operate at the “fluid particle” level.

The lattice gas method tracks the motion of particles moving on a lattice
that are subject to collison rules that guarantee conservation of mass and
momentum. Macroscopic variables such as density and flow velocity are
obtained from statistical analysis of the particle motions.

In contrast, the lattice Boltzmann method solves for the time evolution of
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FiG. 12. A 3-D lattice Boltzmann simulation of the phase separation of two
immiscible fluids in a porous material, where one fluid wets the solid phase
(solid = white, dark gray = wetting fluid) and the other does not (light
gray = nonwetting fluid).

the fluid particle velocity distribution function, which evolves due to the
“collision” of fluid particles. Quantities such as fluid density and velocity can
be easily obtained from moments of the distribution function. The method
can be applied to any digital image of a porous material, and the resulting
fluid behavior proves to satisfy the Navier Stokes equations. Due to ease
of implementation, the lattice Boltzmann method is much more frequently
used than the lattice gas method.

For a given digital image and the simple problem of saturated single-fluid
flow driven by a small pressure gradient, it may be easicr to use a finite
difference code for the Stokes equations. However, the lattice Boltzmann
method is much more useful in treating multiphase flow problems because
interfacial forces between liquid, gas, and solid phases can be more easily
incorporated. Thus flow and wetting properties in partially saturated porous
materials can be obtained in two or three dimensions [82-84].

One cxample is shown in Fig. 12, which depicts a 3-D computation of the
phase separation of two immiscible fluids inside a model porous material.
One fluid (dark gray) wets the solid (white), and one does not (light gray).
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The simulation starts with the fluids homogeneously mixed and present
everywhere in the pore space. The lattice Boltzmann algorithm causes the
two fluids to phase separate, with the wetting fluid preferentially moving to
the solid surface.

1.4 Creating Isotropic 3-D Structures from 2-D Images

There are various ways to obtain 3-D images from 2-D images. Experi-
mentally, 3-D images may be built up from a set of 2-D serial sections [85].
This is a tedious and time-consuming task, even with an automated system.
X-ray tomography offers one possibility for rapidly obtaining a 3-D image of
a microstructure. Resolution limits of several micrometers per pixel can be
achieved. This is adequate for many porous materials [86--887 (see Chapter
8). Sample sizes of a few millimeters or centimeters can be accommodated,
depending on the needed resolution. The acquisition and processing of such
images are rapid because no physical slicing of the sample is involved. The
rest of this section describes a method for generating 3-D images from 2-D
images in cases where 3-D images are not readily or directly obtainable.

1.4.1 Quiblier Method

An interesting theoretical approach to generating 3-D images is to
generate a representative 3-D porous medium from a single 2-D view of the
system, such as that provided by a conventional micrograph illustrating the
pore system. Based on the work of Joshi [89], Quiblier developed a
computational technique for creating a 3-D microstructure based on two-
point correlation function (S,) analysis of a 2-D image [90]. The main
principle is that a 3-D image is produced that has the same one-point and
two-point correlation functions as did the real material, as determined in the
2-D image. In essence, S, obtained from the 2-D image is introduced into a
3-D image by convoluting an initial image consisting of Gaussian noise. The
resulting image is then filtered so as to have the same S, as the original
image. This involves solving a large number of nonlinear equations [907]. In
his original paper, Quiblier performed some stress calculations on a slice of
the generated 3-D medium. Adler et al. [91] utilized this technique to
generate 3-D images of Fontainebleau sandstones. They computed per-
meabilities [91] and conductivities [92], but the results were consistently
lower than measurements on real samples. This is probably due to differen-
ces in the pore space connectivity since S, does not contain such informa-
tion. The evidence of this weakness is the difference in percolation
thresholds. Pores in sandstone are known to become disconnected at a few
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percent porosity, but the 3-D generated images tend to have percolation
thresholds ncar 10% porosity [91].

1.4.2 Simplified Method

A simplified version of the approach outlined by Quiblier has been
developed that modifies the generated 3-D structure based on analysis of the
hydraulic radius of the pore space [93,94]. Transport properties such as
permeability and conductivity and the critical pore diameter can be com-
puted to evaluate the merit of the generated 3-D microstructure. An example
in Fig. 13 shows the original scanning electron micrograph (SEM) of a
porous clinker brick, along with a thresholded and two-phase view of solid
plus pores [94]. In the modified generation procedure, S, is calculated using
Fig. 13 (right) and then used to generate a 3-D microstructure. The value
of s, for this structure is not equal to the original value. The hydraulic radius
of the 3-D structure is then modified so as to force its value of s, to match
that of the real image [93], which also makes the two-point correlation
function approximately match the real one as well. A 3-D view of the final
generated brick microstructure is shown in Fig. 14, with the pores in black.
As pointed out earlier in Section 1.2.3, while the pores appear discontinuous
in the 2-D image, they are actually connected in the generated 3-D image.

1.4.3 Limitations of 2-D to 3-D Image Generation Methods

There are advantages and drawbacks to generating 3-D porous micro-
structures from 2-D images. If the geometrical characteristics of a porous

FiG. 13. A starting 2-D SEM image of the clinker brick (left) and a thresholded
binary image showing pore regions in black (right). Each image is about 500 um
wide.



28 DIGITAL IMAGES AND COMPUTER MODELING

FiG. 14. A cutaway view of a 3-D reconstructed image of the clinker brick with the
same porosity (black) as the original 2-D image.

material are well captured by §,, then the generated image can be used to
compute other properties as well. If the geometrical information in S,, S, ...
or the connectivity of the pore space is important for the computed
properties, then there is no substitute for the real 3-D image [75].

1.5 Microstructure Models in Three Dimensions

Besides using digital images of real materials to compute their various
physical properties, it is often useful to construct artificial models to
elucidate the essential physics. There are three broad classes of 3-D models
for porous materials.

The first kind of model is called a percolation-type model. Here, one builds
up a structure using randomly or regularly deposited shapes of various
kinds within a finite imaging field; for example, overlapping ellipsoids,
lattices of overlapping spheres, or a random or regular lattice of tubes. The
result is a 3-D structure that bears some similarities to real materials and is
easy to generate on a computer. They can give real insight into parameters
such as percolation thresholds, transport properties, and their interrelation-
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ships. However, the values of parameters in the models are not to be
compared with real materials.

The second -type of model is usually based on smoothing of a random
noise image. A random noise image is first created, and then mathematical
operations are carried out to transform it into something that resembles a
real material. There is no attempt to simulate the actual physical and
chemical processes that create the porous material. Cellular automaton
methods can also be used to generate images that look like the “real thing”
without attempting to duplicate the actual physics and chemistry [95].

The third kind of model is a microstructure development model that tries
to simulate the actual processes by which the material is made. Examples,
to be discussed further later in the chapter, include models for the formation
of cement-based materials, sintered ceramic materials, and sedimentary
rocks. These kinds of models are usually harder to create than the first two
kinds, requiring insights into the physical and chemical processes, and the
algorithms are more complicated. However, their output can be compared
directly to images of the real matenals and their measured properties. An
image of the actual starting materials, as we shall see, can often be used as
the starting point for these kinds of models. The outcome of a microstruc-
ture development model can be visually compared to images of the real
material. At the crudest level, this is the “duck” test: If it looks like a duck,
then it is a duck. However, using the tools developed in Sections 1.2 and 1.3,
more quantitative tests can be conducted; for example, various correlation
functions can be compared and other propertics can be computed and com-
pared against experimental data. Good agreement validates the assumed
physical and chemical processes contained in the model.

1.5.1 Percolation-type Models

Percolation theory is a well-studied topic, with many excellent reviews
[54, 56,96-98]. The early studies of percolative structures and their effects
on bulk physical propertics were made on random lattice structurcs, thus
making them relevant to structures seen in digital images, which are
typically square or cubic lattice structures. A digital image approximates a
continuum structure when the geometric features of interest each occupy
many pixels. In this sense, a useful digital image is a lattice structure with
spatial correlations among the pixels [99, 100].

There has been less, but still substantial work, on generating 3-D
continuum models using continuum objects placed at random or regular
positions within the image frame. Many references can be found in the
reviews cited earlier. One example is to build microstructures out of
overlapping, randomly placed and oriented ellipsoids [101]. Figure 135
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shows a 2-D section of such a 3-D model. The prolate ellipsoids used were
of the same size with an aspect ratio of 10. The volume fraction of ellipsoids
in Fig. 15 is approximately 7%. Even though in the image, the ellipsoids
appear to be mostly isolated, over half of them are connected in three
dimensions and form a spanning cluster. Note that a similar model with
ellipses in two dimensions having the same aspect ratio would percolate at
an area fraction of about 30% [102].

Building continuum models with other objects in three dimensions was
reviewed by Balberg [103] and they are relevant to real processes. Cubes
were used to study percolation processes in the combustion of carbon [104],
and regular lattice packings of spheres have been used to study capillary
condensation hysteresis loops [105]. A regular lattice packing of spheres
that can consequently grow and overlap, called the grain consolidation
model, has been used to gain insight into transport processes in sedimentary

F16. 15. Slice through a 3-D model of overlapping prolate ellipsoids (white) having
an aspect ratio of 10. The volume fraction of ellipsoids is 7%.
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rocks [106]. Two-dimensional lattices of disks that can rub against each
other have been used to simulate the elastic properties of sandstone [107].
Other discussions of percolative-type models can be found in Ref. {46].

A subset of this approach, mostly used for simulating fluid flow in porous
materials, is the use of tube networks, both regular [108] and random [109].
In some sense, this is similar to using discrete conductor networks to solve
the continuum Laplace equation [100]. However, setting up a finite differ-
ence solution of the continuum Stokes equation in a porous material does
not result mathematically in equations that resemble those for a network of
tubes. Nevertheless, a great deal can be found about flow in porous
materials from this approach [110]. More details can be found in Chapter 2.

1.5.2 Atrtificial Image Models

The second set of models are what we call artificial image models. In
Section 1.4, the measured two-point correlation function, S,, measured on a
2-D digital image of a real material, was used to convolve a random noise
image to obtain an artificial 3-D microstructure that had approximately the
same porosity and functional form of S, as did the 2-D image. There are
other ways of operating directly on random images to produce artificial
structures. These methods are not based on the actual formation processes
of the real material, and they may not even use a real image in the
convolution algorithm. They are, however, useful because they can be easily -
generated and often bear reasonable resemblances to real microstructures.

One method is to take a random white noise image, convolve it with some
other function, and then threshold it to solid and pore phases to give the
desired porosity. This has been done using a Gaussian convolution function
and, remarkably, provided images that resembled thin sections of carbonate
rock [111]. If the convolution function is the Laplacian of a Gaussian, the
resulting images exhibit features of Vycor™ [111, 112]. The microstructures
in Fig. 4 are from Gaussian convolutions of a white noise image.

A variation of the preceding method uses two thresholds, x, and x,. All
pixels with values of x, 0 < x < 1, below x, and above x, are designated
pores, and pixels with x;, < x < x, are designated as solid. This algorithm
turned out to generate images that resembled foam-like and aerogel-like
structures [ 113, 114]. The conductivity of these structures has been com-
puted along with the two- and three-point correlation functions and
resulting three-point bounds, and showed reasonable agreement with experi-
mental measurements [ 113, 115].

This kind of model shows that as long as the correlation functions are
similar to the real materials, artificial image models can be used productive-
ly to understand other material propertics.
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1.5.3 Microstructure Development Models

It is desirable to generate porous microstructures based on actual physical
and chemical processes. This is often very difficult because of the complexity
of these processes. Natural materials such as sandstone are not made under
a controlled laboratory environment, so our quantitative knowledge of the
processes involved is weak. However, man-made materials such as concrete
(5 billion tonnes per year worldwide) and ceramics (including bricks) and
various gels are manufactured according to well-defined processes, so in
principle, it should be possible to simulate these processes by a 3-D
microstructure model. The success of the model is, in fact, a test of our
understanding of the processes.

Consider the case of the porous material concrete. It is made up of
cement, water, sand, and pebbles (aggregates). It is formed by the hydration
of cement, the most common variant of which, known as portland cement,
consists of mainly calcium silicates with minor amounts of aluminate,
sulphate, and ferrite phases [116]. When water is mixed with the cement, the
various phases of the cement undergo hydration reactions, each at a
different rate and interacting with each other. The initial viscous mixture of
liquid and particulates grows into a rigid solid that keeps increasing its
strength as the hydration progresses, which can continue for months. The
cement paste (cement plus water) turns into a solid matrix, in which the
sand and pebbles are embedded.

The main geometrical feature that must be understood about concrete
microstructure to be able to optimize concrete properties is the development
of the cement paste microstructure during hydration, because the cement
paste matrix governs the properties of concrete. This is a microstructure
made up of unhydrated cement grains, reaction products, and water-filled
pore space. The starting cement grains have an average size of about
20-50 pym, so that the length scale that initially characterizes the primary
cement paste pores is of the order of micrometers. These pores do, however,
become as small as a tenth of a micrometer as hydration progresses. There
are smaller secondary pores present, called gel pores, inherent in the main
reaction product, amorphous calcium silicate hydrate. Their diameters are
of the order of tens of nanometers [78,116], but we ignore them in con-
sidering the primary cement paste microstructure. Cement paste is thus a por-
ous material whose solid phase is not uniform. This has a sensitive effect on
many concrete properties such as elastic moduli and thermal conductivity.

Models have been made to simulate the evolution of the cement paste
microstructure from a mixture of water and cement grains to the final
hydrated product [55, 117, 118]. These models incorporate only some of the
relevant cement chemistry and physics. The amounts and volume of reac-
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tants and products are correctly handled. The randomness of the original
multiphase composite cement particles is realistically taken into account by
using 2-D scanning electron microscope digital images of real particles as a
basis for constructing 3-D particies [118]. The randomness in the growth
process and the topology of the various reaction products are also realisti-
cally simulated.

Figure 16 (right) shows an SEM micrograph of a real cement paste,
compared to the model equivalent in Fig. 16 (left) [55, 117]. The gray scales
indicate the different phases. The darkest gray pixels contain other minority
phases, including gel pores, which are not shown. The pores are black. For
calculating composite properties such as elastic moduli, the different phases
in the solid framework must be identified, as they all have different elastic
moduli. Color pictures that reveal more details of the various stages of
cement hydration can be found in Refs. [117-119].

Properties that have been computed using the various methods described in
Section 1.3 of this chapter include the connectivity of both the solid and pore
phases of hydrated cement [ 55], diffusivity of the pore space [63], and how the
cement paste matrix in concrete is modified by the nearby presence of aggregates
[119, 120]. Comparison with experimental data has been quite favorable.

Another example of a microstructural development model has to do with
the high-temperature sintering of powders into ceramics and metals. The
powder particles change shape, and the powder compact densifies to
minimize surface energy [121]. This process has been simulated by a cellular

F1G. 16. A real hydrated cement paste (right) and its model equivalent (left). The
different gray levels indicate the principal different solid phases of unhydrated cement
and its reaction products. Porosity is black. The darkest gray level contains minor
phases that are not shown.
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automaton model that minimizes the surface area of a digital image of
particles [122, 123]. A simple algorithm that transfers pixels from areas of
high curvature to areas of low curvature captures the essence of the process.
It is clear that by moving mountains to fill valleys, surface area is reduced,
which is the main driving force for sintering. To implement the model on a
digital image requires a simple algorithm to measure curvature, which is
illustrated in Fig. 17. The solid pixels in this figure are shown with heavy
black lines and the pore space pixels with thin black lines. A circular
template (shown in gray) is centered at the point of interest on the surface.
The local curvature is estimated by counting the number of pore pixels in
the circular template. It is intuitively obvious that a flat surface would have
50% pore pixels in the circle, with less than 50% for negative curvature, and
more than 50% for positive curvature. It can be proved mathematically
[123] that this procedure is asymptotically exact, in the limit where the
template radius is much smaller than the local radius of curvature. Other
ways of measuring curvature in a digital image are described in Ref. [124].
The algorithm is applicable in three dimensions as well, but it gives only the
average of the two principal radii of curvature {123]. :
Figure 18 shows the evolution (from left to right) of a collection of
circular grains as the curvature and therefore surface area is reduced by the -
algorithm, The collection of grains is gradually becoming a circle, which has

[ ]

F1G. 17. The circular template algorithm in two dimensions. Thick black lines denote

solid pixels, and thin black lines denote pore pixels. The circular template is shown
in gray.
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Fic. 18. The evolution of a collection of circular particles (left to right) under the
sintering algorithm described in the text.

the minimum perimeter of a given surface area of any finite area shape in
two dimensions [125]. This growth model can be applied directly to a
digital image that has been acquired experimentally.

The sintering model described does not contain all of the relevant
dynamics. When material is removed from a high-curvature surface, it must
bé transported to the low-curvature surface by either vapor transport
through the pores, surface diffusion, volume diffusion, or diffusion through
any grain boundaries. There are also e¢lastic forces that arise from the
tendency of the particles to coalesce to minimize surface area [126, 127].

1.5.4 Summary

With the rapid advance in computing and imaging tools, 2-D and 3-D
digital images of porous materials can be readily obtained by a variety of
techniques. Mathematical and computational techniques have been adapted
to work with these images. In this chapter, we surveyed many of the
techniques that have been applied to porous materials and showed the
results. Although this is a rapidly advancing field, the essence is that a digital
image converts a continuum picture into a lattice of discrete pixels, so that
all lattice computational techniques are applicable.

. The rapid growth of computing power will lead to more realistic models,
and more 3-D experimental data, using x-ray tomography, nuclear magnetic
resonance (NMR) imaging, and other methods. The improved characteriz-
ation of pore geometry will result in more accurate calculation and predic-
tion of material properties, which ultimately will aid in materials engineering
via microstructural design.
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