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Int,poductieh: . L
' Component"i‘ntensilv'e rnull'ti'mode ﬁl;et 's'ystems such as those presently finding application.

in ﬁber optic local area nets and prerruse w1rmg requlre more characterization .than simply loss
statlstlcs ThlS fact is due to the mode dependency of the ﬁber compatlble components a.nd the fact
that the propagatlon dxstances of a component 1ntenswe system preclude the achievement of any .
steady-state modal distribution. Mode transfer matrices, as were first introduced by Holmes [1] are.
p_dwerful tools for multimode sysferri characterization. Unfortunately, as is shown in a recent work
(2], mode transition matrices are launch dependent and, as measﬁrement of a mode transfer matrix
requires various different launches, the mode transfer matrix of a given component cannot be unique.
This lack of uniqueness could be alleviated by standardizing the measurement procedure. However,
2 lack of uniqueness tends to put into question the ‘repeatability of a measurement technique.

In the present work, we take a slightly different approach to the standard one. The mode
transfer matrix is actually just a representation of mode transmission function [2], which is an object
which should truly represent the transrﬁission characteristics of a fiber or component. Determination
of the transfer function the.refore allows one to determine any of its representations and, therefore, all
the possible non—upique forms of the mode tra.nsvfer matrices. A simple model of the mode transfer
function for low less (< 0.5 dB)»vcomponvents is‘derived and determined experimentally, and the
results of the use of the mode transmission function to derive mode transfer matrices is compared

with direct measurements of mode transfer matrices.

Theory:

The mode transfer function T(R, R') for a component can be defined by the relation (2]

P (R)m /JR T(R, RYp (R')m(R') (1)

where p%(R) is the modal power distribution exiting the component, m(R) is the mode density,

P (R') is the modal power distribution incident on the component, and R is the mode parameter as
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 defined in any of various works [3]. T'(R, R') is a function of two continuous variables R and R and -
. is therefore not generally to be found directly from (1). However, one can make a parameterized
model for TR, &) and use (1) as 2 fitting equation to determine the parameters. In essence, this -
procedure does not diﬁ‘er too greatly from fitting procedures used-lt‘_q determine matrix elernents-

"[4]. To derive a parameterized model, one can assume that the mode-continuum approximation - -

holds but that coupling only occurs between modes at. the same vfréquen'cy, as was assumed-in the -~

- ‘ experimentally verified model in reference [5]. The resulting tré.nsfer-fungtion is

"‘-'_.’Z‘(R,R’) = §(R —.R’)— / dR”m(R”)‘d'(R”,'ﬁ)fS_(R-—' R+ m(R)a(B, B) B 2)

where the coupling function is a characteristic of the component under test. Assuming the component’

causes (low) loss and symmetric coupling, one can assume the coupling function to be -
1 ‘ :
a(R, RI) - §_ aue—-]Rﬂ_R 2|/27‘ (3)
where g and 7 are the fitting parameters.

A Single Launch Measurement Technique:
Once the g and 7 of the a(R, R') function are determined, matrices of any order can be
determined from the transfer function. A standard measurement made on components is that of

overfilled loss, The overfilled loss L can be related to o¢ and 7 by the relation
L= aoV?r2r(1+27)[1 - 2r(1 — e~1/77)] _ (4)

where V' is the fiber V' number. Equation (4) can be derived from (1) together with (2) and (3)-
where p*(R) is taken to be unity. Clearly, o can be eliminated from (3) using (4), and the resultant
T(R, R') is a function of only 7. If, when one measures L, however, one were also to record the P°(R)
that results from an overfilled launch, one could use 7 to fit the relation (1). The resultant best
fitted 7 could then be used to determine T'(R, R'). As this T(R, R') is a complete representation
of the component under test, any size matrix can be generated from it, and therefore the tfansfer

matrix of the component can be generated from data taken for a single launch.

Experimental Verification:
* To truly verify that the measurement technique outlined above is a viable one, one needs
to both verify the ansatz of (3) and to compare matrices generated by the above technique with

matrices’ generated directly. In order to do this, a fiber concatenation experiment was carried out
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“in which four 1 meter pieces of fiber were spliced together using input and output fibers with five .

fusion splices. Comparison of the measured near-fields and those computed using mode transfer .
functions are given in Figure 1. Typical comparison of mode transfer matrices calculated from the

mode transfer.funet’ion are given in Table 1. Agreement in all cases was good.

Conclusmn

By overﬁllmg an mput fiber and recording the total loss and near- ﬁeld output of a test :- . .

..‘component 1t 1s p0531b1e to ﬁnd a transfer functlon for the component From this transfer functlon,.: o .'

it 1s posmble to generate any of the non- unique transfer matrices for thls component This techmque

is preferable to presently applied techniques for two reasons. One i is. sn'nply that only a single launch

s necessary, and therefore mtncate submicron’ scannmg tcchmques of questionable repeatibility are -

not necessary. Second, the transfer function contains more information about a component than do

‘any of its associated transfer matrices. It is safe to conclude that the transfer function approach to.

the multimode fiber characterization problem is a most desirable one to follow.
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Figure 1: (a) Measured (noisy) and theoretical (smooth) input near-field distribu-
tion for overfilled launch. (b) Output near-field distributions measured (nozsy) and
calculated from the transfer function (smooth).

L T T AT Ty
09 08 Te 9963 .0066 .003 9573 -
Tm .983 0 .001 078 .
16 085 Te 9932 .0064 .0052 9229
Tm 092 .006 .007 .924
28 1 Te - 9835 .0115 0116 8599
Tm 041 .002 .001 .930

Table 1: Comparison of measured matrices (T'm) and matrices calculated from
the transfer function (Tc) for three splices. The transfer functions are determined

from the same ezperimental data for the corresponding transfer matrices. L is the
overfilled loss and T is the coupling coeﬁ‘iczeni
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