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It is shown that the mean-square displacement or the exponent of the Debye-Waller factor of graphene has
a singularity except at zero temperature. The zero-temperature values of the mean-square displacement are
calculated separately for planar and out-of-plane phonon modes for graphene. These values give the Debye-
Waller factor that can be used to model various scattering processes at temperatures much lower than the
Debye temperature of graphene. Since the Debye temperature of graphene is about 2300 K for planar modes,
the calculated values should provide a useful estimate of the Debye-Waller factor at temperatures of practical
interest. Finally, it is shown qualitatively that the singularity can be removed by accounting for the finite size
of real graphene crystals.
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I. INTRODUCTION

We derive an expression for the Debye-Waller �DW�
factor1 of graphene and show that its exponent has an inher-
ent singularity except at zero temperature. The DW factor of
graphene is, therefore, undefined at all temperatures except
zero. We calculate the zero-temperature value by using a
recently derived set of force constants,2 which provides a
good agreement with the experimentally observed phonon
frequencies in graphene.

The DW factor is an important quantity needed for mod-
eling all scattering processes in materials in which ionic dis-
placements are involved.1 Examples are scattering of x-rays,
neutrons, electrons, gamma rays, etc., which can also be used
to measure the DW factor.3–5 Scattering is a very powerful
tool for interrogating the physical characteristics of a mate-
rial. Hence, the singular behavior of the DW factor raises a
problem in the interpretation of scattering data in graphene.
In view of the strong topical interest in exploring the physi-
cal characteristics of graphene, it is important to identify the
problem and have at least an estimate of the DW factor for
graphene, which is the objective of this paper. Further, as a
possible solution of the singularity problem, we show quali-
tatively that it is possible to remove the singularity by ac-
counting for the finite size of the graphene crystals. Since all
real crystals are finite, it may be the appropriate solution of
the problem created by the unphysical singularity.

In Sec. II, we calculate the mean-square displacement
�MSD� of atoms in graphene by using the phonon Green’s-
function method and identify the nature of the singularity in
the MSD. The DW factor is exponentially related to the
MSD,1 which can be calculated in terms of the phonon spec-
trum or the phonon Green’s function of the solid.1,6–8 The
phonon spectra of graphene have been calculated recently by
Zimmermann et al.9 and Mohr et al.,10 but calculations of
phonon Green’s functions or the DW factor have not been
reported in the literature. In Sec. III, we show qualitatively
that it is possible to remove the singularity by accounting for
the finite size of graphene crystals. A crude estimate of the
effect of finite size of the crystal is also provided in Sec. III.

Finally, conclusions are presented in Sec. IV.
Our calculated value of the MSD, which gives the DW

factor at zero temperature, should be useful for modeling the
scattering processes at low temperatures. By low temperature
we mean a temperature T, which is much less than the effec-
tive Debye temperature ��m /kB, where kB is the Boltzmann
constant, � is the Planck’s constant in units of 2�, and �m is
the maximum angular frequency of phonons in the solid. The
values of �m are different for planar and out-of-plane phonon
modes. Since the Debye temperatures for graphene are 2300
and 1287 K, respectively, for planar and out-of-plane modes,
the low-temperature approximation may be adequate for
many practical purposes.

II. PHONON GREEN’S FUNCTION AND MEAN-SQUARE
DISPLACEMENT OF ATOMS

We assume the Born–von Karman model for the infinite
graphene lattice subject to the Born’s cyclic boundary con-
ditions. We assume the crystallographic axes of graphene as
the frame of reference with the X-axis along a C-C bond. We
denote the Cartesian components of a vector by the Greek
indices �, �, etc. that stand for x, y, or z. Summation over
repeated indices is not assumed and will be written explicitly.
We label an atom in the lattice by a pair of indices L�, where
L labels a unit cell and � labels the atom inside a unit cell.
Each unit cell of the graphene lattice contains two atoms so
�=0 or 1. The atom �=0 is assumed to be at the origin of the
unit cell.

We define the two-dimensional �2D� position vector of an
atom L� in the plane of the graphene lattice as follows:

r�L�� = r�L0� + r���� , �1�

where r���� is the position vector of the atom � with respect
to the origin of its own unit cell. We denote the 3�3 force-
constant matrix1 between atoms L� and L��� by
��L� ,L����. For a perfect lattice that has translation sym-
metry, ��L� ,L���� depends upon L and L� only through
their difference. The elements of the dynamical matrix1,11
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D�k� in the reciprocal space for the perfect graphene lattice
is then given by

D���k;�,���

= �1/M��L
	���0�,L���exp�ık · �r�L��� − r�0���� ,

�2�

where the sum is over all the lattice sites, M is the mass of a
carbon atom, and k is a 2D vector in the Brillouin zone of
graphene. Note that the vectors r and k are 2D but the matrix
� is 3�3 and D is 6�6. The eigenvalues of D�k� will be
denoted by �2�kj�, where ��kj� is the phonon frequency and
j=1–6 labels the six eigenvalues.

In order to calculate the MSD or the DW factor, we need
the equal time correlation function �u��L��u��L����	 which
is related to the phonon Green’s function1 as follows:

�u��L��u��L����	

=
�

�



0

�m

�2n��� + 1�Im G���L�,L���;�2 − ı0+�d� ,

�3�

where �m is the maximum phonon frequency, u�L�� denotes
the 3D instantaneous displacement of the atom L�, � 	 de-
notes the ensemble average, G denotes the phonon Green’s-
function matrix, ı is �−1, Im denotes the imaginary part, and
0+ indicates that the imaginary part of �2 is zero in the limit,
which is reached from the upper half complex � plane,

n��� = 1/�exp�
��� − 1� , �4�

and


 = 1/�kBT� . �5�

The elements of the Green’s-function matrix1,12 are given in
terms of the dynamical matrix as follows:

G���L�,L���;�2�

=
1

NM
�
k

�I�2 − D�k����,���
−1 exp�− ık · �r�L����

− r�L���� , �6�

where I is the unit matrix, N is the total number of unit cells,
and the sum in Eq. �6� is over the entire Brillouin zone.

The DW factor for the 3D scattering vector K is usually
written as exp�−2W�. The exponent 2W is define1,8 in terms
of the equal time auto correlation function as

2W = ���
K�K��u��L��u��L��	 . �7�

For a perfect lattice, u�L�� is independent of L. We also
make it independent of � by taking the average over all � in
the unit cell and assuming that the value for each � is equal
to the average value. The DW factor for graphene is isotropic
in the plane of the lattice due to hexagonal symmetry but will
be different for out-of-plane displacements. We will refer to
these displacements, respectively, as the planar and the Z
modes. The anisotropy of the DW factor for the planar and

the Z modes in graphene is similar to the anisotropy in highly
oriented pyrolytic graphite.13,14

For graphene, Eq. �7� reduces to the following:

2W = KP
2 UP

2 + KZ
2UZ

2 , �8�

where

UP
2 = �1/4���

���ux�L��2	 + ��uy�L��2	� , �9�

UZ
2 = �1/2���

��uz�L��2	 , �10�

where the summation in Eqs. �9� and �10� is over two atoms
in each unit cell, KP is the magnitude of the planar compo-
nent of K defined as

KP
2 = Kx

2 + Ky
2, �11�

and KZ as its Z component. The quantities UP
2 and UZ

2 are the
MSDs and determine the DW factor for graphene in the pla-
nar and the Z modes, respectively.

For graphene lattice the dynamical matrix in Eq. �2�
factorizes15 into a 4�4 block matrix corresponding to the
XY plane and a 2�2 block matrix corresponding to Z dis-
placements. As we see from Eq. �6�, the Green’s-function
matrix will also be factorized in two block diagonal matrices:
a 4�4 planar part corresponding to x and y components and
a 2�2 Z part. By symmetry of the graphene lattice, the
off-diagonal elements ��� of G in Eq. �3� are zero. From
Eqs. �3�, �6�, and �9�, we can write the following for the
planar part of the Green’s-function matrix:

UP
2 =

�

4�



0

�mP

�2n��� + 1�Im�
�p,�

G�p�p
�L�,L�;�2 − ı0+�d� ,

�12�

where �mP is the maximum phonon frequency for the planar
modes and �p=x or y is the Cartesian component in the XY
plane. The trace of the planar part of the Green’s-function
matrix in Eq. �6� is given by

GTP��2� = �
�p,�

G�p�p
�L�,L�;�2� =

1

NM
�
kj

��2 − �p
2�kj��−1,

�13�

where �P
2 �kj� is the jth �j=1–4� eigenvalue of the planar

block of the dynamical matrix.
From Eqs. �12� and �13�, we obtain

UP
2 =

�

M



0

�mP

coth�
��

2

FP��2�d� , �14�

where

FP��2� =
1

4N
�
kj

���2 − �p
2�kj�� =

M

4�
Im GTP��2 − ı0+�

�15�

is the spectrum of squared frequencies for the planar mode
and � is the Dirac’s delta function. In deriving Eq. �14�, we
have used the following standard relation:
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Im�1/�c − ı0+�� = ���c� �16�

for any real c.
The functions FP��2� are related1 to the frequency distri-

bution function �density of states� as follows:

FP��2� = gP���/2� , �17�

where gP��� is the phonon frequency distribution functions
for the planar modes.

Since coth�x� varies as 1 /x near x=0, we note that the
integrand in Eq. �14� varies as gP��� /�2 near �=0 for non-
zero T. In a normal 3D lattice, g��� varies as �2 near �=0 so
the integrand is well behaved at �=0. In a 2D solid gP���
varies as �, which makes the integrand singular at �=0 un-
less T=0.

In order to further illustrate the nature of the singularity,
we express the Green’s function in k space. Using Eq. �15�
into Eq. �14�, we can write

UP
2 =

�

8NM
�
kj

1

�p�kj�
coth�
��p�kj�

2
� . �18�

At low frequencies near the center of the Brillouin zone �k
close to zero�, hyperbolic cotangent behaves as 1 /�p�kj�, so
the summand behaves like 1 / ��p�kj��2. For acoustic modes
that dominate at low frequencies, �p�kj� is proportional to k
near k=0. Hence, the summand has a 1 /k2 singularity at k
=0.

In a 3D lattice, the k space is 3D and the number of k
points in a spherical shell of radius k is proportional to k2.
Hence, the singularity cancels out at k=0 for a 3D lattice
when summed over k. In a 2D lattice such as graphene, the k
space is 2D and the number of k points in the circular shell of
radius k is proportional to k, which does not cancel the sin-
gularity. Hence, the sum in Eq. �18� is singular.

The integrand in Eq. �14� has finite value1 at T=0 or 

=� if T approaches 0 before �. Since coth�x�=1 for x=�,
UP can be well behaved at T=0 and is given below:

UP
2 =

�

M



0

�mP

FP��2�d� . �19�

Proceeding in a similar manner, we obtain for the Z modes,

UZ
2 =

�

M



0

�mZ

coth�
��

2

FZ��2�d� , �20�

where �mZ is the maximum value of � and FZ��2� is the
spectrum of squared frequencies for the Z modes, defined
similar to Eq. �15�. The same considerations apply to the
singularity in Z modes given by Eq. �20�. However, in the
special case of graphene, the nature of the singularity for the
Z modes is different because �z�kj� is proportional to k2 near
k=0.15

Proceeding in a similar manner, we find the value of UZ at
T=0,

UZ
2 =

�

M



0

�mZ

FZ��2�d� . �21�

We calculate FP,Z��2� by using a fourth-neighbor interaction
model given in an earlier paper.2 This model gives a very
good fit between the calculated and the observed phonon
frequencies in graphene in the three symmetry directions

M, 
K, and MK. Using the force constants given in Ref. 2,
we calculate D�k� from Eq. �2� and the Green’s function
from Eq. �13�. The eigenvalues of D�k� give the phonon
frequencies. The maximum values of � for the planar and the
Z modes are found to be, respectively, 3.01 and 1.68 in units
of 1014 Hz. These values correspond to Debye temperatures
2300 and 1287 K, respectively. We calculate FP��2� from
Eq. �15� and Fz��2� by using an analogous equation. Finally,
we calculate UP

2 and UZ
2 at T=0 by using Eqs. �19� and �21�.

We show the variation in the normalized functions
FP,Z��2� with normalized frequencies in Fig. 1. The func-
tions and the frequencies have been normalized separately
for the planar and the Z modes such that

0.0 0.2 0.4 0.6 0.8 1.0

ξ

0.0

0.5

1.0

1.5

2.0

2.5

F

FIG. 1. �Color online� Normalized distribu-
tion functions for squared frequencies as a func-
tion of normalized square frequencies. The nor-
malization is defined in Eqs. �22� and �23�. Solid
line: planar modes and dashed line: Z modes.
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0

1

FP,Z��p,z
2 �d�p,z

2 = 1, �22�

and

�p,z
2 = �2/�mP,mZ

2 . �23�

We see from Fig. 1 that both the functions are well behaved
in the entire range. The two peaks in the planar mode func-
tion near the middle and at the end and in the Z mode near
the middle are features of the phonon frequency spectrum of
graphene.11

Finally, we obtain the following values of the MSD for
the planar and the Z modes at T=0: UP

2 =1.59�10−3 Å2 and
UZ

2 =4.04�10−3 Å2. For a given value of the scattering vec-
tor, these values give the DW factor by using Eq. �8�.

Note that the calculated values of the MSDs are their
zero-temperature values but not their zero-temperature lim-
its. The mathematical limit of a function with respect to a
parameter is the value to which the function approaches con-
tinuously as the parameter approaches its limiting value. As
is apparent from Eqs. �14� and �20�, the MSD is infinite at
any arbitrarily small but nonzero value of T. The singularity
is an essential feature of the 2D structure of graphene and
makes the DW factor undefined at nonzero temperatures.
Since the DW factor is a physical parameter that must exist
at all temperatures, a new physical insight is needed for de-
fining the DW factor for graphene.

One possibility is to include the effect of the finite size of
the crystal that has been neglected in the above analysis. In
Sec. III, we show qualitatively that it can, in principle, re-
move the above singularity in the MSD and lead to a well-
defined low-temperature limit of the DW factor.

III. EFFECT OF THE FINITE SIZE OF THE CRYSTAL ON
THE SINGULARITY IN THE MSD

Since the singularity in the MSD arises at low frequencies
or long wavelengths, we consider only the phonon modes
near k=0 or �=0. For low values of k and �, we can use the
continuum model for phonons.12 We assume that the dimen-
sions of the crystal are L�L along the X and Y axes. The
longest wavelength permissible in such a solid will be of the
order of L. Hence the smallest value of k is of the order of
1 /L. Since the phonon frequency is proportional to k for low
k, the minimum frequency of the phonons will be of the
order of c /L, where c is the velocity of sound. Of course k
=0 is also included but that corresponds to rigid body trans-
lation of the crystal and does not contribute to the phonon
energy.

We first consider only the planar modes and denote the
minimum phonon frequency by �0. The lower limit of the
integral in Eq. �14� now becomes �0. We expand the coth
function in a series of exponentials for 
→� corresponding
to T→0. The first term in the expansion is just unity that
leads to Eq. �19�. The contribution �UP

2 of the second term
in the expansion of coth to the integral is given below:

�UP
2 =

2CkB�

M
�exp�− TmP/T� − exp�− T0/T�� , �24�

where

TmP = ��mP/kB, �25�

and

T0 = ��0/kB. �26�

In deriving Eq. �24�, we have used Eq. �5�, and using the
continuum approximation, we assumed FP��2� to be a con-
stant equal to C. The temperature TmP can be identified as the
Debye temperature for the planar modes and T0 as the effec-
tive temperature corresponding to the minimum size-
dependent phonon energy. Assuming c�2.2�104 m /s cor-
responding to the longitudinal wave along the �100	 direction
in graphene and L=1 micrometer, we estimate T0�1 K.

Equation �24� gives the first-order correction to the MSD
given by Eq. �19�. It is obviously not singular at T=0. The
correction term goes to zero continuously as T0�T→0. This
shows that the effect of the finite size of the crystal, which
makes �0 nonzero, is to remove the singularity in the MSD.
Moreover, it shows that Eq. �19� is the genuine zero-
temperature limit of the MSD rather than just the zero-
temperature value.

Equation �24� shows that the effect of the finite size of the
crystal is temperature dependent. For T�T0�TmP, the size
effect varies with temperatures as T exp�−T0 /T�. Since
exp�−x��1 for x�0, the expansion of the coth function in a
series of exponentials is valid even for T�T0 but in that case
more terms need to be retained in the expansion. Strictly
speaking the values of the MSD given in Sec. II are valid
only for T�T0 but should provide a reasonable estimate of
the MSD for T�TmP. It should be possible to experimentally
verify the effect of the finite size of the crystal by measuring
the temperature dependence of the DW factor.

The above analysis is only qualitative. A more precise
estimate of the size effect will require a detailed calculation
of the phonon spectra in finite systems by using a method
such as the phonon Green’s function. In the present context,
the most important implication of the above analysis is that
the DW factor does exist for graphene, and Eq. �19� is the
genuine zero-temperature limit of the MSD.

A similar analysis is applicable to the Z modes but the
form of the frequency spectrum will be different. The long-
wavelength Z modes in graphene correspond to plate modes
in the continuum approximation. The correspondence be-
tween the continuum plate modes and the lattice Green’s
functions for graphene has been discussed in an earlier
paper.15

IV. CONCLUSIONS

We have shown that the MSD or the exponent of the DW
factor for graphene has a singularity at all temperatures ex-
cept at T=0. The singularity is a characteristic of the 2D
structure of infinite graphene. Since the MSD, which is the
exponent of the DW factor, is a physical parameter, it cannot
be singular at any temperature. A new physical insight is
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needed to either redefine the DW factor or include a contri-
bution in the formulation that can remove the unphysical
singularity. We show qualitatively that the singularity can be
removed by accounting for the finite size of the crystal. De-
tailed calculations of the phonon spectra in finite systems are
needed to calculate a more precise value of the MSD.

We have calculated the zero-temperature values of the
MSD separately for the planar and the out-of-plane modes,

which give the corresponding DW factors for a given scat-
tering vector. These values can be used to model scattering
processes at temperatures much lower than the Debye tem-
perature for graphene. Since the effective Debye tempera-
tures of graphene are quite high, 2300 and 1287 K, respec-
tively, for the planar and the Z modes, the calculated values
should be useful for interpreting the scattering data at tem-
peratures of practical interest.
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