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A parametric interatomic potential is constructed for graphene. The potential energy consists of two parts: a
bond energy function and a radial interaction energy function. The bond energy function is based on the
Tersoff-Brenner potential model. It includes angular terms and explicitly accounts for flexural deformation of
the lattice normal to the plane of graphene. It determines the cohesive energy of graphene and its equilibrium
lattice constant. The radial energy function has been chosen such that it does not contribute to the binding
energy or the equilibrium lattice constant but contributes to the interatomic force constants. The range of
interaction of each atom extends up to its fourth-neighbor atoms in contrast to the Tersoff-Brenner potential,
which extends only up to second neighbors. The parameters of the potential are obtained by fitting the
calculated values to the cohesive energy, lattice constant, elastic constants, and phonon frequencies of
graphene. The values of the force constants between an atom and other atoms that are within its fourth-
neighbor distance are calculated. Analytical expressions are given for the elastic constants and the flexural
rigidity of graphene. The flexural rigidity of the graphene lattice is found to be 2.13 eV, which is much higher
than 0.797 eV calculated earlier using the Tersoff-Brenner potential.
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I. INTRODUCTION

We construct a parametric interatomic potential for
graphene that reproduces its cohesive energy, lattice con-
stant, elastic constants, and phonon spectra. We use the po-
tential to calculate the flexural rigidity of graphene. These
characteristics determine the thermomechanical stability and
reliability of a material, which must be studied for its indus-
trial applications. Knowledge of the interatomic potential is
also necessary for computer simulation of the structural
properties of materials. A large amount of work has been
done on the electronic characteristics of graphene but rela-
tively less work has been reported on modeling its thermal
and mechanical characteristics. Our interest in this paper is
only in the mechanical characteristics of graphene and not in
its electronic characteristics.

Although the discovery of graphene is new, it has been
theoretically studied for a long time as a building block of
oriented graphite. An oriented graphite crystal such as highly
oriented pyrolitic graphite can be visualized as a set of
weakly bound graphene sheets for estimating its mechanical
characteristics though not electronic characteristics. Since
the binding between atoms in different planes is much
weaker than those in the same plane, many experimental
observations in graphite can be applicable to graphene. This
applies to the observed phonon spectra of graphite which can
be assumed to approximately represent the phonon spectra of
graphene except at very low frequencies. Similarly the elas-
tic constants c11 and c66 of graphite with reference to its
crystallographic axes can be regarded as approximately the
elastic constants of graphene. This correspondence is useful
for modeling the mechanical characteristics of graphene
since it is not easy to measure mechanical properties of
single sheets of graphene.
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Methods for calculating the interatomic potential of
graphene can be classified within two broad categories: ab
initio and parametric. For a review and other references,
please see the excellent article by Qian et al.! The ab initio
methods (see, for example, Refs. 2-7) are computationally
extensive and expected to be more reliable. However, in
practice, they sometimes make simplifying assumptions of
questionable validity. The parametric or empirical methods
consist of assuming a functional form for the potential and
fitting the parameters of the function with the experimental
results. One advantage of the parametric methods is that they
give the potential for a material in an analytical form, which
is convenient for subsequent calculations of other properties
of the material. Our interest in this paper is only in the para-
metric potentials.

Several parametric and bond-order potentials have
been proposed for carbon atoms in nanotubes, graphene or
graphite, and other solids. An excellent bond-order potential
for graphite has recently been constructed by Los et al.'* It is
a very detailed potential that accounts for the coordination
number, various correlations, and distortion effects and is
applicable to study of phase change. These details inevitably
make the form of the potential rather complicated. This com-
plexity may not be needed for many simpler applications
such as static calculations and phonon spectra that depend on
mainly the force constants and the potential near the lattice
sites. It has not yet been applied to calculate the force con-
stants and phonon spectrum of graphite or graphene.

A popular choice for the interatomic potential seems to be
the Tersoff-Brenner (TB) potential.®!! It accounts for the an-
gular forces and gives the correct cohesive energy and the
equilibrium lattice constant of graphene. It is very general
and applicable to a wide range of configurations. However, it
does not correctly reproduce the elastic constants of
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graphene and the phonon-dispersion curves possibly because
the range of interatomic interactions in the TB potential is
limited to only up to second neighbors of each atom. The
short-range nature of the potential is unrealistic for modeling
phonons in graphene. It is known that interactions up to at
least fourth neighbors® or even fifth neighbors'> must be in-
cluded in the interatomic potential in order to reproduce the
phonon frequencies for graphene.

The TB potential has the great advantage of simplicity for
lattice statics and simulation calculations. It seems to be
worthwhile, therefore, to generalize the TB model, without
sacrificing its inherent simplicity, so that it is also applicable
to lattice statics and lattice dynamics calculations. In this
paper, we present a functional form of the interatomic poten-
tial for graphene which is partly based on the TB model
potential. We write the total potential energy of an atom as a
sum of two parts: a bond energy part and a radial interaction
part. The bond energy function has the same form as in the
TB potential. We keep the same exponential terms but
modify the coefficients that represent angular forces. This
part correctly gives the cohesive energy and the equilibrium
lattice constant of graphene. In this part, we explicitly intro-
duce the dependence of the potential on the Z components of
the atomic displacements, where the graphene plane is as-
sumed to be in the XY plane and the Z axis is normal to the
graphene plane. It is particularly important to model the out-
of-plane displacements explicitly in view of the recent obser-
vations of ripples in graphene.!® The XY component of the
bond potential extends up to second neighbors of each atom
as in the TB potential, but the Z component extends up to
fourth neighbors.

The radial part of our potential extends up to fourth-
neighbor atoms. The radial function has been chosen such
that it does not contribute to the cohesive energy and the
equilibrium lattice constant of graphene but contributes to
the interatomic force constants. The parameters of the poten-
tial function are obtained by fitting with the observed cohe-
sive energy, equilibrium lattice constant, elastic constants,
and the phonon frequencies in the I'M, I'K, and MK direc-
tions. The phonon frequencies are calculated in terms of the
interatomic force constants, which are calculated from the
potential and extend up to fourth nearest neighbors of each
atom.

We derive analytical expressions for the elastic constants
and the flexural rigidity of graphene in terms of the force
constants. For the elastic constants, we use the method of
long waves,!” and for the flexural rigidity we use the formula
obtained by Green’s-function method.'® We obtain a flexural
rigidity of 2.13 eV in contrast to 0.797 eV obtained by using
the TB potential, as reported earlier.'® Since the force con-
stants derived in the present paper give a better fit with the
experimentally observed phonon dispersion, the present
value of the flexural rigidity should be more reliable.

The potential is described in Sec. II. The values of the
interatomic force constants, the phonon spectra, the elastic
constants, and the flexural rigidity of graphene are calculated
in Sec. III. A brief discussion of the results and conclusions
are presented in Sec. IV.

PHYSICAL REVIEW B 79, 075442 (2009)

FIG. 1. The bond structure of hexagonal graphene and the co-
ordinate axes. The dots show the lattice sites occupied by carbon
atoms Al, B1, C1, A2, B2, and C2. The origin of coordinates is at
Cl.

II. FUNCTIONAL FORM OF THE POTENTIAL

We write the potential energy W of an atom, called the
reference atom, as a sum of two parts as given below,

W=W,+W,, (1)

where W,, is the bond energy per atom and W, is the radial
interaction energy of each atom. The radial part extends up to
fourth-neighbor atoms of the reference atom and will be de-
fined later. The bond energy W, is the energy of the bond per
atom connecting the reference atom to its nearest neighbors.
It includes the angular forces and depends on the location of
other atoms. Consider the bond between atoms C1 and C2 in
a graphene lattice as shown in Fig. 1. Atoms Al and B1 are
the two other nearest neighbors of C1. Similarly A2 and B2
are nearest neighbors of C2. As in the TB model, we write
W,, as the following:

W, =AF¢ Fc, exp(— ar) — B exp(- Br), (2)

where r is the distance between C1 and C2, a, 8, A, and B
are constants, and the functions F; and F, depend on the
location of other neighbors of atoms C1 and C2. The first and
the second terms on the right-hand side (RHS) of Eq. (2)
represent the attractive and the repulsive parts of the Morse
potential as used in the TB model.

The values of o and B are same as those given by
Brenner.® The constants A and B are determined from the
equilibrium value of the lattice constant and the condition
that the total energy given by Eq. (1) at equilibrium is equal
to the cohesive energy of graphene. However, the radial po-
tential function W, has been chosen such that it does not
contribute to the total energy or its minimum for the
graphene lattice at equilibrium, so A and B are determined
from W, alone.

The functions F; and F, contain parameters that we
obtain by fitting to the experimental results. We could in-
clude functions similar to F; and F, in the second term in
Eq. (2) as well, if needed for better fitting with the experi-
mental results, but we did not find that to be necessary in the
present work.

The functions F; and F, may be physically visualized
as the effective charge densities on atoms C; and C,, respec-
tively. Each function contains a sum of contributions from
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the nearby atoms. We can introduce separate envelope func-
tions around C1 and C2, which define the region of influence
(ROI) for C1 and separately for C2. The atoms in the ROI of
C1 will contribute to F; and similarly for F,. For out-of-
plane deformations, we will also include some cross terms in
which the atoms in the ROI of C1 will contribute to F, and
vice versa. As in the TB model, the envelope functions are
not optimized. They serve the purpose only of restricting the
range of the ROI and, thus, help identify the atoms that con-
tribute to F; and F,. The actual mathematical form of the
envelope function does not affect our calculations. We can
therefore assume the same envelope functions as in the TB
model.®!" In the present case, the ROIs of atoms C1 and C2
are restricted to only their nearest neighbors. In Fig. 1, the
ROI of CI contains atoms Al and Bland the ROI of C2
contains atoms A2 and B2. Obviously C1 and C2 themselves
are not included in the ROI since we are calculating the
energy of the bond C1C2.

We first consider F;. It contains contributions of atoms
Al and Bl1. The contribution of each atom depends on the
angle it forms with different bonds, its distance from atom
C1, and its projection on the planes containing other atoms
and the bond C1C2. We denote the length of the vector from
Cl to Al by M(C1,Al) and the unit vector along the line
from C1 to A by V(C1,Al). The cosine square of the angle
between two vectors such as V(C1,Al) and V(C1,B1) is
given by

6(A1,C1,B1)=[V(CI,B1)-V(CI,A1)]?, (3)

where the dot between the two vectors denotes their dot
product. We further define unit vectors N normal to the plane
of three atoms, Al, C1, and C2, as follows:

N(A1,C1,C2) = V(C1,A1) X V(C1,C2)/|V(C1,Al)
X V(C1,C2)|, (4)

where X denotes the cross product and the vertical lines
denote the magnitude of the enclosed vector. In case of a
perfectly planar graphene lattice all the N vectors are normal
to the plane of the lattice and 6(A1,C1,B1)=cos*(27/3)
=1/4 at equilibrium.

We write F; as a sum of the contributions f;¢; and
fB1.c1 from Al and B, respectively, as follows:

Fei=faic1 +/sicis (5)

where

fAl,Cl=exp[_D(AlaC1)_E(AI’CI)]’ (6)

D(A1,C1) = u,P(A1,C1,C2) + u,P(A1,C1,B1)
+ M M(C1,A1) - qq], (7)

E(A1,C1)=\,U(A1,C1) + \,T(A1,C1), (8)
P(A1,C1,C2) = 8(A1,C1,C2) - cos? 27/3, 9)

P(A1,C1,B1)= 6(A1,C1,B1)—cos? 2m/3,  (10)
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U(A1,C1)=[V(C1,A1)-N(A1,C1,C2)]?
+[V(C1,Al)-N(B1,C1,C2)]?
+[V(C1,Al)-N(A2,C1,C2)]?
+[V(C1,A1)-N(B2,C1,C2)]?, (11)

T(A1,C1) =[N(A1,C1,B1) - N(A2,C2,C1)]?
+[N(A1,C1,B1) -N(B2,C2,C)]%, (12)

where a; is a constant equal to the length of the undistorted
graphene bond and w;, A;, and vy are adjustable parameters,
which we determine by fitting the calculated phonon-
dispersion curves and the elastic constants with their experi-
mental values. The first term on the RHS of Eq. (11) is
obviously zero but is included so that the equation reflects
the system of enumerating various contributions. For a per-
fect graphene lattice in equilibrium, aq=M(C1,Al).

The function fg; c; in Eq. (5) can be obtained from the
above equations by interchanging Al and B1. Similarly we
define the charge density for atom C2 as

Fer=farco+ foaco- (13)

The form of the function fa,c, can be written from Egs.
(6)—(12) by interchanging Al, B1, and C1 with A2, B2, and
C2, respectively. Finally, fg; ¢, is obtained from the expres-
sion for fa, ¢, by interchanging A2 and B2. The above equa-
tions have been written for two atoms in each ROI. If there
are more atoms in the ROI, their contributions can be in-
cluded following the same system as used in the above equa-
tions.

We can now write the above equations in a general form
that is more convenient for simulation calculations and is
applicable to those cases in which an ROI may have more
than two atoms, as in the case of clusters around graphene
lattice sites. The bond energy between atoms / and J that are
nearest neighbors to each other and connected by a bond is
written as follows:

Wbl,szFIFJ exp(— CU’]J) -B exp(— ,81‘1’1), (14)

where

Fi=Xfx; (K#J#1D), (15)
K

fk,l = exp[— Dg ;- EK,I]’ (16)

Dg = mPg s+ Mzz Pk + AM g —ay] (K" #K),

&
(17)

Exr=MUg i+ NTk (18)

Py 1= 01— cos*(2m/3), (19)

Py k= Ok xr —cos’(2m/3) (K’ # K), (20)

U= E [VI,K : NK’,I,J]2 + 2 [VI,K : NL,],J]Z, (21)
L

K'
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TI,K= 2 E [NK,I,K’ ' NL,J,1]2~ (22)

k' L

In Eqs. (14)—(22), r;; denotes the distance between atoms /
and J, the indices K and K’ label the atoms in the ROI of
atom /, and L labels the atoms in the ROI of the atom J. The
summation convention over repeated indices is not assumed.

We now consider the energy of a perfect graphene lattice
as a function of the lattice constant as shown in Fig. 1. When
all the atoms occupy the hexagonal sites, D(A1,C1) and
E(A1,C1) in Eq. (6) are zero, Fc;=Fc,=2, and Eq. (2) re-
duces to the exponential Morse potential. Minimizing the
energy of the perfect graphene lattice with respect to the
lattice parameter or the nearest-neighbor distance and equat-
ing the minimum energy to the cohesive energy, we obtain at
equilibrium

__EB
A= —12(,8 o) exp(aR,) (23)
and
E .«
B= meXP(BRo), (24)

where R is the equilibrium nearest-neighbor distance and E,
is the cohesive energy per atom. Since W, is the bond energy
per atom and W,=0 at equilibrium, E.=3W, corresponding
to three bonds per atom.

For the radial energy part in Eq. (1) we choose the fol-
lowing polynomial function:

4
W, =exp[- B(r— R)I2 v(rm(r) (r<R,). (25)
i=1

where

vi(r)=Q{(r—R;) +S,(r- Ri)Z, (26)

4
mir) =11 (r-R)*, (27)
1

j#i=

where Q; and S; are constants and R; is the ith neighbor
distance in the undeformed graphene lattice, and R, is the
range of the envelope function which restricts the range of
the radial potential. At equilibrium R, =R, which was defined
in Egs. (23) and (24). As in the TB model, we do not need to
optimize the shape of the envelope function which may be
taken as the step function being unity for r<<R, and O for
r>R,. A convenient choice of R, is slightly larger than the
R, so that the range of interaction is limited to fourth neigh-
bors of each atom and the parameters of the lattice are inde-
pendent of R,.

The form of W, has been chosen such that it is zero at the
hexagonal graphene lattice sites. Its contribution to the de-
rivative with respect to the lattice parameter is also zero.
Thus this function does not contribute to the cohesive energy
or the value of the lattice constant which is determined from
W,,. The first and second derivatives of W, at the lattice sites
are not zero. Thus W, contributes to the interatomic force
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constants and hence to the phonon spectra. The values of the
parameters in the potential function are given in Sec. III.

III. INTERATOMIC FORCE CONSTANTS AND THE
PHONON SPECTRA

Unless stated otherwise, all lengths will be reported in
units of a, where 2a=2.461 A is the lattice constant of
graphene at equilibrium.® Our model potential has 13 adjust-
able parameters—S5 in W), and 8 in W,. The 5 parameters in
W, are uy, s, ¥, Nq, and \,. Out of these y has the dimen-
sions of inverse length and the remaining four are dimen-
sionless. The 8 parameters in W, are Q; and §; for i=1-4. All
these have the dimensions of energy since r and R; are ex-
pressed in units of a and are dimensionless. These 13 param-
eters are determined by fitting the calculated phonon fre-
quencies and the two elastic constants c11 and c66 with the
experimentally observed values, as will be described below.
The constants «, 8, A, B, and R, are not adjustable param-
eters. The values of the @ and 8 are the same as those ob-
tained by Brgnner.8 The constant R, in Egs. (23) and (24) is
equal to 2/\3. For E. we use the experimental value of 7.4
eV, as quoted by Brenner.® The constants A and B are then
calculated from Egs. (23) and (24).

In order to obtain the values of the 13 adjustable param-
eters, we calculate the phonon dispersion for graphene in
symmetry directions I'M, I'K, and MK. The force constants
needed for calculating the phonon dispersion are obtained by
taking the derivatives of the potential as given by, for ex-
ample, Maradudin et al.!” The force constants depend on the
choice of coordinate axes. The force constants between two
atoms can also be written in terms of relative coordinates of
the two atoms and the line joining the atoms by using the
transformation given by Ref. 19. We represent the force-
constant matrices in the crystallographic frame of reference
with the X axis along the bond C1C2, as shown in Fig. 1.
The origin of the coordinates is assumed to be at the lattice
site occupied by the atom CI1. The arrows in the figure de-
note the positive direction. The Z axis is assumed to be per-
pendicular to the graphene plane, which is the plane of the
paper in Fig. 1.

A graphene unit cell contains two inequivalent atoms C1
and C2. We denote a lattice site by its two-dimensional (2D)
position vector 1, where 1, and 1, are its x and y coordinates,
respectively. The force-constant matrices ¢(0;1) between C1
and its first five nearest neighbors for different values of 1 are
written in the following form appropriate for the hexagonal
symmetry of graphene:

a 0 O

¢(0;2,0)=—{ 0 B, 0 |, (28)
0 0 4
a yn 0

#(0:0,2)==| -7 B 0|, (29)
0 0 &
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FIG. 2. (Color online) Phonon frequencies in energy units in the
I'M, MK, and I'K directions as a function of the wave vector. Solid
curves—calculated values. Dots—experimental values as quoted in
Ref. 15 except for the ZO curve in the I'K direction, which are
taken from Ref. 20 and the ZA curve in MK direction, which are
taken from Ref. 6.

a; 0 O
&(0;-41,00=—|1 0 B3 0 [, (30)
0 0 &

a; vy 0
d(0:5,1) == v Bs 0 |, (31
0 0 o
as; 0 O
$(0:61,0)=-{ 0 Bs 0 |, (32)
0 0 &

where t=1/y3. The form of the force-constant matrices be-
tween CI and other atoms in the same neighbor shell and
also between C2 and its neighbors can be similarly obtained
from symmetry. Although our force constants are limited to
fourth-neighbor interactions only, we have given the force-
constant matrix for the fifth-neighbor atom at (67,0) in Eq.
(32) for the sake of comparison with fifth-neighbor interac-
tion models such as that by Mohr et al.'> In our model as
= ﬁs = 55 = 0

From the force-constant matrices defined in Eqgs.
(28)—(31), we construct the dynamical matrix using the stan-
dard Fourier transform technique!” and calculate the phonon
frequencies. The force constants are calculated numerically
by taking the appropriate derivates'” of the total potential
energy and are thus determined from the parameters of the
interatomic potential. We choose these parameters such that a
good fit is obtained between the calculated and the observed
phonon frequencies in the three symmetry directions.

The calculated and the observed phonon frequencies are
shown in Fig. 2 for the I'M, 'K, and MK directions of the
wave vector. The experimental values have been taken from
Mohr et al."> However, Mohr et al.'> have not quoted the
experimental values for the ZO curve in the I'K direction and
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the ZA curve in the MK direction. In Fig. 2 therefore we
have shown the experimental values obtained by Siebentritt
et al.”° for the ZO mode in the I'K direction and those quoted
by Wirtz and Rubio® for the ZA mode in the MK direction.
The experimental values have been obtained by different
techniques as described in the papers referred above. We see
that the calculated phonon frequencies fit reasonably well
with the observed frequencies considering that the interac-
tions in our model are limited to fourth neighbors only. It
would appear that the fifth-neighbor interactions have to be
included to get a more perfect fit.%!

The main features of our dispersion curves shown in Fig.
2 are similar to those obtained by the earlier authors,®!>?!
who have given an excellent discussion of the nature of pho-
non dispersion in graphene. The most significant discrepancy
between our results and those in Refs. 15 and 21 seems to be
in the TA and ZO mode dispersion curves near the M point in
the I'M direction in Fig. 2. In our calculations they come
close to each other at the M point. This is in contrast with the
theoretical results of Zimmermann et al.?! and Mohr et al.'”
that show that the two curves meet at the M point, which
seems to be in agreement with the experimental results
quoted by Mohr er al.'> However, our results are consistent
with the discussion given by Wirtz and Rubio.® There is of
course no symmetry reason why the two curves must meet at
M.

We calculate the elastic constants c11 and ¢66 in a dy-
namic rather than static sense by using the method of long
waves.!” This procedure automatically includes!” the effect
of internal lattice relaxation.!”-?> We compare the frequencies
of the acoustic mode phonons polarized in the XY plane as
predicted by the lattice-dynamical matrix in the long-
wavelength limit with those predicted by the 2D Christoffel
equations for elastic equilibrium. This amounts to assuming
that the elastic constants c11 and ¢66 of graphene and graph-
ite are equal. Physically, it means that the phonon frequen-
cies of an elastic wave traveling in the XY plane in graphite
depend only on the interactions between the atoms in that
plane. This assumption can be justified because the interlayer
interactions in graphite are much weaker than the intralayer
interactions.

However, there is some obvious inconsistency in this pro-
cedure. The lattice-dynamical matrix is fully defined for a 2D
solid because the Born von Karman equations depend on the
mass of individual atoms and the location of discrete atomic
sites in the 2D space. On the other hand, the Christoffel
equations depend on the density of the solid, which is a
three-dimensional (3D) parameter. Strictly speaking, 2D
Christoffel equations correspond to plane strain in a 3D solid
and not to a 2D solid, that is, a solid of zero thickness. In
fact, the conventional elastic constants themselves are 3D
parameters and are defined in a 3D volume.

Our procedure of calculating c11 and c66 for graphene,
therefore, associates a volume with each atom in graphene.
We assume that the volume per atom in graphene is equal to
that in graphite. This assumption implies that the thickness of
a graphene sheet is equal to the interlayer spacing in graph-
ite. A similar assumption is also made about the thickness of
carbon nanotubes in calculating their mechanical behavior.!
This assumption is not strictly justified. However, since the
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calculated values of the elastic constants depend strongly on
the interatomic interactions, they serve to provide at least a
qualitative estimate of the elastic stiffness of graphene. A
more rigorous definition of the elastic constants for graphene
would involve a precise quantum-mechanical calculation of
the effective thickness of the graphene sheets.

We can of course define the elastic constants in a 2D
space in units of force per unit length rather than force per
unit area.”>?* These 2D elastic constants can be obtained
from our calculated values by multiplying them by the as-
sumed thickness of the graphene layer, which, in our case as
mentioned above, is equal to the interlayer spacing in graph-
ite. We have verified that the result agrees with our static
calculations of c11 and ¢66. We carried out the static calcu-
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lations using the procedure given in an earlier paper.>* How-
ever, measured values of 2D elastic constants are not yet
available. Until such measurements are available, we suggest
that c11 and c66 of graphite as calculated above can be re-
garded as a measure of the elastic stiffness of graphene. The
agreement between the calculated values of c11 and c66 of
graphene and their observed values for graphite, therefore,
provides a qualitative validity of the fitted interatomic poten-
tial for graphene.

By comparing the frequencies predicted by the lattice-
dynamical matrix in the long wavelength limit to those pre-
dicted by the Christoffel equations as described above, we
obtain the following relations between the force constants
and the elastic constants for graphene:

cll= Cu[Za% + a1(6a2 + 19a3 + 35“4 + 546!5 + 631 + 18ﬁ2 + 333 + 3334 + 18B5 + 14\’/5')/4)
+ a2(6a3 + 12a4 + 6ﬁ1 + 633 + 12B4) + 80% + a3(83a4 + 54&5 + 9B1 + 18B2 + 24B3 + 2134 + 1835 + 2\/5')/4)
+530% + a,(108as+ 515, + 368, + 278 + 1623, + 3685 + 40\3y,) + as(54B, + 545 + 1083,)

+ B1(18B,+9B; + 9B, + 1885+ 63 7,) + Bo(18B5 + 363,) + B3(458, + 1885 + 18\3,) + 982 + 368,85 — 12921,

(33)

c66 = Cu[Z,B% + ﬁ1(6ﬁ2 + 1933 + 35B4 + 54B5 + 6&1 + 18&2 + 3&3 + 33“4 + 18055 - 14\”5’)/4)
+ B2(6B3 + 12[34 + 6(11 + 6a/3 + 126‘(4) + Sﬁg + B3(83ﬁ4 + 54ﬁ5 + 9a’1 + 180{2 + 246!3 + 21&4 + 18&5 - 2\‘"’5'}/4)
+ 53BZ + ,[)’4(10835 + 516‘(1 + 360{2 + 27a3 + 162&4 + 36&5 - 40\!’5')/4) + ,85(54a1 + 546(3 + 108&4)

+ oy (18ay + 9ay + 9y + 18as — 6137,) + an(18a3 + 36ay) + a3(45a, + 18as — 18v3y,) + 9a2 + 36a,05 — 1292],

where
C,= U[4c\3(a) + as + 2a,+ By + B3 + 28], (35)

and ¢=3.355 A is the interplanar separation in graphite. In
deriving the above equations, we have used the fact that the
volume per atom is equal to a*c\3.

We have selected the parameters of our potential by fitting
the values of c¢11 and c66, calculated as described above,
with the observed values® for graphite. The calculated val-
ues of the two elastic constants are: ¢11=1060 and c66
=440 GPa, which agree exactly with the experimental val-
ues given by Blakslee et al.>> These values are slightly lower
than ¢11=1109 and c66=485 GPa reported recently by
Bosak et al.?® We could have fitted our parameters with the
values given by Bosak et al.?® but we chose the values re-
ported by Blakslee et al.”® partly because they have been
widely used in the literature and also because they are most
consistent with Brillouin-light-scattering measurements on
highly oriented pyrolytic graphite recently performed in our
laboratory in Ref. 27.

(34)

The final list of all the parameters of the potential function
in Eq. (1) is given below. Parameters for the bond energy
function are as follows:

aa=331, Ba=4.038, Ry=2/\3,
A=-156.242 eV, B=-1187.6 eV,

w =—-0.3064, p,=0.2597, ya=-0.3256,

A =-0.1022, \,=0.09724

Coefficients in the radial energy function (in eV) are as fol-
lows:

0,=-7.0436 X 103, Q,=-19.3375,
Q;=-28.542, Q,=0.3669,
§;=-0.08481, S,=-257.027,
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N
Il

a (A

FIG. 3. Cohesive energy (eV) per atom in an undeformed
graphene lattice as a function of a, half the lattice constant (A).

S3=124.909, S,=-1.4570.

Nodes in the radial energy function (up to fourth-nearest-
neighbor distances) are as follows:

Ri=2\3, Ry,=2, Rs=4/1\3, R,=2\(7/3).

We calculate the total cohesive energy of the undeformed
graphene lattice by using Eq. (1) and the parameters as given
above. In an undeformed graphene lattice all the atoms are
located at the hexagonal lattice sites. The contribution of the
radial potential energy in this case is zero. The total cohesive
energy per atom as a function of a, half the lattice constant,
is shown in Fig. 3. As expected the minimum is at a
=1.231 A and the energy at the minimum is —7.40 eV.

We calculate the force constants by taking the derivatives
of the total potential energy at the lattice sites in the perfect
graphene lattice.!” The calculated values of the force con-
stants as defined in Egs. (28)—(32) are given below in N/m,

a; =409.705, B;=145.012, §6,=98.920,
a,=-40.8, B,=74.223, y,=-9.11, & =-8.191,
az=-133.203, B;=50.10, &5=5.802,
a,=10.539, B,=4.993, 1y,=2.184, 0o,=-5.213,
as5=B5=05=0.

Finally, we calculate the flexural rigidity of graphene using
our force constants. An important characteristic of the
phonon-dispersion curves for graphene is that the phonon
frequency of the ZA mode is a quadratic function of the
wave vector in the long-wavelength limit.!>!%1° The coeffi-
cient of the linear term in the dispersion relation is zero. The
coefficient of the quadratic term gives the flexural rigidity of
graphene. Following the method given in Ref. 18, we obtain
the following expression for the flexural rigidity of graphene
for the present model:

PHYSICAL REVIEW B 79, 075442 (2009)

D=—(\3/36)(5, + 188, + 168, + 988, + 16255)a>.
(36)

Using the values of the force constants given above and a
=1.231 A, we obtain D=2.13 eV. This value is much larger
than the value 0.797 eV calculated earlier'® using the TB
model potential. The difference between the two is not sur-
prising because the third and fourth-neighbor force constants
make a significant contribution, as is apparent from Eq. (36).
These force constants have been neglected in the TB model.

IV. CONCLUSIONS

We have proposed a functional form for the interatomic
potential in graphene. The potential energy is expressed in
two parts—the bond energy part and the radial energy part.
As in the TB model, the bond energy part is represented as a
combination of two exponentials with their coefficients de-
pending on the environment. Unlike the TB model, the coef-
ficients of the exponentials are represented by functions that
explicitly account for distortions normal to the plane of
graphene. These functions should therefore be more reliable
for modeling ripples, which are very important for the sta-
bility of graphene.'® The radial part of the potential energy is
represented in terms of polynomials that extend up to fourth-
neighbor distance from an atom and has nodes or zeros at the
undeformed lattice sites. The radial part does not contribute
to the cohesive energy of the perfect graphene lattice at equi-
librium. It contributes only to the interatomic force con-
stants.

The total potential has 13 adjustable parameters that are
determined by fitting the calculated and observed values of
the cohesive energy, lattice constant, elastic constants c11
and c66, and the phonon frequencies in the three symmetry
directions I'M, 'K, and MK. The overall fit between all the
calculated and experimental values is found to be very good.

Our model potential is broadly based on the TB model.
The form of the angular functions in our model is different
and we have also added a separate radial term. The TB
model is more general than our model and is applicable to
different clusters of carbon atoms where our potential is
meant specifically for graphene and clusters of atoms around
the graphene lattice sites. The equilibrium lattice structure of
graphene is built into our model potential. Like the TB
model, our potential is expressed in terms of analytical func-
tions, which makes it convenient for computer simulations.
Both the models give a very good fit between the calculated
and the observed values of the cohesive energy and the lat-
tice constant of graphene.

However, the TB model does not give the correct elastic
constants and the phonon frequencies for graphene or graph-
ite. The main advantage of our potential over the TB model
for application to graphene is that our potential yields a very
good agreement between the calculated and the observed
values of the elastic constants and the phonon frequencies
over the entire Brillouin zone of graphene. This is achieved
because the range of the interaction of an atom in our model
extends up to its fourth-nearest neighbors in contrast to the
TB model in which the range of interaction is limited to only
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second-neighbor distance. It is necessary to include® at least
up to fourth-neighbor interactions for obtaining a good fit
with the observed phonon frequencies. In order to improve
the fit for the phonon frequencies, the fifth-neighbor interac-
tions need to be included as has been shown recently by
Mokhr et al."”

We have given the values of the interatomic force con-
stants for up to fourth-nearest neighbors of each atom. These
parameters should be useful for lattice statics and lattice dy-
namics calculations. In the harmonic approximation, lattice
statics and lattice dynamics calculations depend only on the
force constants and not on the detailed form of the potential.
However, in many cases of current physical interests as in
nanomaterials, it is necessary to include some anharmonic
effects. These calculations may not be sensitive to the de-
tailed structure of the potential and it may be enough to
know the variation in the potential near the lattice sites. Our
model potential should be particularly useful for such calcu-
lations.

Very interesting work on the force constants and phonon
dispersion in graphene have been published by Saito et al.,"
Wirth and Rubio,® Mohr et al,"® and Zimmermann et al.?!
They have, however, not given the interatomic potential
whereas our main interest is in the interatomic potential. The
interatomic potential is needed, for example, for molecular
dynamics and other computer simulations of the solid. Our
results for the force constants and the phonon frequencies are
generally similar to them with some differences in the qual-
ity of fitting. Zimmermann et al.>' have not given a compari-
son of their calculated phonon frequencies with the experi-
mental values but we find that they qualitatively agree with
the experimental results.

An important qualitative difference between the different
force-constant models quoted above is in the off-diagonal
element 7y, in the second-neighbor force-constant matrix
¢(0;0,2) given in Eq. (29). It has been assumed to be zero
in the models of Saito er al.,!® Mohr ef al.,'” and Zimmer-
mann et al.>' but not in our model and in that of Wirtz and
Rubio.® There is no symmetry reason for this term to be zero.
The contribution of this term can be quite significant as it
affects the crossing of the LO-TO curve in the I'M
direction.®

Another important difference between our model and the
force-constant models quoted above is in the predicted val-
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ues of the elastic constants. The values of the elastic con-
stants have not been reported by the authors of the force-
constant models quoted above. For the sake of comparison,
we have calculated c11 and c66 for those force-constant
models using the long-wave limit procedure described in
Sec. III. We find that c11 and c66, respectively, are, in units
of gigapascal, 846 and 248 for the TB potential, 1011 and
509 for the model of Saito ef al.,'® 990 and 443 for the model
of Wirtz and Rubio,® 1208 and 466 for the model of Mohr et
al.,’3 and 919 and 255 for the model of Zimmermann et al.?!
All the above values differ significantly with the observed
values for graphite? ¢11=1060 and c66=440 GPa. The val-
ues given by our model are ¢11=1060 and c66=440 GPa,
which fit exactly with the observed values for graphite.

The discrepancy in the predicted and the observed values
of cl1 and c66 does not necessarily reflect on the lack of
validity of these models for the purpose of interpreting the
phonon frequency data. Presumably, the objective of the au-
thors was to model the phonon frequencies over the entire
zone and they did not try to fit the force constants with the
elastic constants of graphite. However, in absence of the
measured values of the elastic constants of graphene, we feel
that, for calculations of the mechanical properties of
graphene, it is better to use a potential and a set of force
constants that yield the correct values of the c11 and c66 of
graphite. Our potential function as given in Eq. (1) should
serve this need.

Finally, we have also calculated the flexural rigidity of
graphene using a formula derived earlier'® by using Green’s-
function method. We obtain the value of the flexural rigidity
to be 2.13 eV. This value is much larger than 0.797 eV cal-
culated earlier by using the second-neighbor TB model. This
is not surprising because the third and fourth neighbors make
a substantial contribution to the flexural rigidity. Since the
present model gives a better agreement with the observed
phonon frequencies, the present value of 2.13 eV should be
more reliable than the previously calculated value.
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