
6	 This article has been peer-reviewed.� Computing in Science & Engineering

P r o g r a m m i n g
 W i t h P y t h o n

1521-9615/09/$25.00 © 2009 IEEE

Copublished by the IEEE CS and the AIP

P artial differential equations (PDEs)
are ubiquitous to the mathematical de-
scription of physical phenomena: they
describe the relationships between

functions of more than one independent variable
and partial derivatives with respect to those vari-
ables. Typical examples in the physical sciences
describe the evolution of a field in time as a func-
tion of its value in space, such as in wave propaga-
tion, heat flow, or fluid dynamics.

Although PDEs are relevant throughout the
sciences, we focus our attention here on mate-
rials. Materials science studies the relationships
between the properties and microstructures of
materials and how both characteristics are af-
fected by (and how they affect) the processing
of those materials. As the science of materials
measurement advances, it has become increas-
ingly difficult to determine what a measure-
ment “means” or, alternatively, what measurable
quantities are appropriate to shed light on the
phenomena of interest. These phenomena are
often at the nanoscale, with highly nonclassical

behaviors that involve complex interactions of
multiple systems. Teasing out the quantity to be
determined from an experiment’s “signal” often
requires the solution of a mathematical mod-
el in the form of a set of PDEs. In most cases,
those PDEs don’t admit an analytical solution,
so researchers use computers to obtain numeri-
cal solutions to practical problems. The goal of
computational materials science is to apply com-
putational methods to explain and predict prop-
erties such as experimental microstructures and
phenomena (see Figure 1).

Lots of numerical PDE solvers are available to-
day, and FiPy (www.ctcms.nist.gov/fipy) won’t be
the last; indeed, it isn’t even the first discussion
of a Python-based PDE solver in these pages.1,2
Many existing PDE solver packages focus on the
important, but relatively arcane, task of numeri-
cally solving the linearized set of algebraic equa-
tions that result from discretizing a set of PDEs.
However, many, if not most, researchers would
prefer to avoid reckoning with such details and
work at a higher level of abstraction. Specifically,
they have the physical knowledge to describe
their model and can apply the calculus needed
to obtain the appropriate governing conditions,
but when faced with rendering those governing
equations on a computer, their skills (or time)
are limited to a straightforward implementation

Many existing partial differential equation solver packages focus on the important, but
arcane, task of numerically solving the linearized set of algebraic equations that result
from discretizing a set of PDEs. Many researchers, however, need something higher level
than that.

Jonathan E. Guyer, Daniel Wheeler, and James A. Warren
US National Institute of Standards and Technology

FiPy: Partial Differential
Equations with Python

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 10:10 from IEEE Xplore. Restrictions apply.

May/June 2009 � 7

of explicit finite differences on uniform square
grids. Of the PDE solver packages that focus
at an appropriately high level, many are propri-
etary, expensive, and difficult to customize. For
scientists trying to do it themselves, a search of
the Internet turns up a multitude of codes with
promising names and abstracts, but they’re gen-
erally unapproachable by those who don’t already
know the answer to the question they’re asking.
Consequently, scientists spend considerable re-
sources repeatedly developing limited tools for
specific problems. In an effort to break this cy-
cle, while still meeting our own research goals,
we developed FiPy.

FiPy plays a critical role in our materials re-
search on electrodeposition,3 alloy interdiffusion,4
surface wetting, and photovoltaics. An active user
community has also applied FiPy to topics as di-
verse as solar irradiation of soil,5 water percolation
through peat bogs, and mRNA reaction-diffusion
in fruitfly embryos, as well as a host of the materi-
als science applications we originally envisioned.
FiPy has proven to be a powerful teaching tool as
well. Several of our colleagues in academia have
experimented with it for teaching computational
materials science at both the undergraduate and
graduate levels (see, for example, www.nanohub.
org/tools/vkmlpsgg). In this article, we outline
the design of FiPy and present a few fully func-
tional examples of its ability to solve coupled sets
of PDEs.

Scripting
A rather common scenario in the development of
scientific codes is that the first draft hard-codes all
the problem parameters. After a few (hundred) it-
erations of recompiling and relinking the applica-
tion to explore parameter changes, the researcher
adds code to read an input file containing a list of
numbers. Eventually, we reach a point where it’s
impossible to remember which parameter comes
in which order or what physical units are required,
so the researcher adds code to, for example, in-
terpret a line beginning with “#” as a comment.
At this point, the scientist has begun developing
a scripting language without even knowing it.
However, very few scientists have actually stud-
ied computer science or know anything about the
design and implementation of script interpreters.
Even if they have the expertise, the time spent de-
veloping such a language interpreter is time not
spent doing research.

In contrast, several powerful scripting lan-
guages, such as Tcl, Java, Python, Ruby, and even
the venerable Basic, have open source interpret-

ers that we can embed directly in an application,
giving scientific codes immediate access to a
high-level scripting language designed by some-
one who actually knew what they were doing.
We chose to go a step further and not just em-
bed a full-fledged scripting language in the FiPy
framework, but instead to design the framework
from the ground up in a scripting language. Al-
though runtime performance is unquestionably
important, many scientific codes are run rela-
tively little in proportion to the time spent devel-
oping them. If we could develop a code in a day
instead of a month, it might not matter if it takes
a week to run instead of a day before being aban-
doned in favor of a new physical problem after the
publication of one or two papers. Furthermore,
a variety of mechanisms for diagnosing and op-
timizing those portions of a code that are actu-
ally time-critical exist, which is more attractive
than attempting to optimize all of it by using a
language that’s more palatable to the computer
than to the programmer. Thus, FiPy, rather than
taking the approach of writing the fast numerical
code first and then dealing with the issue of user
interaction, initially implements most modules in
a high-level scripting language and only trans-
lates to low-level compiled code those portions of
the code that prove inefficient.

Although several scripting languages might
have worked, we selected Python for FiPy’s im-
plementation because it’s

(a) (b)

Figure 1. Experimental microstructures. (a) Spinodal decomposition
in glass, which is important for polymers, hardened metal alloys,
tempered glasses, and permanent magnets, and (b) dendrites formed
during resolidification after welding nickel-based “superalloys” to jet-
engine turbine blades. (Source: [1a] W. Haller, US Nat’l Inst. Standards
and Technology, and [1b] S.A. David at Oak Ridge Nat’l Laboratory;
used with permission.)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 10:10 from IEEE Xplore. Restrictions apply.

8� Computing in Science & Engineering

an interpreted language that combines remark-•	
able power with very clear syntax;
freely usable and distributable, even for com-•	
mercial use;
fully object oriented;•	
distributed with powerful automated testing •	
tools;
actively used and extended by other scien-•	
tists and mathematicians (such as NumPy,
http://numpy.scipy.org; SciPy, www.scipy.org;
ScientificPython, http://dirac.cnrs-orleans.
fr/plone/software/scientificpython; and Py
Sparse, http://pysparse.sourceforge.net); and
easily integrated with low-level languages such •	
as C or Fortran (such as Weave and Blitz, www.
scipy.org/Weave; PyRex, www.cosc.canterbury.
ac.nz/~greg/python/Pyrex/; Cython, www.
cython.org; SWIG, www.swig.org; and f2py,
http://cens.ioc.ee/projects/f2py2e/).

Starting very early in FiPy’s development, we
made a commitment to use several professional
coding practices that remain rare for most scien-
tific applications—for example, FiPy’s code reposi-
tory and bug tracker are publicly accessible at www.
matforge.org/fipy. Based on feedback on our mail-
ing list (www.ctcms.nist.gov/fipy/mail), we’ve been
able to refine both the documentation and the in-
terface in subsequent releases, and we’ve incorpo-
rated patches and feature enhancements submitted
by our users. An automated test suite (www.mat-
forge.org/fipy/build) exercises both the low-level
functionality as well as all of the examples included
in our user manual. This test suite has prevented us
from inadvertently breaking one part of the code
when working on another and has allowed us to
undertake major code refactoring on more than
one occasion. Although none of these practices are
unique to Python programming, they are prevalent
in that community, and a number of Python tools
make it easy to develop “good” software.

Numerical Approach
We designed FiPy to solve an arbitrary number of
PDEs of the form

∂
∂
− ∇⋅ ∇





() ()ρφ
φ

t
transient

i

n

diff
  

Γ
uusion convection

     −∇⋅ ()uφ 
− =S

source

φ 0 ,� (1)

where one equation is identified with each solution
variable φ. The transient term represents the time
rate of change of φ, with a rate factor ρ. The dif-
fusion term represents the tendency of nonunifor-
mities in φ to smooth out (material flows “down”
gradients) with a diffusivity Γi. The shorthand [∇ ⋅

(Γi∇)]nφ in the diffusion term represents any of the
family of terms ∇ ⋅ (Γ1∇φ), ∇ ⋅ (Γ1∇[∇ ⋅ (Γ2∇φ)]), and
so on. The convection term describes the “blowing”
of φ by a velocity field u. Finally, a source term rep-
resents any source or sink that injects or removes φ
from a point in space. Equation 1 doesn’t address all
applications of PDEs, but it so far covers everything
we’ve tried to do in materials science.

To solve Equation 1, we cast it in integral (weak)
form as

∫
∂
∂

− ∫ ⋅ ∇V

transient

S nt
dVτ

ρφ
τ

() (
  

Γ n))

()

dS

dS

diffusion

S

  

− ∫ ⋅τ φn u
cconvection

V

source

S dV     
− ∫ τ φ

= 0 ,� (2)

where the integrals are performed over an arbi-
trary subvolume V with boundary S. The test
function τ depends on the characteristics of the
volume element and the specific numerical dis-
cretization scheme. FiPy uses the finite volume
method (FVM), which is widely used in the field
of computational fluid dynamics (CFD), to reduce
the model equations to a form tractable to linear
solvers. One way to understand the FVM is in
comparison with two better known discretization
techniques: the finite element method (FEM)
casts the PDE in a weak form and discretizes it
with a test function that smoothly weights each
solution’s volume. If the FEM is constructed with
a test function of 1, it reduces to the FVM; if the
FVM is solved on a uniform Cartesian grid, it be-
comes the finite difference method (although the
FDM is usually performed by discretizing Equa-
tion 1 instead of Equation 2). The FVM allows the
use of unstructured grids but at the cost of greater
computational complexity than the FDM. On the
other hand, the FVM is easier to implement, with
less computational complexity, than the FEM. Its
solutions, however, are prone to greater errors,
particularly with very nonorthogonal meshes. For
many problems (such as CFD), these make up a
reasonable set of compromises.

Objects
FiPy is based on three fundamental Python class-
es: Mesh, Variable, and Term.

A Mesh object represents the domain of inter-
est. FiPy contains many different specific mesh
classes to describe different geometries. FiPy can
also use the open source Gmsh (www.geuz.org/
gmsh) meshing tool to represent more complicat-
ed geometries. Conceptually, a Mesh is composed
of Cells, each Cell is defined by its bounding

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 10:10 from IEEE Xplore. Restrictions apply.

May/June 2009 � 9

Faces, and each Face is defined by its bounding
Vertex objects.

A Variable object represents a quantity or
field that can change during the problem’s evolu-
tion. A MeshVariable object is a Variable that
holds a field of values, distributed over a Mesh.
A CellVariable is defined at the Cell centers
of the Mesh, and a FaceVariable is defined at
the Faces between Cells. A MeshVariable de-
scribes the values of the field φ, but it isn’t con-
cerned with their geometry or topology; the Mesh
takes that role.

An important property of Variable objects is
that they can describe dependency relationships,
such that

>>> a = Variable(value=3)

>>> b = a * 4

doesn’t assign the value 12 to b, but rather it as-
signs a multiplication operator object to b, which
depends on the Variable object a:

>>> b

(Variable(value=3) * 4)

>>> a.setValue(5)

>>> b

(Variable(value=5) * 4)

The numerical value of the Variable isn’t calcu-
lated until we need it (“lazy evaluation”):

>>> print b

20

A Term object represents any of the terms in
Equations 1 or 2 or any linear combination of
such terms. The first three terms are represent-
ed in FiPy as TransientTerm(coeff=rho),
DiffusionTerm(coeff=(Gamma1,  Gamma2, ...)),
and <Specific>ConvectionTerm(coeff=u).
FiPy supports central difference, upwind, expo-
nential, hybrid, power law, and van Leer weight-
ings for the ConvectionTerm, based on the
Péclet number.

Any terms that we can’t write in one of the previ-
ous forms is considered a source. In FiPy, we write
an explicit source essentially as it appears in math-
ematical form, so we might write 3κ2 + φ sin θ as 3
* kappa**2 + b * sin(theta). If, however,
the source depends on the variable that’s being
solved for, it might be advantageous to linearize the
source and cast part of it as an implicit source term,
so we might write 3κ2 + φ sin θ as 3 * kappa**2
+ ImplicitSourceTerm(coeff=sin(theta)).

It’s important to realize that, even though
an expression might superficially resemble one
of those just shown, if the dependent variable
for that PDE doesn’t appear in the appropriate
place, then we should treat that term as a source,
so we would write a term ∇ ⋅ (D2∇ξ) as (D2 *

xi.getFaceGrad()).getDivergence() in an
equation that solves for φ rather than ξ.

Finally, an equation is simply a collection of
Terms, formed by adding or equating them. For
example,

eq = (TransientTerm()

 == DiffusionTerm(D)

 + ConvectionTerm(u)

 + ImplicitSourceTerm(sin(theta)) + 3)

represents ∂φ/∂t = ∇ ⋅ D∇φ + ∇ ⋅ φu+ φ sin θ + 3.
Beyond these three fundamental classes of

Mesh, Variable, and Term, FiPy is composed
of several related classes. A Term encapsulates
the contributions to the SparseMatrix that
define an equation’s solution. We use Bound-
aryConditions to describe the conditions on
the boundaries of the Mesh, and each Term in-
terprets the BoundaryConditions as necessary
to modify the SparseMatrix. An equation con-
structed from Terms can apply a unique Solver
to invert its SparseMatrix in the most expedi-
ent and stable fashion. FiPy provides a common
wrapper interface to shield the user from the
implementation details of the SparseMatrix
solver libraries with Python interfaces. These
range from PySparse, which tends to be easy to
build and install, to PyTrilinos (http://trilinos.
sandia.gov), which offers both parallel solvers
and an impressive collection of precondition-
ers. Finally, at any point during the solution, the
user can invoke a Viewer to display the values of
the solved Variables.

When the user invokes a FiPy equation’s
solve() method, FiPy queries each Term for
its contributions to the SparseMatrix and
right-hand-side vector of the set of linear alge-
braic discretization expressions. The coefficient
of each Term could either be a constant number
or obtained by lazy evaluation of a Variable ex-
pression that depends on the current value of the
solution variables. In addition to the coefficient’s
value, each Term queries the Mesh for geometric
factors such as Cell volume and Face area and
orientation. For a Mesh composed of different po-
lygonal (or polyhedral) elements, FiPy calculates
and stores these geometric factors, but for com-
monly used, regular grids, FiPy can efficiently

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 10:10 from IEEE Xplore. Restrictions apply.

10� Computing in Science & Engineering

calculate these values on the fly, saving a con-
siderable amount of memory. In either case, the
user need not be concerned with what amounts to
nothing more than tedious bookkeeping.

By default, DiffusionTerm and Convection-
Term are implicit, but an ExplicitDiffusion-
Term and ExplicitUpwindConvectionTerm
are available, primarily for didactic purposes. In
some cases, semi-explicit approaches can yield
larger time steps than a naïve, fully explicit imple-
mentation, but with better accuracy than a fully
implicit treatment. For example, on a uniform,
one-dimensional grid with a constant coefficient
D, we can discretize the expression ∂u/∂t = ∇ ⋅
D∇u at each point j as

u u
t

D
u u u

x
j
new

j
old

j
new

j
new

j
new−

∆
=

− +

∆

+

+ −α 1 1
2

2

1(−−
− +

∆
+ −α) .D

u u u
x

j
old

j
old

j
old

1 1
2

2

When α = 0, u advances by a fully explicit forward
Euler time step; when α = 1, it takes a fully implicit
backward Euler time step. We obtain the semi-
explicit Crank-Nicolson scheme when α = 1/2. The
FiPy implementation of this scheme is as simple as

eq = (TransientTerm()

 == ImplicitDiffusionTerm(alpha*D)

 + ExplicitDiffusionTerm((1-alpha)*D))

The solution step is left largely up to the user,
who calls an equation’s solve() method with
the CellVariable to be solved for the Bound-
aryConditions, the time step, and the matrix
Solver. FiPy uses a preconditioned conjugate-
gradient solver by default, unless any Term of the
equation indicates that it produces an asymmetric
matrix (such as most ConvectionTerms), in which
case, FiPy falls back on lower-upper (LU) matrix
decomposition. Users can always override these
defaults, providing a solver and preconditioner of
their choosing.

Examples
To give a flavor of working with FiPy, we present
some fully functional example scripts for prob-
lems of interest in materials science.

Spinodal Decomposition
The spinodal decomposition phenomenon dis-
played in Figure 1a is a spontaneous separation of
an initially homogeneous mixture into two dis-
tinct regions of different properties (spin up/spin
down, component A/component B). It’s a “barrier

less” phase separation process, such that under the
right thermodynamic conditions, any fluctuation,
no matter how small, will tend to grow. This is
in contrast to nucleation, in which a fluctuation
must exceed some critical magnitude before it
will survive and grow. We can describe spinodal
decomposition via the Cahn-Hilliard equation6,7
(also known as “conserved Ginsberg-Landau” or
“model B” of Hohenberg and Halperin):

∂
∂
=∇⋅ ∇

∂
∂
− ∇











φ
φ
ε φ

t
D

f 2 2 ,

where φ is a conserved order parameter, possi-
bly representing alloy composition or spin. The
double-well free energy function f = (a2/2)φ2(1 −
φ)2 penalizes states with intermediate values of φ
between 0 and 1. The gradient energy term ε2∇2φ,
on the other hand, penalizes sharp changes of φ.
These two competing effects result in the segre-
gation of φ into domains of 0 and 1, separated by
abrupt, but smooth, transitions. The parameters a
and ε determine the relative weighting of the two
effects, and D is a rate constant.

We can simulate this process in FiPy with a
simple script:

from fipy import *

(Note that all of NumPy’s functionality is import-
ed along with FiPy, although much is augmented
for FiPy’s needs.)

mesh = Grid2D(nx=1000, ny=1000,

 dx=0.25, dy=0.25)

phi = CellVariable(name=r”ϕ”,

 mesh=mesh)

We start the problem with random fluctuations
about φ = 1/2:

phi.setValue(

 GaussianNoiseVariable(mesh=mesh,

 mean=0.5,

 variance=0.01))

FiPy doesn’t plot or output anything unless you
tell it to:

viewer = Viewer(vars=(phi,),

 datamin=0., datamax=1.)

For FiPy, we must perform the partial deriva-
tive ∂f/∂φ manually and then put the equation in
the canonical form of Equation 1 by decompos-

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 10:10 from IEEE Xplore. Restrictions apply.

May/June 2009 � 11

ing the spatial derivatives so that each Term is of a
single, even order:

∂
∂
= ∇⋅ − − ∇ −∇⋅ ∇ ∇

φ
φ φ φ ε φ

t
Da D2 2 21 6 1[()] .

FiPy would automatically interpolate D * a**2
* (1 - 6 * phi * (1-phi)) onto the Fac-
es, where the diffusive flux is calculated, but we
obtain somewhat more accurate results by per-
forming a linear interpolation from phi at Cell
centers to PHI at Face centers. Some problems
benefit from nonlinear interpolations, such as
harmonic or geometric means, and FiPy makes it
easy to obtain these, too:

PHI = phi.getArithmeticFaceValue()

D = a = eps = 1.

eq = (TransientTerm()

 == DiffusionTerm(coeff=

 D * a**2 * (1 - 6 * PHI * (1-PHI)))

 - DiffusionTerm(coeff=(D, eps**2)))

Because the evolution of a spinodal micro-
structure slows with time, we use exponentially
increasing time steps to keep the simulation “in-
teresting.” The FiPy user always has direct con-
trol over the problem’s evolution:

dexp = -5

elapsed = 0.

while elapsed < 1000.:

 dt = min(100, exp(dexp))

 elapsed += dt

 dexp += 0.01

 eq.solve(phi, dt=dt)

 viewer.plot()

The spinodal structure’s coarsening with
time, as seen in Figure 2, is driven by reduction
of the interfacial energy between areas of φ =
0 and φ = 1, which is a function of interfacial
curvature. Simulations in 2D can be mislead-
ing when compared with experimental images
that are sections through 3D microstructures,
such as Figure 1a. For instance, there’s no 2D
analog for saddle points on 3D surfaces, which
have zero curvature. FiPy makes it easy to solve
the same problem in 3D simply by changing the
mesh declaration

mesh = Grid3D(nx=100, ny=100, nz=100,

 dx=0.25, dy=0.25, dz=0.25)

illustrated in Figure 3. No other changes are re-
quired (many other PDE solvers require manually

250

200

150

100

50

0 50 100 150 200 250

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

φ

(a)

250

200

150

100

50

0 50 100 150 200 250

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

φ

(b)

250

200

150

100

50

0 50 100 150 200 250

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

φ

(c)

Figure 2. The spinodal decomposition’s evolution
in 2D. From (a) t = 30 to (b) t = 100 to (c) t = 1,000,
we see that initially random fluctuations split
into separate domains with a steadily increasing
characteristic wavelength.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 10:10 from IEEE Xplore. Restrictions apply.

12� Computing in Science & Engineering

changing the ∇ operator from (∂/∂x) î + (∂/∂y) ĵ to
(∂/∂x) î + (∂/∂y) ĵ + (∂/∂z) k̂).

Compared with FEM simulations of air flow
around airplanes in flight or of combustion in an
engine block, computational materials science is
typically simulated on simple domains (squares,
cubes, and so forth). Nonetheless, using Gmsh,
we can do something a little more elaborate and
solve the Cahn-Hilliard problem on the surface
of a sphere. Although Gmsh isn’t scriptable in
Python, FiPy provides the facility for generating
meshes described in Gmsh’s scripting language
(as shown between triple quotes in the argument
to GmshImporter2DIn3DSpace):

mesh = GmshImporter2DIn3DSpace(“””

radius = 5.0;

cellSize = 0.3;

// create inner 1/8 shell

Point(1) = {0, 0, 0, cellSize};

Point(2) = {-radius, 0, 0, cellSize};

Point(3) = {0, radius, 0, cellSize};

Point(4) = {0, 0, radius, cellSize};

Circle(1) = {2, 1, 3};

Circle(2) = {4, 1, 2};

Circle(3) = {4, 1, 3};

Line Loop(1) = {1, -3, 2};

Ruled Surface(1) = {1};

// create remaining 7/8 inner shells

t1[] = Rotate {{0,0,1},{0,0,0},Pi/2}

 {Duplicata{Surface{1};}};

t3[] = Rotate {{0,0,1},{0,0,0},Pi*3/2}

 {Duplicata{Surface{1};}};

t4[] = Rotate {{0,1,0},{0,0,0},-Pi/2}

 {Duplicata{Surface{1};}};

t5[] = Rotate {{0,0,1},{0,0,0},Pi/2}

 {Duplicata{Surface{t4[0]};}};

t6[] = Rotate {{0,0,1},{0,0,0},Pi}

 {Duplicata{Surface{t4[0]};}};

t7[] = Rotate {{0,0,1},{0,0,0},Pi*3/2}

 {Duplicata{Surface{t4[0]};}};

// create entire inner and outer

// shell Surface

Loop(100)={1,t1[0],t2[0],t3[0],

 t7[0],t4[0],t5[0],t6[0]};

“””).extrude(extrudeFunc=

 lambda r: 1.1 * r)

which is illustrated in Figure 4. Although it took
the three of us roughly a week to figure out how to
make this nominally isotropic spherical mesh, as
it was our first experience with a complicated 3D
mesh, no changes in FiPy were required in order
to use it.

The Cells of this Mesh have finite thickness,
and their outer Faces are slightly larger than
their inner ones (due to dilation about the sphere’s
center) so, even though the mesh is defined in a
Cartesian coordinate system, the ∇2 operator au-
tomatically functions as

1 1
2

2
2r r

r
r r

∂
∂

∂
∂









+

∂
∂

∂
∂



sin
sin

θ θ
θ
θ







+
∂
∂

1
2 2

2

2r sin θ ϕ

instead of

∂
∂
+
∂
∂
+
∂
∂

2

2

2

2

2

2x y z

although with an error that’s linear instead of qua-
dratic in the grid spacing.

Phase Field
To convert a liquid material to a solid, we must
cool it to a temperature below its melting point
(known as undercooling or supercooling). The rate of
solidification is often assumed (and experimental-
ly found) to be proportional to the undercooling.
Under the right circumstances, the solidification
front can become unstable, leading to dendritic
patterns as seen in Figure 1b. Researchers8 have
described a phase-field model (Allen-Cahn, “non-
conserved Ginsberg-Landau,” or “model A” of
Hohenberg and Halperin) of such a system, in-

Figure 3. Spinodal decomposition in 3D. This
snapshot is qualitatively similar to the 2D case, but
the more complicated nature of curvature in 3D
leads to changed dynamics of phase separation.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 10:10 from IEEE Xplore. Restrictions apply.

May/June 2009 � 13

cluding the effects of discrete crystalline orienta-
tions (anisotropy).

We start with a regular 2D Cartesian mesh

from fipy import *

dx = dy = 0.025

nx = ny = 500

mesh = Grid2D(dx=dx, dy=dy,

 nx=nx, ny=ny)

and we’ll take fixed time steps

dt = 5e-4

We consider the simultaneous evolution of a
phase-field variable φ (taken to be 0 in the liquid
phase and 1 in the solid)

phase = CellVariable(name=r’ϕ’,

 mesh=mesh, hasOld=True)

and a dimensionless undercooling ΔT (ΔT = 0 at
the melting point)

dT = CellVariable(name=r’ΔT’,

 mesh=mesh, hasOld=True)

The hasOld flag causes FiPy to store the variable
value from the previous time step, which is neces-
sary for solving equations with nonlinear coeffi-
cients or for coupling between PDEs.

The governing equation for the temperature
field is the heat-flux equation, with a source due to
the latent heat of solidification

 ∂∆
∂
= ∇ ∆ +

∂
∂

T
t

D T
tT

2 φ

DT = 2.25

heatEq = (TransientTerm()

 == DiffusionTerm(DT)

 + (phase - phase.getOld()) / dt)

The governing equation for the phase field is

 τ φ
φ φ φ φφ

∂
∂
=∇⋅ ∇ + − ∆

t
D m T() (,)1 ,

where

m T T(,) arctan()φ φ
κ
π

κ∆ = − − ∆
1
2

1
2

represents a source of anisotropy. The coeffi-
cient D is an anisotropic diffusion tensor in two
dimensions:

D c

c c

c c
= +

+ −
∂
∂

∂
∂

+



















α β

β
β
ψ

β
ψ

β

2 1
1

1
()




,

where

β =
−
+

1
1

2

2

Φ
Φ

,

Φ=








tan N

2
ψ , ψ θ

φ
φ

=
∂ ∂
∂ ∂

arctan
/
/

y
x

,

θ is the orientation, and N is the symmetry:

alpha = 0.015

c = 0.02

N = 6.

theta = pi / 8.

psi = (theta

 + arctan2(phase.getFaceGrad()[1],

 phase.getFaceGrad()[0]))

Phi = tan(N * psi/2)

PhiSq = Phi**2

beta = (1. - PhiSq) / (1. + PhiSq)

DbetaDpsi = -N * 2 * Phi / (1 + PhiSq)

Ddia = (1. + c * beta)

Doff = c * DbetaDpsi

D = (alpha**2 * (1. + c * beta)

 * (Ddia * ((1, 0),

 (0, 1))

 + Doff * ((0,-1),

 (1, 0)))

With these expressions defined, we can construct
the phase-field equation as

Figure 4. Spinodal decomposition on a sphere’s
surface. Compare this with, for example, www.
youtube.com/watch?v=kDsFP67_ZSE.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 10:10 from IEEE Xplore. Restrictions apply.

14� Computing in Science & Engineering

tau = 3e-4

kappa1 = 0.9

kappa2 = 20.

phaseEq = (TransientTerm(tau)

 == DiffusionTerm(D)

 + ImplicitSourceTerm((phase - 0.5

 - kappa1 / pi * arctan(kappa2 * dT))

 * (1 - phase)))

We seed a circular solidified region in the center

R = dx * 5.

C = (nx * dx/2, ny * dy / 2)

x, y = mesh.getCellCenters()

phase.setValue(1., where=

 ((x-C[0])**2 + (y-C[1])**2) < R**2)

and to then quench the entire simulation domain
below the melting point

dT.setValue(-0.5)

In a real solidification process, dendritic branch-
ing is induced by small thermal fluctuations along
an otherwise smooth surface, but the granularity
of the Mesh is enough “noise” in this case, so we
don’t need to explicitly introduce randomness, the
way we did in the Cahn-Hilliard problem.

FiPy’s viewers are utilitarian, striving to let users
see something, regardless of their operating system
or installed packages. As a result, users won’t be
able to simultaneously view two fields “out of the
box,” but, because all of Python is accessible and
FiPy is object oriented, it isn’t hard to adapt one of
the existing viewers to create a specialized display:

import pylab

class DendriteViewer(

 Matplotlib2DGridViewer):

 def __init__(self, phase, dT,

 title=None, limits={}, **kwlimits):

 self.phase = phase

 self.contour = None

 Matplotlib2DGridViewer.__init__(

 self, vars=(dT,), title=title,

 cmap=pylab.cm.hot,

 limits=limits, **kwlimits)

 def _plot(self):

 Matplotlib2DGridViewer._plot(self)

 if self.contour is not None:

 cc = self.contour.collections

 for c in cc:

 c.remove()

 mesh = self.phase.getMesh()

 shape = mesh.getShape()

 x, y = mesh.getCellCenters()

 z = self.phase.getValue()

 x, y, z = [a.reshape(

 shape, order=”FORTRAN”)

 for a in (x, y, z)]

 self.contour = pylab.contour(

 x, y, z, (0.5,))

viewer = DendriteViewer(

 phase=phase, dT=dT,

 title=r”%s & %s” % (phase.name,

 dT.name),

 datamin=-0.1, datamax=0.05)

and iterate the solution in time, plotting as we go,

for i in range(10000):

 phase.updateOld()

 dT.updateOld()

 phaseEq.solve(phase, dt=dt)

 heatEq.solve(dT, dt=dt)

 if i % 10 == 0:

 viewer.plot()

as seen in Figure 5. The nonuniform temperature
results from the release of latent heat at the solidify-
ing interface. The dendrite arms grow fastest where

12

10

8

6

4

2

0 2 4 6 8 10 12

0.04

0.02

0.00

–0.02

–0.04

–0.06

–0.08

–0.10

φ and ∆Τ

Figure 5. Dendrite formation due to temperature gradients. Faster
solidification in steeper temperature gradients leads to surface
instability and progressively finer branching.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 10:10 from IEEE Xplore. Restrictions apply.

May/June 2009 � 15

the temperature gradient is steepest. We note that
this FiPy simulation is written in roughly 50 lines of
code (excluding the custom viewer), compared with
more than 800 lines of (fairly lucid) Fortran code
used for the figures found in the original work.8

W e developed FiPy to address a
troublesome repetition of effort
in our own research and in that
of our colleagues. The result is a

tool that we enjoy using and that we’ve been able to
apply to a diverse collection of research problems.
We can get an implementation of a new combina-
tion of physics far faster than we ever could when
we were coding in C or Fortran. We’ve been grat-
ified that many others have found our tool useful,
often for applications we never dreamed of. We’re
also pleased that FiPy is already helping in the
education of the next generation of materials sci-
entists. Our current development efforts focus on
improving performance, through parallelism and
more sophisticated matrix preconditioners and
solvers, by exploiting the Trilinos package from
Sandia National Laboratories. We look forward
to tackling even larger and more complicated
problems, while keeping the ease of use that we’ve
already established.�

References
M. Tobis, “PyNSol: Objects as Scaffolding,” 1.	 Computing in
Science & Eng., vol. 7, no. 4, 2005, pp. 84–91.

K.-A. Mardal et al., “Using Python to Solve Partial Differential 2.	
Equations,” Computing in Science & Eng., vol. 9, no. 3, 2007,
pp. 48–51.

D. Josell, D. Wheeler, and T.P. Moffat, "Gold Superfill in 3.	
Submicrometer Trenches: Experiment and Prediction," J.
Electrochemical Soc., vol. 153, no. 1, 2006, pp. C11–C18.

W.J. Boettinger et al., “Computation of the Kirkendall Veloc-4.	
ity and Displacement Fields in a One-Dimensional Binary
Diffusion Couple with a Moving Interface,” Proc. Royal Soc.
A: Mathematical, vol. 463, 2007, pp. 3347–3373.

J. Mazur, “Numerical Simulation of Temperature Field in Soil 5.	
Generated by Solar Radiation,” J. Physique IV France, vol. 137,
Nov. 2006, pp. 317–320.

J.W. Cahn and J.E. Hilliard, “Free Energy of a Nonuniform 6.	
System. I. Interfacial Free Energy,” J. Chemical Physics, vol.
28, no. 2, 1958, pp. 258–267.

J.W. Cahn, “Free Energy of a Nonuniform System. II. Ther-7.	
modynamic Basis,” J. Chemical Physics, vol. 30, no. 5, 1959,
pp. 1121–1124.

J.A. Warren et al., “Extending Phase Field Models of Solidifi-8.	
cation to Polycrystalline Materials,” Acta Materialia, vol. 51,
no. 20, 2003, pp. 6035–6058.

Jonathan E. Guyer is a member of the Thermody-
namics and Kinetics Group in the Metallurgy Divi-
sion at the US National Institute of Standards and
Technology. His interests include models of phase

transformations, particularly in electrochemical and
semiconductor systems. Guyer has a PhD in materi-
als science and engineering from Northwestern Uni-
versity. Contact him at guyer@nist.gov.

Daniel Wheeler is a guest researcher in the Thermo-
dynamics and Kinetics Group in the Metallurgy Divi-
sion at the US National Institute of Standards and
Technology. His interests include numerical analysis
for interpreting experimental results. Wheeler has a
PhD in computational mechanics from Greenwich
University. Contact him at daniel.wheeler@nist.gov.

James A. Warren is leader of the Thermodynamics
and Kinetics Group in the Metallurgy Division at the
US National Institute of Standards and Technology.
His interests include developing both models of mate-
rials phenomena and the tools to enable the solution
of these models. Warren has a PhD in physics from
the University of California, Santa Barbara. Contact
him at james.warren@nist.gov.

Web sites: www.computer.org/cise/
or http://cise.aip.org

Writers: Visit our “Write for Us” section at
www.computer.org/cise/author.htm.

Letters to the Editors: Email Jennifer
Gardelle, lead editor, jgardelle@computer.
org. Provide an email address or daytime
phone number.

Subscribe: Visit https://www.aip.org/forms/
journal_catalog/order_form_fs.html or www.
computer.org/subscribe/.

Subscription Change of Address: For the
IEEE or IEEE Computer Society, email address.
change@ieee.org. Specify CiSE. For the AIP,
email subs@aip.org.

Missing or Damaged Copies: For IEEE
Computer Society subscribers, email help@
computer.org. For AIP subscribers, email
claims@aip.org.

Article Reprints: Email cise@computer.org
or fax +1 714 821 4010.

Reprint Permission: Email William Hagen,
Copyrights & Trademarks Manager, at
copyrights@ieee.org.

Contact CiSE

www.computer.org/cise

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 21, 2009 at 10:10 from IEEE Xplore. Restrictions apply.

