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P artial differential equations (PDEs) 
are ubiquitous to the mathematical de-
scription of physical phenomena: they 
describe the relationships between 

functions of more than one independent variable 
and partial derivatives with respect to those vari-
ables. Typical examples in the physical sciences 
describe the evolution of a field in time as a func-
tion of its value in space, such as in wave propaga-
tion, heat flow, or fluid dynamics. 

Although PDEs are relevant throughout the 
sciences, we focus our attention here on mate-
rials. Materials science studies the relationships 
between the properties and microstructures of 
materials and how both characteristics are af-
fected by (and how they affect) the processing 
of those materials. As the science of materials 
measurement advances, it has become increas-
ingly difficult to determine what a measure-
ment “means” or, alternatively, what measurable 
quantities are appropriate to shed light on the 
phenomena of interest. These phenomena are 
often at the nanoscale, with highly nonclassical 

behaviors that involve complex interactions of 
multiple systems. Teasing out the quantity to be 
determined from an experiment’s “signal” often 
requires the solution of a mathematical mod-
el in the form of a set of PDEs. In most cases, 
those PDEs don’t admit an analytical solution, 
so researchers use computers to obtain numeri-
cal solutions to practical problems. The goal of 
computational materials science is to apply com-
putational methods to explain and predict prop-
erties such as experimental microstructures and 
phenomena (see Figure 1). 

Lots of numerical PDE solvers are available to-
day, and FiPy (www.ctcms.nist.gov/fipy) won’t be 
the last; indeed, it isn’t even the first discussion 
of a Python-based PDE solver in these pages.1,2 
Many existing PDE solver packages focus on the 
important, but relatively arcane, task of numeri-
cally solving the linearized set of algebraic equa-
tions that result from discretizing a set of PDEs. 
However, many, if not most, researchers would 
prefer to avoid reckoning with such details and 
work at a higher level of abstraction. Specifically, 
they have the physical knowledge to describe 
their model and can apply the calculus needed 
to obtain the appropriate governing conditions, 
but when faced with rendering those governing 
equations on a computer, their skills (or time) 
are limited to a straightforward implementation 
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of explicit finite differences on uniform square 
grids. Of the PDE solver packages that focus 
at an appropriately high level, many are propri-
etary, expensive, and difficult to customize. For 
scientists trying to do it themselves, a search of 
the Internet turns up a multitude of codes with 
promising names and abstracts, but they’re gen-
erally unapproachable by those who don’t already 
know the answer to the question they’re asking. 
Consequently, scientists spend considerable re-
sources repeatedly developing limited tools for 
specific problems. In an effort to break this cy-
cle, while still meeting our own research goals, 
we developed FiPy. 

FiPy plays a critical role in our materials re-
search on electrodeposition,3 alloy interdiffusion,4 
surface wetting, and photovoltaics. An active user 
community has also applied FiPy to topics as di-
verse as solar irradiation of soil,5 water percolation 
through peat bogs, and mRNA reaction-diffusion 
in fruitfly embryos, as well as a host of the materi-
als science applications we originally envisioned. 
FiPy has proven to be a powerful teaching tool as 
well. Several of our colleagues in academia have 
experimented with it for teaching computational 
materials science at both the undergraduate and 
graduate levels (see, for example, www.nanohub.
org/tools/vkmlpsgg). In this article, we outline 
the design of FiPy and present a few fully func-
tional examples of its ability to solve coupled sets 
of PDEs.

Scripting 
A rather common scenario in the development of 
scientific codes is that the first draft hard-codes all 
the problem parameters. After a few (hundred) it-
erations of recompiling and relinking the applica-
tion to explore parameter changes, the researcher 
adds code to read an input file containing a list of 
numbers. Eventually, we reach a point where it’s 
impossible to remember which parameter comes 
in which order or what physical units are required, 
so the researcher adds code to, for example, in-
terpret a line beginning with “#” as a comment. 
At this point, the scientist has begun developing 
a scripting language without even knowing it. 
However, very few scientists have actually stud-
ied computer science or know anything about the 
design and implementation of script interpreters. 
Even if they have the expertise, the time spent de-
veloping such a language interpreter is time not 
spent doing research. 

In contrast, several powerful scripting lan-
guages, such as Tcl, Java, Python, Ruby, and even 
the venerable Basic, have open source interpret-

ers that we can embed directly in an application, 
giving scientific codes immediate access to a 
high-level scripting language designed by some-
one who actually knew what they were doing. 
We chose to go a step further and not just em-
bed a full-fledged scripting language in the FiPy 
framework, but instead to design the framework 
from the ground up in a scripting language. Al-
though runtime performance is unquestionably 
important, many scientific codes are run rela-
tively little in proportion to the time spent devel-
oping them. If we could develop a code in a day 
instead of a month, it might not matter if it takes 
a week to run instead of a day before being aban-
doned in favor of a new physical problem after the 
publication of one or two papers. Furthermore, 
a variety of mechanisms for diagnosing and op-
timizing those portions of a code that are actu-
ally time-critical exist, which is more attractive 
than attempting to optimize all of it by using a 
language that’s more palatable to the computer 
than to the programmer. Thus, FiPy, rather than 
taking the approach of writing the fast numerical 
code first and then dealing with the issue of user 
interaction, initially implements most modules in 
a high-level scripting language and only trans-
lates to low-level compiled code those portions of 
the code that prove inefficient. 

Although several scripting languages might 
have worked, we selected Python for FiPy’s im-
plementation because it’s

(a) (b)

Figure 1. Experimental microstructures. (a) Spinodal decomposition 
in glass, which is important for polymers, hardened metal alloys, 
tempered glasses, and permanent magnets, and (b) dendrites formed 
during resolidification after welding nickel-based “superalloys” to jet-
engine turbine blades. (Source: [1a] W. Haller, US Nat’l Inst. Standards 
and Technology, and [1b] S.A. David at Oak Ridge Nat’l Laboratory; 
used with permission.)
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an interpreted language that combines remark-•	
able power with very clear syntax; 
freely usable and distributable, even for com-•	
mercial use;
fully object oriented;•	
distributed with powerful automated testing •	
tools;
actively used and extended by other scien-•	
tists and mathematicians (such as NumPy, 
http://numpy.scipy.org; SciPy, www.scipy.org; 
ScientificPython, http://dirac.cnrs-orleans. 
fr/plone/software/scientificpython; and Py
Sparse, http://pysparse.sourceforge.net); and
easily integrated with low-level languages such •	
as C or Fortran (such as Weave and Blitz, www. 
scipy.org/Weave; PyRex, www.cosc.canterbury.
ac.nz/~greg/python/Pyrex/; Cython, www.
cython.org; SWIG, www.swig.org; and f2py, 
http://cens.ioc.ee/projects/f2py2e/). 

Starting very early in FiPy’s development, we 
made a commitment to use several professional 
coding practices that remain rare for most scien-
tific applications—for example, FiPy’s code reposi-
tory and bug tracker are publicly accessible at www.
matforge.org/fipy. Based on feedback on our mail-
ing list (www.ctcms.nist.gov/fipy/mail), we’ve been 
able to refine both the documentation and the in-
terface in subsequent releases, and we’ve incorpo-
rated patches and feature enhancements submitted 
by our users. An automated test suite (www.mat-
forge.org/fipy/build) exercises both the low-level 
functionality as well as all of the examples included 
in our user manual. This test suite has prevented us 
from inadvertently breaking one part of the code 
when working on another and has allowed us to 
undertake major code refactoring on more than 
one occasion. Although none of these practices are 
unique to Python programming, they are prevalent 
in that community, and a number of Python tools 
make it easy to develop “good” software.

Numerical Approach 
We designed FiPy to solve an arbitrary number of 
PDEs of the form 

∂
∂
− ∇⋅ ∇





( ) ( )ρφ
φ

t
transient

i

n

diff
  

Γ
uusion convection

     −∇⋅ ( )uφ 
− =S

source

φ 0 ,� (1)

where one equation is identified with each solution 
variable φ. The transient term represents the time 
rate of change of φ, with a rate factor ρ. The dif-
fusion term represents the tendency of nonunifor-
mities in φ to smooth out (material flows “down” 
gradients) with a diffusivity Γi. The shorthand [∇ ⋅ 

(Γi∇)]nφ in the diffusion term represents any of the 
family of terms ∇ ⋅ (Γ1∇φ), ∇ ⋅ (Γ1∇[∇ ⋅ (Γ2∇φ)]), and 
so on. The convection term describes the “blowing” 
of φ by a velocity field u. Finally, a source term rep-
resents any source or sink that injects or removes φ 
from a point in space. Equation 1 doesn’t address all 
applications of PDEs, but it so far covers everything 
we’ve tried to do in materials science. 

To solve Equation 1, we cast it in integral (weak) 
form as
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where the integrals are performed over an arbi-
trary subvolume V with boundary S. The test 
function τ depends on the characteristics of the 
volume element and the specific numerical dis-
cretization scheme. FiPy uses the finite volume 
method (FVM), which is widely used in the field 
of computational fluid dynamics (CFD), to reduce 
the model equations to a form tractable to linear 
solvers. One way to understand the FVM is in 
comparison with two better known discretization 
techniques: the finite element method (FEM) 
casts the PDE in a weak form and discretizes it 
with a test function that smoothly weights each 
solution’s volume. If the FEM is constructed with 
a test function of 1, it reduces to the FVM; if the 
FVM is solved on a uniform Cartesian grid, it be-
comes the finite difference method (although the 
FDM is usually performed by discretizing Equa-
tion 1 instead of Equation 2). The FVM allows the 
use of unstructured grids but at the cost of greater 
computational complexity than the FDM. On the 
other hand, the FVM is easier to implement, with 
less computational complexity, than the FEM. Its 
solutions, however, are prone to greater errors, 
particularly with very nonorthogonal meshes. For 
many problems (such as CFD), these make up a 
reasonable set of compromises. 

Objects 
FiPy is based on three fundamental Python class-
es: Mesh, Variable, and Term. 

A Mesh object represents the domain of inter-
est. FiPy contains many different specific mesh 
classes to describe different geometries. FiPy can 
also use the open source Gmsh (www.geuz.org/
gmsh) meshing tool to represent more complicat-
ed geometries. Conceptually, a Mesh is composed 
of Cells, each Cell is defined by its bounding 
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Faces, and each Face is defined by its bounding 
Vertex objects. 

A Variable object represents a quantity or 
field that can change during the problem’s evolu-
tion. A MeshVariable object is a Variable that 
holds a field of values, distributed over a Mesh. 
A CellVariable is defined at the Cell centers 
of the Mesh, and a FaceVariable is defined at 
the Faces between Cells. A MeshVariable de-
scribes the values of the field φ, but it isn’t con-
cerned with their geometry or topology; the Mesh 
takes that role. 

An important property of Variable objects is 
that they can describe dependency relationships, 
such that

>>> a = Variable(value=3) 

>>> b = a * 4 

doesn’t assign the value 12 to b, but rather it as-
signs a multiplication operator object to b, which 
depends on the Variable object a: 

>>> b 

(Variable(value=3) * 4) 

>>> a.setValue(5) 

>>> b 

(Variable(value=5) * 4) 

The numerical value of the Variable isn’t calcu-
lated until we need it (“lazy evaluation”): 

>>> print b 

20 

A Term object represents any of the terms in 
Equations 1 or 2 or any linear combination of 
such terms. The first three terms are represent-
ed in FiPy as TransientTerm(coeff=rho), 
DiffusionTerm(coeff=(Gamma1,  Gamma2, ...)), 
and <Specific>ConvectionTerm(coeff=u). 
FiPy supports central difference, upwind, expo-
nential, hybrid, power law, and van Leer weight-
ings for the ConvectionTerm, based on the 
Péclet number. 

Any terms that we can’t write in one of the previ-
ous forms is considered a source. In FiPy, we write 
an explicit source essentially as it appears in math-
ematical form, so we might write 3κ2 + φ sin θ as 3 
* kappa**2 + b * sin(theta). If, however, 
the source depends on the variable that’s being 
solved for, it might be advantageous to linearize the 
source and cast part of it as an implicit source term, 
so we might write 3κ2 + φ sin θ as 3 * kappa**2  
+ ImplicitSourceTerm(coeff=sin(theta)). 

It’s important to realize that, even though 
an expression might superficially resemble one 
of those just shown, if the dependent variable 
for that PDE doesn’t appear in the appropriate 
place, then we should treat that term as a source, 
so we would write a term ∇ ⋅ (D2∇ξ) as (D2 * 

xi.getFaceGrad()).getDivergence() in an 
equation that solves for φ rather than ξ. 

Finally, an equation is simply a collection of 
Terms, formed by adding or equating them. For 
example,

eq = (TransientTerm() 

 == DiffusionTerm(D) 

 + ConvectionTerm(u)  

 + ImplicitSourceTerm(sin(theta)) + 3) 

represents ∂φ/∂t = ∇ ⋅ D∇φ + ∇ ⋅ φu+ φ sin θ + 3. 
Beyond these three fundamental classes of 

Mesh, Variable, and Term, FiPy is composed 
of several related classes. A Term encapsulates 
the contributions to the SparseMatrix that 
define an equation’s solution. We use Bound-
aryConditions to describe the conditions on 
the boundaries of the Mesh, and each Term in-
terprets the BoundaryConditions as necessary 
to modify the SparseMatrix. An equation con-
structed from Terms can apply a unique Solver 
to invert its SparseMatrix in the most expedi-
ent and stable fashion. FiPy provides a common 
wrapper interface to shield the user from the 
implementation details of the SparseMatrix 
solver libraries with Python interfaces. These 
range from PySparse, which tends to be easy to 
build and install, to PyTrilinos (http://trilinos.
sandia.gov), which offers both parallel solvers 
and an impressive collection of precondition-
ers. Finally, at any point during the solution, the 
user can invoke a Viewer to display the values of 
the solved Variables. 

When the user invokes a FiPy equation’s 
solve() method, FiPy queries each Term for 
its contributions to the SparseMatrix and 
right-hand-side vector of the set of linear alge-
braic discretization expressions. The coefficient 
of each Term could either be a constant number 
or obtained by lazy evaluation of a Variable ex-
pression that depends on the current value of the 
solution variables. In addition to the coefficient’s 
value, each Term queries the Mesh for geometric 
factors such as Cell volume and Face area and 
orientation. For a Mesh composed of different po-
lygonal (or polyhedral) elements, FiPy calculates 
and stores these geometric factors, but for com-
monly used, regular grids, FiPy can efficiently 
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calculate these values on the fly, saving a con-
siderable amount of memory. In either case, the 
user need not be concerned with what amounts to 
nothing more than tedious bookkeeping.

By default, DiffusionTerm and Convection-
Term are implicit, but an ExplicitDiffusion-
Term and ExplicitUpwindConvectionTerm 
are available, primarily for didactic purposes. In 
some cases, semi-explicit approaches can yield 
larger time steps than a naïve, fully explicit imple-
mentation, but with better accuracy than a fully 
implicit treatment. For example, on a uniform, 
one-dimensional grid with a constant coefficient 
D, we can discretize the expression ∂u/∂t = ∇ ⋅ 
D∇u at each point j as

u u
t
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u u u
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When α = 0, u advances by a fully explicit forward 
Euler time step; when α = 1, it takes a fully implicit 
backward Euler time step. We obtain the semi-
explicit Crank-Nicolson scheme when α = 1/2. The 
FiPy implementation of this scheme is as simple as 

eq = (TransientTerm() 

 == ImplicitDiffusionTerm(alpha*D) 

 + ExplicitDiffusionTerm((1-alpha)*D))

The solution step is left largely up to the user, 
who calls an equation’s solve() method with 
the CellVariable to be solved for the Bound-
aryConditions, the time step, and the matrix 
Solver. FiPy uses a preconditioned conjugate-
gradient solver by default, unless any Term of the 
equation indicates that it produces an asymmetric 
matrix (such as most ConvectionTerms), in which 
case, FiPy falls back on lower-upper (LU) matrix 
decomposition. Users can always override these 
defaults, providing a solver and preconditioner of 
their choosing.

Examples 
To give a flavor of working with FiPy, we present 
some fully functional example scripts for prob-
lems of interest in materials science. 

Spinodal Decomposition 
The spinodal decomposition phenomenon dis-
played in Figure 1a is a spontaneous separation of 
an initially homogeneous mixture into two dis-
tinct regions of different properties (spin up/spin 
down, component A/component B). It’s a “barrier

less” phase separation process, such that under the 
right thermodynamic conditions, any fluctuation, 
no matter how small, will tend to grow. This is 
in contrast to nucleation, in which a fluctuation 
must exceed some critical magnitude before it 
will survive and grow. We can describe spinodal 
decomposition via the Cahn-Hilliard equation6,7 
(also known as “conserved Ginsberg-Landau” or 
“model B” of Hohenberg and Halperin):

 
∂
∂
=∇⋅ ∇

∂
∂
− ∇











φ
φ
ε φ

t
D

f 2 2 ,

where φ is a conserved order parameter, possi-
bly representing alloy composition or spin. The 
double-well free energy function f = (a2/2)φ2(1 − 
φ)2 penalizes states with intermediate values of φ 
between 0 and 1. The gradient energy term ε2∇2φ, 
on the other hand, penalizes sharp changes of φ. 
These two competing effects result in the segre-
gation of φ into domains of 0 and 1, separated by 
abrupt, but smooth, transitions. The parameters a 
and ε determine the relative weighting of the two 
effects, and D is a rate constant. 

We can simulate this process in FiPy with a 
simple script: 

from fipy import * 

(Note that all of NumPy’s functionality is import-
ed along with FiPy, although much is augmented 
for FiPy’s needs.) 

mesh = Grid2D(nx=1000, ny=1000, 

              dx=0.25, dy=0.25) 

phi = CellVariable(name=r”$\phi$”, 

                   mesh=mesh) 

We start the problem with random fluctuations 
about φ = 1/2:

phi.setValue( 

 GaussianNoiseVariable(mesh=mesh, 

                       mean=0.5, 

                       variance=0.01))

FiPy doesn’t plot or output anything unless you 
tell it to: 

viewer = Viewer(vars=(phi,), 

                datamin=0., datamax=1.)

For FiPy, we must perform the partial deriva-
tive ∂f/∂φ manually and then put the equation in 
the canonical form of Equation 1 by decompos-
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ing the spatial derivatives so that each Term is of a 
single, even order:

∂
∂
= ∇⋅ − − ∇ −∇⋅ ∇ ∇

φ
φ φ φ ε φ

t
Da D2 2 21 6 1[ ( )] .

FiPy would automatically interpolate D * a**2 
* (1 - 6 * phi * (1-phi)) onto the Fac-
es, where the diffusive flux is calculated, but we 
obtain somewhat more accurate results by per-
forming a linear interpolation from phi at Cell 
centers to PHI at Face centers. Some problems 
benefit from nonlinear interpolations, such as 
harmonic or geometric means, and FiPy makes it 
easy to obtain these, too:

PHI = phi.getArithmeticFaceValue() 

D = a = eps = 1. 

eq = (TransientTerm() 

 == DiffusionTerm(coeff= 

    D * a**2 * (1 - 6 * PHI * (1-PHI))) 

 - DiffusionTerm(coeff=(D, eps**2)))

Because the evolution of a spinodal micro-
structure slows with time, we use exponentially 
increasing time steps to keep the simulation “in-
teresting.” The FiPy user always has direct con-
trol over the problem’s evolution: 

dexp = -5 

elapsed = 0. 

while elapsed < 1000.:  

  dt = min(100, exp(dexp))  

  elapsed += dt  

  dexp += 0.01  

  eq.solve(phi, dt=dt)  

  viewer.plot()

The spinodal structure’s coarsening with 
time, as seen in Figure 2, is driven by reduction 
of the interfacial energy between areas of φ = 
0 and φ = 1, which is a function of interfacial 
curvature. Simulations in 2D can be mislead-
ing when compared with experimental images 
that are sections through 3D microstructures, 
such as Figure 1a. For instance, there’s no 2D 
analog for saddle points on 3D surfaces, which 
have zero curvature. FiPy makes it easy to solve 
the same problem in 3D simply by changing the 
mesh declaration 

mesh = Grid3D(nx=100, ny=100, nz=100,  

             dx=0.25, dy=0.25, dz=0.25)

illustrated in Figure 3. No other changes are re-
quired (many other PDE solvers require manually 
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Figure 2. The spinodal decomposition’s evolution 
in 2D. From (a) t = 30 to (b) t = 100 to (c) t = 1,000, 
we see that initially random fluctuations split 
into separate domains with a steadily increasing 
characteristic wavelength.
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changing the ∇ operator from (∂/∂x) î  + (∂/∂y) ĵ  to 
(∂/∂x) î  + (∂/∂y) ĵ  + (∂/∂z) k̂ ). 

Compared with FEM simulations of air flow 
around airplanes in flight or of combustion in an 
engine block, computational materials science is 
typically simulated on simple domains (squares, 
cubes, and so forth). Nonetheless, using Gmsh, 
we can do something a little more elaborate and 
solve the Cahn-Hilliard problem on the surface 
of a sphere. Although Gmsh isn’t scriptable in 
Python, FiPy provides the facility for generating 
meshes described in Gmsh’s scripting language 
(as shown between triple quotes in the argument 
to GmshImporter2DIn3DSpace): 

mesh = GmshImporter2DIn3DSpace(“””  

radius = 5.0;  

cellSize = 0.3;  

 

// create inner 1/8 shell  

Point(1) = {0, 0, 0, cellSize};  

Point(2) = {-radius, 0, 0, cellSize};  

Point(3) = {0, radius, 0, cellSize};  

Point(4) = {0, 0, radius, cellSize};  

 

Circle(1) = {2, 1, 3};  

Circle(2) = {4, 1, 2};  

Circle(3) = {4, 1, 3};  

Line Loop(1) = {1, -3, 2};  

Ruled Surface(1) = {1};  

 

// create remaining 7/8 inner shells  

t1[] = Rotate {{0,0,1},{0,0,0},Pi/2}  

       {Duplicata{Surface{1};}}; 

t3[] = Rotate {{0,0,1},{0,0,0},Pi*3/2}  

       {Duplicata{Surface{1};}};  

t4[] = Rotate {{0,1,0},{0,0,0},-Pi/2}  

       {Duplicata{Surface{1};}};  

t5[] = Rotate {{0,0,1},{0,0,0},Pi/2}  

       {Duplicata{Surface{t4[0]};}};  

t6[] = Rotate {{0,0,1},{0,0,0},Pi}  

       {Duplicata{Surface{t4[0]};}};  

t7[] = Rotate {{0,0,1},{0,0,0},Pi*3/2}  

       {Duplicata{Surface{t4[0]};}}; 

// create entire inner and outer  

// shell Surface 

Loop(100)={1,t1[0],t2[0],t3[0], 

             t7[0],t4[0],t5[0],t6[0]};  

“””).extrude(extrudeFunc= 

             lambda r: 1.1 * r)

which is illustrated in Figure 4. Although it took 
the three of us roughly a week to figure out how to 
make this nominally isotropic spherical mesh, as 
it was our first experience with a complicated 3D 
mesh, no changes in FiPy were required in order 
to use it. 

The Cells of this Mesh have finite thickness, 
and their outer Faces are slightly larger than 
their inner ones (due to dilation about the sphere’s 
center) so, even though the mesh is defined in a 
Cartesian coordinate system, the ∇2 operator au-
tomatically functions as

1 1
2

2
2r r

r
r r
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∂
∂

∂
∂



sin
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θ θ
θ
θ






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∂
∂

1
2 2

2

2r sin θ ϕ

instead of 

∂
∂
+
∂
∂
+
∂
∂

2

2

2

2

2

2x y z

although with an error that’s linear instead of qua-
dratic in the grid spacing. 

Phase Field 
To convert a liquid material to a solid, we must 
cool it to a temperature below its melting point 
(known as undercooling or supercooling). The rate of 
solidification is often assumed (and experimental-
ly found) to be proportional to the undercooling. 
Under the right circumstances, the solidification 
front can become unstable, leading to dendritic 
patterns as seen in Figure 1b. Researchers8 have 
described a phase-field model (Allen-Cahn, “non-
conserved Ginsberg-Landau,” or “model A” of 
Hohenberg and Halperin) of such a system, in-

Figure 3. Spinodal decomposition in 3D. This 
snapshot is qualitatively similar to the 2D case, but 
the more complicated nature of curvature in 3D 
leads to changed dynamics of phase separation. 
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cluding the effects of discrete crystalline orienta-
tions (anisotropy). 

We start with a regular 2D Cartesian mesh 

from fipy import *  

dx = dy = 0.025  

nx = ny = 500  

mesh = Grid2D(dx=dx, dy=dy,  

              nx=nx, ny=ny) 

and we’ll take fixed time steps 

dt = 5e-4

We consider the simultaneous evolution of a 
phase-field variable φ (taken to be 0 in the liquid 
phase and 1 in the solid) 

phase = CellVariable(name=r’$\phi$’, 

 mesh=mesh, hasOld=True) 

and a dimensionless undercooling ΔT (ΔT = 0 at 
the melting point) 

dT = CellVariable(name=r’$\Delta T$’,  

 mesh=mesh, hasOld=True)

The hasOld flag causes FiPy to store the variable 
value from the previous time step, which is neces-
sary for solving equations with nonlinear coeffi-
cients or for coupling between PDEs. 

The governing equation for the temperature 
field is the heat-flux equation, with a source due to 
the latent heat of solidification

 ∂∆
∂
= ∇ ∆ +

∂
∂

T
t

D T
tT

2 φ

DT = 2.25  

heatEq = (TransientTerm()  

 == DiffusionTerm(DT)  

 + (phase - phase.getOld()) / dt)

The governing equation for the phase field is

 τ φ
φ φ φ φφ

∂
∂
=∇⋅ ∇ + − ∆

t
D m T( ) ( , )1 ,

where 

m T T( , ) arctan( )φ φ
κ
π

κ∆ = − − ∆
1
2

1
2

represents a source of anisotropy. The coeffi-
cient D is an anisotropic diffusion tensor in two 
dimensions:
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+
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,
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
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




tan N

2
ψ , ψ θ

φ
φ

=
∂ ∂
∂ ∂

arctan
/
/

y
x

,

θ is the orientation, and N is the symmetry: 

alpha = 0.015  

c = 0.02  

N = 6.  

theta = pi / 8.  

psi = (theta  

 + arctan2(phase.getFaceGrad()[1],  

           phase.getFaceGrad()[0])) 

Phi = tan(N * psi/2)  

PhiSq = Phi**2  

beta = (1. - PhiSq) / (1. + PhiSq)  

DbetaDpsi = -N * 2 * Phi / (1 + PhiSq)  

Ddia = (1. + c * beta)  

Doff = c * DbetaDpsi  

D = (alpha**2 * (1. + c * beta)  

     * (Ddia * (( 1, 0),  

                ( 0, 1))  

        + Doff * (( 0,-1),  

                  ( 1, 0)))

With these expressions defined, we can construct 
the phase-field equation as 

Figure 4. Spinodal decomposition on a sphere’s 
surface. Compare this with, for example, www. 
youtube.com/watch?v=kDsFP67_ZSE. 
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tau = 3e-4  

kappa1 = 0.9  

kappa2 = 20.  

phaseEq = (TransientTerm(tau)  

 == DiffusionTerm(D)  

 + ImplicitSourceTerm((phase - 0.5  

  - kappa1 / pi * arctan(kappa2 * dT))  

  * (1 - phase)))

We seed a circular solidified region in the center 

R = dx * 5.  

C = (nx * dx/2, ny * dy / 2)  

x, y = mesh.getCellCenters()  

phase.setValue(1., where= 

 ((x-C[0])**2 + (y-C[1])**2) < R**2)

and to then quench the entire simulation domain 
below the melting point 

dT.setValue(-0.5) 

In a real solidification process, dendritic branch-
ing is induced by small thermal fluctuations along 
an otherwise smooth surface, but the granularity 
of the Mesh is enough “noise” in this case, so we 
don’t need to explicitly introduce randomness, the 
way we did in the Cahn-Hilliard problem. 

FiPy’s viewers are utilitarian, striving to let users 
see something, regardless of their operating system 
or installed packages. As a result, users won’t be 
able to simultaneously view two fields “out of the 
box,” but, because all of Python is accessible and 
FiPy is object oriented, it isn’t hard to adapt one of 
the existing viewers to create a specialized display: 

import pylab  

class DendriteViewer( 

  Matplotlib2DGridViewer):  

  def __init__(self, phase, dT,  

    title=None, limits={}, **kwlimits):  

    self.phase = phase  

    self.contour = None  

    Matplotlib2DGridViewer.__init__( 

      self, vars=(dT,), title=title,  

      cmap=pylab.cm.hot,  

      limits=limits, **kwlimits) 

  def _plot(self):  

    Matplotlib2DGridViewer._plot(self)  

    if self.contour is not None:  

      cc = self.contour.collections 

      for c in cc:  

        c.remove()  

    mesh = self.phase.getMesh()  

    shape = mesh.getShape()  

    x, y = mesh.getCellCenters()  

    z = self.phase.getValue()  

    x, y, z = [a.reshape( 

                shape, order=”FORTRAN”)  

               for a in (x, y, z)]  

    self.contour = pylab.contour( 

                       x, y, z, (0.5,))  

                        

viewer = DendriteViewer( 

  phase=phase, dT=dT,  

  title=r”%s & %s” % (phase.name,  

                      dT.name),  

  datamin=-0.1, datamax=0.05) 

and iterate the solution in time, plotting as we go,

for i in range(10000):  

  phase.updateOld()  

  dT.updateOld()  

  phaseEq.solve(phase, dt=dt)  

  heatEq.solve(dT, dt=dt)  

  if i % 10 == 0:  

    viewer.plot()

as seen in Figure 5. The nonuniform temperature 
results from the release of latent heat at the solidify-
ing interface. The dendrite arms grow fastest where 
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Figure 5. Dendrite formation due to temperature gradients. Faster 
solidification in steeper temperature gradients leads to surface 
instability and progressively finer branching. 
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the temperature gradient is steepest. We note that 
this FiPy simulation is written in roughly 50 lines of 
code (excluding the custom viewer), compared with 
more than 800 lines of (fairly lucid) Fortran code 
used for the figures found in the original work.8 

W e developed FiPy to address a 
troublesome repetition of effort 
in our own research and in that 
of our colleagues. The result is a 

tool that we enjoy using and that we’ve been able to 
apply to a diverse collection of research problems. 
We can get an implementation of a new combina-
tion of physics far faster than we ever could when 
we were coding in C or Fortran. We’ve been grat-
ified that many others have found our tool useful, 
often for applications we never dreamed of. We’re 
also pleased that FiPy is already helping in the 
education of the next generation of materials sci-
entists. Our current development efforts focus on 
improving performance, through parallelism and 
more sophisticated matrix preconditioners and 
solvers, by exploiting the Trilinos package from 
Sandia National Laboratories. We look forward 
to tackling even larger and more complicated 
problems, while keeping the ease of use that we’ve 
already established.�
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