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DIFFUSION is the process by which mole-
cules, atoms, ions, point defects, or other parti-
cle types migrate from a region of higher
concentration to one of lower concentration.
The diffusivity of an atom or diffusion coeffi-
cient is the rate at which a particle migrates
through a particular material and is dependent
on the temperature, composition gradient, and
pressure. Diffusivity determines how quickly

equilibrium is reached from a nonequilibrium
state. In solid-state materials, diffusion can
occur by a variety of different mechanisms. Lat-
tice diffusion (bulk or volume diffusion) occurs
as a result of individual jumps of atoms or point
defects, such as vacancies, divacancies, or inter-
stitials, within the crystal. Diffusion may also
occur along the surface or along line defects,
such as grain boundaries or dislocations. These

line, planar, and surface diffusion mechanisms
are generally much faster than the lattice-diffu-
sion-based-mechanisms and, as a result, are
termed high-diffusivity paths (or short-circuit
diffusivity). Depending on the temperature and/
or microstructure of the material, these high-dif-
fusivity paths or bulk diffusion may be the dom-
inate diffusion mechanism. As a wide variety of
microstructural processes are controlled by lat-
tice diffusion mechanisms and much of the pub-
lished diffusion data is for bulk diffusion
processes, this article focuses primarily on the
diffusivity data and modeling of lattice diffusion
in solid-state materials. A list of symbols is in
Table 1.

Diffusion Mechanisms

In a crystal, lattice vibrations cause atoms to
oscillate around equilibrium positions with
frequencies, n0 (�1012 to 1013 Hz); however,
occasionally the oscillations are large enough
to allow an atom to jump to a different lattice
site, resulting in diffusion of the atom. In the
absence of a driving force, the energy barrier
that an atom must overcome to jump to an
empty site is the free energy of migration, Gm.
Figure 1 shows the Gm as a function of atomic

Table 1 List of symbols

a = nearest-neighbor atomic distance (m)
kApj

i = contribution to the diffusion-activation energy of
component i, in a lattice occupied by p and j
atoms in a given phase. k is the order of the
interaction parameter (i.e., 0, 1, 2, . . .) (Eq 27).

b = thickness of thin layer (Eq 10) (m)
ci = volume concentration of component i (mol/m3)
cs = concentration at the surface of semi-infinite solid

(Eq 11) (mol/m3)
c0 = initial concentration of component at time = 0 s

(Eq 10) (mol/m3)
c1, c2 = initial concentrations at the end of infinite couple

(Eq 12) (mol/m3)
ceqV = thermal equilibrium vacancy concentration

(mol/m3)
c�, c+ = initial compositions of a given diffusion couple

(Eq 18) (mol/m3)
c*, z* = composition at a given distance (z) (Eq 18)
D = diffusion rate in the absence of any driving force

(m2/s)
D0 = pre-exponential factor for diffusion (m2/s)
D�

i = tracer diffusion coefficient for component i (m2/s)
Ds

i = self-diffusion coefficient for component i (m2/s)
LDkj = diffusion coefficient for the diffusing component,

j, with respect to the composition gradient of
component k, in the lattice-fixed frame of
reference (m2/s)

VDkj = diffusion coefficient for the diffusing component,
j, with respect to the composition gradient of
component k, in the volume-fixed frame of
reference (m2/s)

~Dn
kj = interdiffusion coefficient, where n is the

dependent component (m2/s)
f = correlation factor for self-diffusion, dependent on

crystal structure
g = geometric factor dependent on the lattice

geometry and type of interstitial site
Gm = free energy of vacancy migration (J/mol)
HF = enthalpy of formation of a vacancy (J/mol)
Hm = enthalpy of vacancy migration (J/mol)
Ji = flux of particles (number particles per second and

unit area) (m�2 s�1)
LJk = flux of particles in the lattice-fixed frame of

reference (number particles per second and unit
area) (m�2 s�1)

VJk = flux of particles in the volume-fixed frame of
reference (number particles per second and unit
area) (m�2 s�1)

Mi = atomic mobility of component i (m/N/s)
LMki = mobility of the diffusing component, k, with

respect to the composition gradient of
component i, in the lattice-fixed frame of
reference

Na
i = number of i atoms on the a sublattice

Na
total = total number of atoms on the a sublattice

p = probability of the next neighboring site being
vacant

DQ = diffusion-activation energy (J/mol)
�Q�

i = diffusion-activation energy of component i in a
given phase (J/mol)

Qj
i = diffusion-activation energy of component i in a

lattice occupied by pure j atoms in a given
phase (J/mol)

�Q0
i = diffusion-activation energy assuming the

pre-exponential term is included
(J/mol)

�Qord
k = ordered contribution to the diffusion-activation

energy (J/mol)
�Qdis

k = disordered contribution to the diffusion-activation
energy (J/mol)

R = gas constant (J/mol K)
SF = entropy of formation of a vacancy (J/K)
Sm = entropy of vacancy migration (J/K)
t = time (s)
T = temperature (K)
Vm = molar volume of a phase (m3/mol)
xi = mole fraction of component i
yai ; y

b
i = site fractions of component i on the a and b

sublattices, respectively
Yi = normalized concentration variable (Eq 16)
z = distance (m)
zK = position of the Kirkendall plane (m)
zM = position of the Matano plane (m)
dik = Kronecker delta symbol, equals 1 when i = k

and 0 when i 6¼ k
Fi = pre-exponential factor defining the mobility of

atom i
G = jump frequency (s�1)
l = diffusion length (m)
mi = chemical potential of component i (J/mol)
n0 = equilibrium lattice frequency (Hz) (s�1)
p = constant, 3.14. . .
uK = Kirkendall velocity (m/s)
o = jump rate for atom to a neighboring empty

lattice site

Fig. 1 Assuming no driving force on an atom, a
schematic of the energy barrier that must be

overcome for a diffusion to occur. I, initial state; A,
activated state, F, final state
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position. The jump rate, o, for an atom to jump
to a neighboring empty site is given by:

o ¼ n0 exp ��Gm=RT

� �
where �Gm ¼ Hm � TSm

(Eq 1)

where n0 is the atomic vibration frequency, R is
the gas constant, T is the temperature in Kelvin,
and Hm and Sm are the enthalpy and entropy of
migration. The jump frequency, G, of an atom is
then defined as the jump rate times the probability,
p, of the next neighboring site being vacant:

� ¼ o p (Eq 2)

Two of the most common mechanisms by
which atoms diffuse are interstitial diffusion
and vacancy diffusion. Interstitial diffusion
occurs as small interstitial atoms, which are sol-
ute atoms that are considerably smaller than the
solvent atoms, jump from one interstitial site to
the next-nearest unoccupied interstitial site.
Thus, for a dilute interstitial alloy, the probabil-
ity defined in Eq 2 is approximately equal to 1,
and the diffusion rate in the absence of any
driving force (concentration gradient) is:

D ¼ ga2n0 exp
Sm

R

� �
exp

�Hm

RT

� �� �
(Eq 3)

where a is the nearest-neighbor atomic dis-
tance, and g is a geometric factor that depends
on the lattice geometry and the type of intersti-
tial site (i.e., octahedral or tetrahedral). This
expression is commonly simplified to an
Arrhenius-type equation:

D ¼ D0 exp
��Q

RT

� �
where D0

¼ ga2n0 exp
Sm

R

� �
and Hm ¼ �Q (Eq 4)

Vacancy-driven diffusion occurs when a nearest-
neighbor atom (substitutional solute atom) jumps
onto an unoccupied lattice site. The probability
of the nearest-neighbor site being vacant, p from
Eq 2, is defined by the thermal equilibrium
vacancy concentration, ceqV , which is given by:

ceqV ¼ exp
SF

R

� �
exp

�HF

RT

� �
(Eq 5)

where SF and HF are the formation entropy
and enthalpy, respectively, of a vacancy.
Thus, similar to Eq 3 for the interstitial
diffusion rate, the substitutional diffusion
rate in the absence of a driving force is
given by:

D ¼ fa2n0 exp
SF þ Sm

R

� �
exp

� HF þHmð Þ
RT

� �� �
(Eq 6)

where f is the correlation factor that determined
by the crystal structure. Like Eq 3, 6 can be

written in terms of an Arrhenius relation,
where:

D0 ¼ fa2n0 exp
SF þ Sm

R

� �

and DQ = HF + Hm. It should be noted that
while these Arrhenius-type relations (Eq 4
and 6) are common, they are not universal.
Grain-boundary, impurities, or other micro-
structural features; temperature-dependent acti-
vation parameters; and other active diffusion
mechanisms may all result in deviations from
an Arrhenius relation.

Diffusion Equation

In a steady-state one-dimensional system, the
flux of particles is proportional to the concen-
tration gradient:

Ji ¼ �Di
@ci
@z

(Eq 7)

where Ji describes the amount of material that
passes through a unit area of a plane per unit
time (t) within a volume-fixed frame of refer-
ence (otherwise known as flux). The variable
Di is the diffusivity of component i for a given
diffusion mechanism. The variable ci is the con-
centration of particles i (Note: ci ¼ xiVm,
where xi is the mole fraction of component i,
and Vm is the molar volume of the phase), and
z is the diffusion distance. Equation 7, better
known as Fick’s law (Ref 1, 2), assumes there
are no external forces or driving forces acting
on the particles and is formally identical to
Fourier’s law of heat conduction and Ohm’s
law of current flow.
For a nonsteady-state one-dimensional sys-

tem where the flux at each point varies with
time, Fick’s law must be combined with a mass
balance or continuity equation (Eq 8) to deter-
mine the time-dependent concentration, where
t is the time in seconds:

@J

@z
¼ � @c

@t
(Eq 8)

Equations 7 and 8 are combined to form the
general diffusion equation, which is a second-
order linear partial differential equation and
cannot be solved analytically:

@ci
@t

¼ @

@z
Di

@ci
@z

� �
(Eq 9)

However, if Di is assumed to be concentration
independent, the diffusion equation can be
solved for a variety of initial and boundary con-
ditions, as demonstrated by Ref 3 and 4. Two
simple examples of these solutions that are
commonly used experimentally are the thin-
film and error-function solutions.

The thin-film solution assumes that a thin
layer, with a thickness, b, of the diffusing spe-
cies A is concentrated at z = 0 of a semi-infinite
sample, as seen in Fig. 2. Then, concentration
profiles after time, t, are given by:

cðz; tÞ ¼ bc0ffiffiffiffiffiffiffiffiffiffi
�Dt

p exp � z2

4Dt

� �
(Eq 10)

where c0 is the initial concentration of the A
layer. The diffusion length, l, is represented
by the

ffiffiffiffi
D

p
t quantity and is a characteristic

length used in solving diffusion equations. The
thin-film solution is valid for applications
where l is much greater than the initial layer
thickness. The geometry represented by the
thin-film solution (Eq 10) is commonly used
to measure tracer diffusion coefficients in sub-
stitutional alloys (defined in the section “Tracer
Diffusivity” in this article).
Infinite and Semi-Infinite Solutions. Error-

function solutions can be applied to semi-
infinite and infinite samples. The concentration
profiles in a semi-infinite solid with a constant
concentration of a component at the surface,
cs, are defined by the following error functions
and initial and boundary conditions:

Initial conditions: t ¼ 0; z > 0; cðz; 0Þ ¼ c0;

where c0 is the initial concentration in the solid

Boundary conditions: at all t > 0; z ¼ 0; cð0; tÞ ¼ cs

The concentration profile for a given time is
then given by:

c� cs
c0 � cs

¼ erf
z

2
ffiffiffiffiffiffi
Dt

p
� �

(Eq 11)

These types of solutions are applicable to mod-
eling various carburization and coating
problems.
For an infinite sample with a concentration

profile defined by a step function, the composi-
tion profile at given time, t, is:

c� c1
c2 � c1

¼ 1

2
erfc

z

2
ffiffiffiffiffiffi
Dt

p
� �

(Eq 12)

where the initial boundaries at t = 0 are given
by:

t ¼ 0
zh0 c ¼ c2
zi0 c ¼ c1

	

and c1 and c2 are the compositions at either end
of the infinite couple, as seen in Fig. 3. This type
of solution is often used when the diffusion dis-
tances in the two materials are much smaller
than the width of the samples. While analytical
solutions to the diffusion equation assuming a
constant diffusivity are useful in solving some
practical problems, to solve most problems of
interest, the composition and temperature depen-
dence of the diffusivity must be considered, and
the equation must be solved numerically.
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Diffusion Data

Diffusivity in a material can be evaluated in
variety of different ways, including measure-
ment of diffusion coefficients, composition pro-
files, and layer growth widths. Tracer, intrinsic,
and chemical diffusivities can all be extracted
from various types of direct and indirect diffu-
sion experiments. Table 2 reviews some of the
common direct and indirect methods to mea-
sure these diffusion coefficients. Direct experi-
ments are based on Fick’s law (Eq 7) and the
phenomenological definitions of the diffusion
coefficients. Indirect experimental methods are
not based on Fick’s law and require a micro-
scopic model of the atomic jump processes to
deduce a diffusion coefficient.
Tracer Diffusivity. Tracer diffusion is the

migration of a tagged atom through a material

of which it is a component. As such, the tracer
diffusivity is generally measured by introducing
a radioactive isotope in dilute concentration
into an otherwise homogeneous material. Thus,
the only driving force in the system is that of
the concentration gradient of the tracer. In a
homogenous material, the mean square dis-
placement of the tracer in the z-direction is
defined by the Einstein formula for Brownian
motion (random walk) as:

z2i

 � ¼ 2D�

i t where D�
i ¼ RTMi (Eq 13)

where D�
i is the tracer diffusion coefficient, t is

the diffusion time, and Mi is the atomic mobil-
ity of the i atoms or the movement of atoms
in response to a given force, in this case, the
result of continuous random movement. (Note
that for a multicomponent alloy, the mobility

is a function of each component in the alloy.
Further description of the calculation of the
composition-dependent mobility matrix is
given in the section “Disordered Phase” in this
article.) The tracer diffusion coefficient is equal
to the self-diffusion coefficient, DS

i , if diffusion
takes place by uncorrelated atomic jumps;
otherwise, the tracer diffusion coefficient is
related to the self-diffusion coefficient by the
correlation factor, f, D�

i ¼ fDS
i . The correlation

factor is dependent on crystal structure and
introduces off-diagonal terms into the Mi

matrix. For the body-centered cubic (bcc) and
face-centered cubic (fcc) crystal structures
assuming a vacancy-diffusion mechanism, the
contribution of these off-diagonal terms is
small. Thus, for simplicity, these terms are not
included in the present discussion; however,
calculation methods are discussed by Ref 5
and 6. When a tracer impurity is measured in
a homogeneous material (i.e., solute C in a pure
A alloy or homogeneous AB alloy), the
measured tracer diffusivity is often referred to
as the impurity diffusivity.
Chemical Diffusivity (Interdiffusion). In

contrast to tracer diffusivity measurements that
only consider negligible amounts of a tracer
element in an otherwise homogeneous material,
interdiffusion (chemical diffusion) and intrinsic
diffusion coefficient measurements are per-
formed in nonhomogeneous materials where
the diffusion flux is proportional to the gradient
of the chemical potential (e.g., in the presence
of a driving force). The interdiffusion coeffi-
cient, VDkj, is defined in the volume-fixed
frame of reference, where the sum of the fluxes
equals zero, and is given by:

Fig. 3 Example of error-function solutions for an
infinite couple with initial end-member

compositions of c1 and c2. The composition profiles
show the diffusion of the species with increasing time.

Table 2 Direct and indirect methods for measuring diffusion coefficients

Method Dx D, m2/s

Direct

Lathe sectioning, grinding 0.1–250 mm 10�19 to 10�10

Microtome 1–10 mm 10�17 to 10�12

Chemical 10 mm 10�15 to 10�12

Electrochemical 50 nm 10�20 to 10�17

Sputtering 5–100 nm 10�22 to 10�17

Modulated structures 0.5–5 nm �10�26

Ion microprobe (secondary ion mass spectroscopy) 1–100 nm 10�23 to 10�17

Electron microprobe �2 mm 10�16 to 10�12

Rutherford backscattering 50 nm 10�20 to 10�17

Nuclear reaction analysis 20–100 nm 5 � 10�21 to 5 � 10�16

Indirect

Nuclear magnetic resonance . . . 10�20 to 10�9

Neutron inelastic scattering . . . 10�11 to 10�9

Mossbauer effect . . . 10�15 to 10�11

Conductivity (ionic crystals) . . . 10�17 to 10�10

Resistivity (semiconductors) . . . 10�20 to 10�12

Elastic after-effect . . . 10�25 to 10�21

Internal friction . . . 10�20 to 10�15

Magnetic anisotropy . . . 10�25 to 10�21

Source: Ref 5

Fig. 2 Schematic of (a) thin-film geometry and (b) solution. (a) A thin layer of the diffusing species (A atoms per unit
area) is concentrated at z = 0. As time increases, the A atoms diffuse such that concentration becomes

negligible. (b) The concentration of A atoms as a function of distance for different times, where the time increments
are given as D*t, where D is a constant.
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Xn
k¼1

VJk ¼ 0 (Eq 14)

VDkj ¼
Xn
i¼1

dik � xkð ÞxiMi
@mi
@xj

Vm (Eq 15)

The component j is the diffusing component,
and k is the gradient component. The dik is the
Kronecker delta symbol and equals 1 when i =
k and 0 when i 6¼ k. The partial derivative of
the chemical potential, mi, with respect to the
mole fraction, xi, corresponds to the thermody-
namic factor. Note that the partial derivative of
the chemical potential can be easily calculated
using a functional representation of the Gibbs
energy, for example, an appropriate multicom-
ponent thermodynamic database. However, the
thermodynamic factor must be evaluated in the
form mk(x1, x2,. . .xn) because there are n-1 inde-
pendent concentrations. As there are only (n-1)
independent components, diffusion couple
experiments are only able to directly evaluate
the interdiffusion coefficient, ~Dn

kj:

~Dn
kj ¼ DV

kj �DV
kn (Eq 16)

where n is the dependent variable. Using these
interdiffusion coefficients, the flux equations
(Eq 7) in the volume-fixed frame of reference,
where the sum of the fluxes equals zero, can
be written as:

Jk ¼ �
Xn�1

j¼1

~Dn
kj

@cj
@z

(Eq 17)

There are several methods for determining
interdiffusion coefficients from measured com-
position profiles from diffusion couple experi-
ments. Figure 4 shows that for diffusion
couples that can be approximated as an infinite
medium, the Boltzmann-Matano method (Ref
7, 8) can be used to determine the interdiffusion
coefficients from experimental composition
profiles at a given time, t:

~Dðc�Þ ¼ 2t
dc

dz

����
z�

� ��1 ðc�
c

zM � zð Þdc and

ðcþ
c�

zM � zð Þdc ¼ 0 ðEq 18Þ

The variable zM defines the Matano plane
through which equal amounts of material have
moved in the positive and negative directions.
The concentrations c� and c+ represent the ini-
tial compositions of the diffusion couple. How-
ever, this commonly used method does not
consider the change in molar volume across the
diffusion couple. When significant molar volume
changes are present (e.g., in the intermetallic
NiAl-B2, Ref 9), the interdiffusion coefficients
should be calculated using methods that include
the composition dependence of the molar
volume, such as that proposed by Ref 10 to 12:

~D ¼VM

2t

dz

dYi

� �
Y �

1� Y �
i


 � ðz�
�1

Yi

VM

dz

2
4

þ Y �
i

ð�1

z�

1� Yið Þ
VM

dz

3
5 where Yi ¼

ci � c�i

 �
cþi � c�i

 �

(Eq 19)

where Yi is a normalized concentration variable.
This method also eliminates the need to deter-
mine a Matano interface, which is often a source
of error. An example of the method is shown in
Fig. 5 for a cobalt-nickel diffusion couple.
As the number of elements in the diffusion

couples increases, determining the interdiffusion
coefficients becomes more difficult; for each
interdiffusion coefficient, (n�1) composition
profiles with different terminal compositions
must intersect at one common intersection point.
In an effort to overcome this complexity, Ref 13
derived a new analysis method that enables the
determination of an average interdiffusion coef-
ficient over a selected composition range from
a single multicomponent diffusion couple by
integrating the interdiffusion flux of a compo-
nent over the diffusion distance for a selected
range of compositions. This method has been
implemented in the computational software
program MultiDiFlux (Ref 14). (Commercial
products are referenced in this paper as exam-
ples. Such identification does not imply recom-
mendation or endorsement by the National
Institute of Standards and Technology.)
Intrinsic Diffusivity. The intrinsic diffusion

coefficient defines the diffusion of a component
relative to the lattice planes and is the product
of the diffusion mobility and the thermody-
namic factor in the lattice-fixed frame of refer-
ence, where the sum of the diffusion fluxes
equals the vacancy flux:

Xn
k¼1

LJk ¼ �LJvacancy (Eq 20)

LDkj ¼
Xn
i¼1

dxixiMk
@mk
@xj

(Eq 21)

A net flux of atoms across any lattice plane
occurs during interdiffusion as the diffusion
rates of the components in a material are differ-
ent. Thus, there is a shift of lattice planes rela-
tive to a fixed lattice axis, which is known as
the Kirkendall effect. This shift of lattice planes
is observed by placing inert markers at the ini-
tial interface of a diffusion couple (Fig. 6)
(Ref 15, 16). The velocity of the inert markers
equals the Kirkendall velocity. Thus, the differ-
ence between Eq 15, VDkj, and Eq 21, LDkj, is
the reference state. The VDkj represents the
measurement of the diffusivity relative to a
fixed position, while the LDkj represents the
measurement of diffusivity relative to a fixed
lattice plane. This difference in the frame of
reference is similar to measuring the speed of
a train when the observer is standing at a fixed
position on the train platform (in the volume-
fixed frame of reference) versus when the
observer is sitting in one of the train cars (the
lattice-fixed frame of reference).
For a substitutional binary alloy, the intrinsic

and tracer diffusivities are related to the inter-
diffusion coefficient and the Kirkendall

Fig. 4 Example of Boltzmann-Matano calculation for a
single-phase interdiffusion experiment with end-

member composition of c�i and cþi . The Matano plane is
located at z0 and is chosen such that the two shaded
areas, E and F, are equal. The diffusion coefficient at
given ci concentration is then given by Eq 18.

Fig. 5 Example of the Sauer-Freise method to calculate
the interdiffusion coefficient for face-centered

cubic cobalt-nickel at 1150 �C. (a) Measured composition
profile after 1000 h at 1150 �C. (b) Calculated interdiffusion
coefficient at 1150 �C. Source: Ref 10
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velocity. For example, for a binary AB alloy,
Darken (Ref 17) deduced the following approx-
imate relations, which disregard the coupling
between the fluxes of the two atoms and the
vacancy flux:

V ~DAB ¼ xB
LDA þ xA

LDB ¼ xAD
�
B þ xBD

�
A


 � @mA
@xB

(Eq 22)

The Kirkendall velocity, nK, is given by:

nK ¼ LDA � LDL
B


 � @xA
@z

(Eq 23)

For a more complete description of the relation-
ship between the diffusivities in a “random”
alloy during a vacancy-driven diffusion process,
the Darken-Manning relations (Ref 18, 19)
should be used.
As an example of the relationship between the

diffusivities, consider the fcc diffusivities for the
iron-nickel system at 1200 �C (Fig. 7). Figure 7
(a) shows the calculated thermodynamic factors,
and Fig. 7(b) shows the mobilities for nickel and
iron. The Darken relationship (Eq 22) is demon-
strated in Fig. 7(c):

~DFeNi ¼ xFe
LDNi þ xNi

LDFe (Eq 24)

where the intrinsic lattice diffusivities, Eq 21,
(LDNi,

LDFe) are calculated by multiplying the
thermodynamic factor (Fig. 7a) by the mobility
(Fig. 7b).
First-Principles Data. In addition to the vari-

ety of experimental methods available for mea-
suring diffusivity, first-principles calculations
may be available to help estimate difficult-to-
measure or metastable diffusion coefficients.
Density-functional methods can be used to cal-
culate the self-activation diffusion energies (Ref
20). Embedded-atom potentials can be used to
evaluate diffusion mechanisms and determine
activation energies (Ref 21–23). Diffusion coef-
ficients can be extracted from kinetic Monte
Carlo simulations using Kub-Green expressions
(Ref 24, 25).

Modeling Multicomponent
Diffusivity Data

While much of the diffusivity data for the
pure elements and many binary alloys have
been measured and are available in the litera-
ture, diffusivity data for multicomponent sys-
tems are scarce and difficult to measure.
Experimentally determining all the needed dif-
fusion coefficient matrices for a multicompo-
nent diffusion simulation is simply not
practical or efficient. However, these multicom-
ponent data are critical for correctly predicting
diffusion behavior in many industrial (commer-
cial) applications and may be strongly depen-
dent on composition. Thus, multicomponent
diffusion mobility databases are developed to
predict the needed bulk diffusion coefficients.

Using Onsager’s relations and a Calphad-
based method (Ref 26–28), Ref 29 developed
a formalism to describe diffusion mobilities in
multicomponent systems and to develop multi-
component diffusion mobility databases. These
diffusion mobilities can then be combined with
the needed thermodynamic factors to calculate
the multicomponent diffusion coefficients.
Appendix 1 demonstrates how ternary tracer,
intrinsic, interdiffusion coefficients are calcu-
lated for a given set of diffusion mobilities
and chemical potentials.

Disordered Phase

Substitutional Diffusion. Assuming a
vacancy diffusion mechanism in a crystalline
phase, the mobility matrix in the lattice-fixed
frame, LMki, which is both composition and tem-
perature dependent, can be written in terms of an
Arrhenius-type relation similar to Eq 4 and 6:

LMki ¼ dkixiMi (Eq 25)

Mi ¼ �i

1

RT
exp

�Q�
i

RT

� �
(Eq 26)

Following the work of Ref 29, the off-diagonal
terms of the diffusion mobility matrix are
assumed to be zero; that is, correlation effects
are assumed to be negligible. Mi is the mobility
of component i in a given phase (this is the
same Mi as in Eq 13, 15, and 21), Yi represents
the effects of the atomic jump distance
(squared) and the jump frequency, and �Q�

i
(with units of J/mol) is the diffusion-activation
energy of component i in a given phase. The
partial molar volumes are assumed to be con-
stant, and the composition and temperature
dependence of each �Q�

i are expressed in
terms of a Redlich-Kister (Ref 30) polynomial
(Ref 29, 31–35):

�Q�
i ¼

X
j

xjQ
j
i þ

X
p

X
j>p

xpxj
X
k

kApj
i xp � xj

 �

k

(Eq 27)

where Qj
i and

kApj
i are linear functions of tem-

perature. The expansion of the composition
dependence in terms of a Redlich-Kister poly-
nomial is similar to the development of thermo-
dynamic databases with the Calphad method
(Ref 26–28). Note that for a given diffusing
component, i, if all Qj

i are equal and kApj
i

equals zero, then �Q�
i and the corresponding

Mi are not concentration dependent. The com-
position dependence of Yi can also be

Fig. 7 Example of the calculation of the intrinsic
diffusion and interdiffusion coefficients for the

iron-nickel system at 1200 �C. Thermodynamic factors
(a) and mobilities (b) for iron and nickel as functions of
composition are multiplied to calculate the intrinsic
diffusion coefficients shown in (c). The Darken relation
(Eq 22) is used in (c) to calculate the interdiffusion
coefficient.

Fig. 6 Schematic of Kirkendall effect in an A-B
diffusion couple where the B atoms diffuse

faster than the A atoms (DB > DA), and the interface
moves to the right. The Matano plane is defined by zM,
and the Kirkendall plane is located at zK.
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represented by Eq 27. If there is no ferromag-
netic contribution, it is frequently assumed that
Yi depends exponentially on composition
(Ref 36), and it is included in the activation
energy term. With this assumption, Eq 26 can
be written as:

Mi ¼ 1

RT
exp

�Q0
i

RT

� �
where �Q0

i ¼ �Q�
i �RT ln�i

(Eq 28)

Interstitial Diffusion. Interstitial elements
can be added to the database by using a sublat-
tice description and by assuming the partial
molar volume of the interstitial element is zero
(Ref 37). An example of this model is the addi-
tion of carbon to the Fe-Ni-Cr fcc phase in the
diffusion assessment by Ref 38.
Magnetic Transition. For substitutional ele-

ments in bcc alloys, such as transition metals,
the effect of the transition between the para-
and ferromagnetic states contributes to the dif-
fusion. The effect of magnetic ordering on dif-
fusion can be included (Ref 39, 40), using the
model of Braun and Feller-Kniepmeier (Ref
41), which relates the change in diffusivity to
the magnetic enthalpy. For interstitial elements,
such as carbon or nitrogen, the effect of the
magnetic transition is less well established.
The magnetic transition has a strong effect on
carbon diffusivity (Ref 42), which can be mod-
eled by applying the same activation energy to
both the paramagnetic and ferromagnetic states
(Ref 43). However, no significant change in the
nitrogen diffusivity is observed as the magnetic
transition occurs.

Ordered Phases

For an ordered phase, the composition
dependence of the diffusion mobilities must
include the effect of chemical ordering. Based
on the model by Girifalco (Ref 44), which
assumes the activation energy from chemical
ordering is dependent on a long-range order
parameter, the effect of chemical ordering is
included by dividing the activation energy into
two terms (Ref 35). The first term represents
the contribution from the disordered state,
�Qdis

k , and the other term represents the contri-
bution from the ordered state, �Qord

k , which is
based on a long-range order-type parameter, the
site fraction of a given component i:

�Qk ¼ �Qdis
k þ�Qord

k (Eq 29)

where �Qord
k is defined as:

�Qord
k ¼

X
i

X
i 6¼j

�Qord
kij yai y

b
j � xixj

h i
(Eq 30)

and �Qord
kij are the contributions to the activa-

tion energy for component k as a result of the
chemical ordering of the i and j atoms on the
two sublattices; xi is the mole fraction of com-
ponent i; and yai and ybi are the site fractions
of component i on the given sublattices:

yai ¼ Na
i

Na
total

(Eq 31)

where Na
i equals the number of i atoms on the a

sublattice, and Na
total equals the total number of

atoms on the a sublattice. This approach was
developed for an AB (B2) alloy where diffusion
occurs via jumps between two metal sublat-
tices; however, the approach is also valid for
A3B (Fe3Al) alloys (D03 ordering) (Ref 45),
where diffusion occurs via a network of near-
est-neighbor jumps and where the fcc or hexag-
onal close-packed crystal structure is the base
for the ordered phase. This model has been suc-
cessfully used to describe the Fe-Ni-Al diffu-
sion in the B2 phase (Ref 34) and to describe
the Ni-Al-Cr diffusion in the B2 and g0 phases
(Ref 46).

Stoichiometric Phases

For binary stoichiometric phases, the diffu-
sivity is assumed to be proportional to the dif-
ference in the chemical potentials at each end
of the stoichiometric phase multiplied by the
mobility for the component in the phase. Tracer
diffusivity data for the component in the stoi-
chiometric phase are used to assess the diffu-
sion mobility functions. This type of model
has been applied to the diffusivity of carbon
in cementite (Ref 47).

Determination of Diffusion
Mobility Coefficients

Similar to the Gibbs energy function coeffi-
cients used in multicomponent thermodynamic
databases, the diffusion mobility parameters in
Eq 26 and 30 are determined from experimental
data for each system and can be evaluated using
trial-and-error methods or mathematical meth-
ods that minimize the error between the calcu-
lated and experimental diffusion coefficients,
as indicated in Fig. 8. The trial-and-error
method is only feasible if a few different data
types are available. This method becomes
increasingly cumbersome as the number of
components and/or number of data types
increases. When this occurs, mathematical
methods, such as the least-squares method of
Gauss (Ref 48), the Marquardt method
(Ref 49), or the Bayesian estimation method
(Ref 50), are more efficient. The PARROT
optimizer (Ref 51) within the DICTRA code
(Ref 52, 53) allows direct optimization of diffu-
sion mobility functions.
General Principles. The same principles

guiding the assessment of thermodynamic data
(Ref 28) also apply to diffusion data, with a
few additional constraints. First, a thermody-
namic database (or description) must be
selected to calculate the needed thermodynamic
factors for intrinsic and interdiffusion coeffi-
cients. In choosing a thermodynamic database,

the phase models used for the thermodynamics
must be the same as those used in the diffusion
mobility database. For example, if a thermody-
namic description uses a two-sublattice model
of an fcc phase (one sublattice for the substitu-
tional elements and a second sublattice for the
interstitials), then the same two-sublattice
model must be used in the diffusion mobility
database. After selecting a thermodynamic
database/description to use for developing the
diffusion mobility database, a critical evalua-
tion of all the available data must be performed.
As the tracer diffusivity data are not dependent
on the thermodynamics, these data are preferred
and often weighted more heavily than other dif-
fusivity data, which are dependent on the ther-
modynamic description used. The assessment
process continues by optimizing the mobility
parameters for each component in each phase
separately and then optimizing the mobility
parameters for all of the components in a given
phase with all of the relevant, and appropriately
weighted, diffusion data. Zero-order binary and
ternary interaction parameters may be added as
needed to fit the available diffusion data. Gen-
erally, ternary and higher-order binary interac-
tions are rarely needed to fit the experimental
data, or there are insufficient experimental data
to justify such terms. After all of the needed
mobility parameters are optimized, the assess-
ment is verified using diffusion data not consid-
ered during optimization, such as a comparison
of calculated and measured composition pro-
files from diffusion-couple experiments. The
assessed parameters may also be evaluated by
comparing activation energies with diffusion
correlations published in the literature (Ref
54) or with first-principles calculations.
Binary Assessment Example. The assess-

ment of the nickel-tungsten diffusion mobilities
in the fcc phase is described here as an exam-
ple. The thermodynamic description developed
by Gustafson et al. (Ref 55) is used. The fcc
phase is modeled using a two-sublattice
description (nickel, tungsten: vacancies), where
nickel and tungsten occupy the substitutional
sublattice, and vacancies occupy the interstitial
sublattice. For the nickel-tungsten system in
the fcc phase, both tracer (Ref 56) (Fig. 9)
and interdiffusion (Ref 57) (Fig. 10) data are
available. The nickel and tungsten diffusion
mobilities in the fcc phase are described as:

Mi ¼ 1

RT
exp

�Q0
i

RT

� �
where i ¼ Ni;W (Eq 32)

�Q0
Ni ¼ xNiQ

Ni
Ni þ xWQW

Ni þ xNixW
0ANi;W

Ni

�Q0
W ¼ xNiQ

Ni
W þ xWQW

W þ xNixW
0ANi;W

W

:

(Eq 33)

(Note that because this phase has no ferromag-
netic contribution, the mobilities are expressed
using Eq 28.) If a ferromagnetic contribution
were present, separate composition-dependent
functions for the activation energy and pre-
exponential terms would be needed (Eq 26).
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QNi
Ni is the self-activation energy for diffusion of

nickel in pure fcc nickel; it is well established
experimentally, and the mobility parameters
are previously determined in the assessment
work by Ref 32. Two metastable end-member
self-activation energies must be determined:
one for the diffusion of tungsten in pure fcc
tungsten, QW

W, and one for nickel in pure fcc
tungsten, QW

Ni. Because these quantities cannot
be measured experimentally (fcc tungsten is
not stable), they are determined during the opti-
mization, using diffusion correlations or first
principles as initial estimates. The activation
energy for tungsten diffusing in fcc nickel,
QNi

W, is determined using the available tracer
and interdiffusion data. The three activation
energies are modeled using the following form,
where B and C are constants:

BþRT lnðCÞ (Eq 34)

The binary interaction parameters, 0ANi;W
Ni and

0ANi;W
W , are also considered in the optimization

and are modeled using a constant value.
To start the assessment, the initial values for

the activation energies are all set to equal the
value of nickel in pure nickel: �28,700 +
69.8*T (Ref 32) (Table 3). The binary interac-
tion parameters are initially set to zero. Note
that with this initial set of parameters, there is
no concentration dependence for the tracer dif-
fusivities. As seen in Fig. 9(a, b), the tracer dif-
fusivities for all three alloy compositions are
equal, using the initial parameters. The first
parameters optimized are activation energies
for the diffusion of tungsten in pure tungsten
and nickel, QW

W and QNi
W, using the tungsten

tracer diffusivity data from Ref 56. The optimi-
zation is done by comparing the diffusivities
calculated using the values defined for Eq 33
in Eq 13 and the experimental values:

D�
WðxW; T Þ ¼

1

RT
exp

xNiQ
Ni
W þ xWQW

W þ xNixW
0ANi;W

W

� �
RT

0
@

1
A

(Eq 35)

After these parameters are optimized, the binary
interaction term,0ANi;W

W , is optimized, using a
start value of �5000 J/mol. Once the tungsten
mobility parameters have been optimized using
tracer diffusivity data, the values for QNi

W, QW
W,

and 0ANi;W
W are then fixed, and the nickel mobil-

ity parameters (QW
Ni and

0ANi;W
Ni ) are optimized

using the nickel tracer diffusivity data. After
these nickel mobility values are optimized, all
of the mobility values (excluding the values for
QNi

Ni) are optimized using both the tracer diffu-
sivity data and the interdiffusion data. Again,
the optimized parameters are used to calculate
the tracer and interdiffusion diffusivities given
by Eq 13 and 15 and then compared to the
experimental values. The optimized mobility
parameters are listed in Table 3.
The comparison of the diffusivities calcu-

lated with the optimized parameters and the
experimental values are shown in Fig. 9 and
10. Good agreement between the measured
and calculated tracer diffusivity and interdiffu-
sion coefficients is achieved. Other recent diffu-
sion mobility assessment examples are given in
the literature by Ref 58 to 60.
In addition to optimizing the mobility func-

tions using various composition-dependent dif-
fusion coefficient data, diffusion mobility
functions can be optimized directly from exper-
imental composition profiles. Both Ref 61 and
62 developed methods that combine DICTRA
with an optimization tool (MatLab or Mathe-
matica) to assess the mobility parameters from

experimental composition profiles. For a given
set of mobility parameters, the difference
between the experimental composition and cal-
culated composition is defined by a least-
squares error function. The mobility parameters
are optimized to minimize the error. This
method has been successfully demonstrated
for binary and ternary systems.
Strengths and Weaknesses of Assessment

Method. The Calphad-based approach to
modeling the diffusion mobilities provides an
efficient representation of the composition
dependence in multicomponent systems. The
reduced number of parameters needed to
describe diffusion in a multicomponent system
occurs as a result of the assumption that the
correlation factors are negligible in the lattice-
fixed frame of reference, and only the diagonal
terms of the mobility matrix must be evaluated.
However, if the vacancy concentration is not in
local equilibrium, the off-diagonal terms resulting
from the correlation factors should be considered
(Ref 5, 19). Using the Calphadmethod to describe
the composition dependence of themobility terms
requires the determination of mobilities for fictive
metastable end-member phases. Examples of such
quantities are the mobility of tungsten in fcc tung-
sten and the mobility of tungsten in fcc aluminum
at temperatures above the fcc aluminum melting
temperature (e.g., 1300 �C). Determination of
these end-member quantities may follow
approaches similar to those used to determine the
lattice stabilities of themetastable thermodynamic
quantities of the elements (Ref 26–28). This deter-
mination of diffusion-activation energies for fic-
tive end-member phases may appear to limit the
Calphad method; however, it is these determina-
tions that enable the extrapolation to higher-order
systems where diffusion data are limited.
These optimization methods have been

employed to develop several commercial

Fig. 8 Schematic of diffusion mobility parameter optimization procedure
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diffusion mobility databases, as well as many
smaller databases for specific research applica-
tions. Table 4 lists several of the commercial
and research databases available. All of these
databases can be employed by a variety of diffu-
sion codes, finite-difference codes that assume
local equilibrium at each grid point (e.g., DIC-
TRA), random walk methods (Ref 71), and
phase-field codes.

Application

Single-Phase Diffusion. The most common
diffusion simulation is the diffusion of one sin-
gle-phase material into another at constant

temperature and pressure. The results of these
simulations are generally shown as composition
profiles as a function of distance at a specified
time. The complexity associated with an 11-
component nickel-base superalloy diffusion
couple is demonstrated in Fig. 11, where the
interdiffusion between two single-phase g(fcc)
nickel-base superalloys (René-N4/René-N5)
after 100 h at 1293 �C (Ref 72) is shown. The
predictions were made using the DICTRA
software in conjunction with the National Insti-
tute of Standards and Technology (NIST)-
NiMob diffusion mobility database (Ref 64 )
and the Thermotech Ni-Data thermodynamic
database (Ref 73). In addition to accurately pre-
dicting the composition profiles, the diffusion

simulation also predicts the location of the
maximum pore formation resulting from Kir-
kendall porosity. Figure 12(a) shows the pre-
dicted location of the maximum pore
formation, given by the maximum of the nega-
tive derivative of the vacancy flux with respect
to distance (Ref 74), and Fig. 12(b) reveals that
the predicted location corresponds well to the
location of Kirkendall porosity observed on
the René-N4 side of the diffusion couple.

Fig. 9 Comparison of calculated and measured tracer diffusivity data for (a) nickel and (b) tungsten in nickel-tungsten face-centered cubic (fcc) alloys as functions of temperature.
The diffusivities are calculated before and after optimizing the nickel-tungsten system. Note: Before the system optimizes, there is no composition dependence in the

mobility functions. Experimental data from Ref 56

Fig. 10 Comparison of calculated and measured interdiffusion coefficients for the nickel-tungsten system as a
function of composition for temperatures ranging from 900 to 1300 �C. (a) Calculated diffusivities before

optimization; observed composition dependence is entirely from the composition dependence of the chemical
potentials. (b) Calculated diffusivities after the nickel-tungsten system has been optimized. Source: Ref 57

Table 3 Optimized mobility parameters
for the nickel-tungsten system

Parameter Initial values, J/mol Optimized value, J/mol

QNi
Ni

�28,700 � 69.8*T
(Ref 32)

�28,700 � 69.8*T
(not optimized)

QW
Ni �287,000 � 69.8*T �628,250 + RT

ln(4.78 � 10�4)
QW

W �287,000 � 69.8*T �411,423 + RT
ln(2.18 � 10�4)

QNi
W �287,000 � 69.8*T �282,130 + RT

ln(2.80 � 10�5)
0ANi;W

Ni + 0.0 +175,736
0ANi;W

W
+ 0.0 �97,025

Table 4 Available mobility databases

Database name/alloy system Reference

MOB2 (general-purpose database,
with emphasis on iron-base alloys

Ref 63

MOBAl1 (aluminum-base alloys) Ref 63
MOBNi1 Ref 63
NIST-NiMob (face-centered
cubic nickel-base alloys)

Ref 64

Cobalt-base alloys (face-centered
cubic phase)

Ref 65

Solder alloys Ref 66, 67
Zirconium-base alloys Ref 68
Cemented carbides Ref 69, 70

178 / Fundamentals of the Modeling of Microstructure and Texture Evolution



Multiphase Diffusion. The formation of an
additional phase is also a common occurrence
during the diffusion process between two
single-phase materials. Figure 13 shows the
formation of a Ni3Al (gamma prime, g0) layer
between the NiAl-B2 and fcc nickel diffusion
couple after heat treating for 1000 h at 1150 �C
(1423 K). The Ni-NiAl section of the nickel-alu-
minum phase diagram is shown in Fig. 13(a). In
Fig. 13(b), both the measured and predicted com-
position profiles show the formation of a Ni3Al
(gamma prime) layer between the initially present
NiAl-B2 and nickel layers. The dashed lines
between Fig. 13(a) and (b) show how the jumps
in the composition profiles relate to the phase
boundaries on the phase diagram.

In addition to the complexity of multicompo-
nent single-phase diffusion couples, industrially
relevant diffusion simulations often involve
complicated time-temperature schedules and
the precipitation and dissolution of a variety
of different phases, both as planar layers and
dispersed particles. These simulations are char-
acterized by a variety of outputs, including the
position of a moving phase boundary as a func-
tion of time, phase fraction profiles, particle-
size diameters during coarsening, and locations
of Kirkendall porosity. These outputs are essen-
tial in optimizing heat treating cycles and solid-
ification schedules, predicting service lifetimes,
and determining weldability. Examples of the
complex uses of diffusion data to predict

microstructure evolution are found in other arti-
cles of this Handbook.

Appendix 1: Example of Diffusion
Matrices for the Ni-0.05Al-0.10Cr
fcc Composition at 1200 �C

The following is an example of the calcula-
tion of the various diffusion matrices for a ter-
nary Ni-Al-Cr system, for a given set of
diffusion mobilities and chemical potentials.
The diffusion mobilities and chemical poten-
tials are calculated using the data from
Engström (Ref 33) and the SSOL4 substance
database (Ref 75), respectively.
For the given Ni-0.05Al-0.1Cr (atomic fraction)

composition at 1200 �C, the diffusionmobilities, in
a lattice-fixed frameof reference, assuming the cor-
relation effects are negligible, are given as:

LMik¼dikxiMi¼

Al Cr Ni

Al 0:05 �4:25ð Þ 0 0

Cr 0 0:10 �2:35ð Þ 0

Ni 0 0 0:85�1:75ð Þ

2
6664

3
7775�10�18m2=s

¼

Al Cr Ni

Al 2:12 0 0

Cr 0 2:35 0

Ni 0 0 14:9

2
6664

3
7775�10�19m2

�
s

(Eq1.1)

Assuming nickel is the dependent variable, the
matrix of chemical potentials at 1200 �C is
given by:

@mk
@xj

� �
¼

Al Cr Ni

Al þ39:2 þ9:23 þ0

Cr þ8:60 þ18:3 þ0

Ni �3:32 �2:70 þ0

2
664

3
775�104ðJ=molÞ

(Eq 1.2)

The tracer diffusivities for the Ni-5Al-10Cr
composition at 1200 �C are then calculated
using Eq 13:

Fig. 11 Calculated (solid lines) and experimental
(symbols) composition profiles for René-N4/

René-N5 diffusion couples after 100 h at 1293 �C.
Source: Ref 72 Fig. 12 (a) Predicted location of the maximum pore density for a René-N4/René-N5 diffusion couple at 1293 �C.

(b) Backscattered image of René-N4/René-N5 diffusion couple after 100 h at 1293 �C. The thin white line
indicates the position of the microprobe scan. The dashed white line corresponds to the Matano interface. The
dashed line is the location of the predicted maximum porosity. Source: Ref 72

Fig. 13 Example of multiphase diffusion in the nickel-aluminum system at 1423 K. (a) The Ni-NiAl section of the
nickel-aluminum phase diagram, where the solid circles indicate the initial end-member compositions of

the diffusion couple. (b) The measured (open symbols) and calculated (solid line) composition profiles for the Ni-NiAl
diffusion couple at 1423 K. Vertical dashed lines indicate the position of the Ni3Al (gg) region. The horizontal dashed
lines extending between (a) and (b) demonstrate that the positions of the measured and calculated composition jumps
corresponding to the different phase regions on the phase diagram. Source: Ref 46
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D� ¼
Al 5:20
Cr 2:87
Ni 2:14

2
4

3
5� �10�14m2

�
s


 �
(Eq 1.3)

The diffusion matrix in the lattice frame of ref-
erence is the product of the mobility matrix
(Eq 1.1) times the chemical potential matrix
(Eq 1.2), as defined in Eq 21:

LD ¼ dxixi M½ 	ð Þ � @mk

@xj

� �

¼
Al Cr Ni

Al þ8:33 þ1:96 þ0

Cr þ2:09 þ4:30 þ0

Ni �4:95 �4:02 þ0

2
664

3
775�10�14 m2

�
s


 �

(Eq 1.4)

The diffusion matrix in the volume-fixed frame
of reference, assuming constant molar volumes,
is given by Eq 15:

VDn
kj ¼ dik � xkð ÞxiM� @mi

@xj

¼

Al Cr Ni

Al 2:02 �0:12 �0:74

Cr �0:21 2:11 �1:49

Ni �1:81 �1:99 2:23

2
6664

3
7775�10�19

Al Cr Ni

Al þ39:2 þ9:23 þ0

Cr þ8:60 þ18:3 þ0

Ni �3:32 �2:70 þ0

2
6664

3
7775�104

¼

Al Cr Ni

Al þ8:06 þ1:85 þ0

Cr þ1:48 þ4:07 þ0

Ni �9:54 �5:92 þ0

2
6664

3
7775�10�14 m2

�
s


 �

(Eq 1.5)

The reduced diffusion matrix in the volume-
fixed frame of reference (Eq 15), which is com-
monly referred to as the interdiffusion coeffi-
cient matrix, is defined as the following,
where nickel is the dependent variable:

V ~DNi
kj ¼ VDkj � VDkn

V ~DNi
kj ¼

Al Cr

Al VDNi
AlAl

VDNi
AlNi

Cr VDNi
CrAl

VDNi
CrCr

2
64

3
75

V ~DNi
kj ¼

Al Cr

Al VDAlAl � VDAlNi
VDAlCr � VDAlNi

Cr VDCrAl � VDCrNi
VDCrCr � VDCrNi

2
64

3
75

¼
Al Cr

Al þ8:06 þ1:85

Cr 1:48 þ4:07

2
64

3
75�10�14 m2

�
s


 �

(Eq 1.6)

Using this matrix of interdiffusion coefficients,
the flux equations for the specified composition
can be written in terms of Eq 16:

~JAl ¼ �V ~DNi
AlAl

@cAl
@z

� V ~DNi
AlCr

@cCr
@z

(Eq 1.7)

~JCr ¼ �V ~DNi
CrAl

@cAl
@z

� V ~DNi
CrCr

@cCr
@z

(Eq 1.8)

Solution of these flux equations enables the cal-
culation of composition profiles as a function of
time in a single-phase region.
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Diffusional Mobilities in Face-Centered
Cubic Ni-Cr-Al Alloys, Z. Metallkd., Vol
87 (No. 2), 1996, p 92–97
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