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Abstract

A method is presented to determine the misorientation probability distribution function in polycrystalline materials based on a
known, analytical or numerical, representation of the associated orientation probability distribution function, i.e., texture. The proposed
formulation incorporates the local grain-to-grain orientation correlations by combining local or macroscopic statistical information, and
finds a natural interpretation through the well-known stereographic projection (pole-figure) representation. The proposed formulation
distinguishes between antiparallel crystallographic orientations, as well as cone-angle and polar angle misorientations. For fiber-textured
samples, it is quantitatively shown that highly oriented samples are equivalent to polycrystals with a high density of low-angle misori-
entations, while completely random (untextured) materials are equivalent to microstructures with a high probability of large-angle
misorientations.
� 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The microstructure of polycrystalline materials is a
result of local grain–grain interface and bulk interactions.
Such interactions encourage specific grain boundary mis-
orientations with respect to others; for example, in the
absence of additional driving forces, low interfacial energy
boundaries are favored with respect to interfaces with large
interface tension, thus promoting the appearance of low-
angle misorientations with respect to high-angle values.
In many cases, however, the kinetic mechanisms that con-
trol the mobility of the interfaces lead to the appearance of
a set of metastable states that locally favor high-angle mis-
orientations over low-angle values [1,2].

Recently, texture and interface engineering have been
developed as two innovative approaches to take advantage
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of the microstructural interactions in a continuing effort to
improve material response and reliability. Texture design,
in particular, explores the effect of the anisotropy of the
single-crystal properties of individual phases on the macro-
scopic response of polycrystalline materials. The approach
searches for thermodynamic conditions and kinetic pro-
cesses that will favor the orientation of one or more crystal-
lographic directions along a laboratory reference system
direction [3]. In turn, interface engineering is an emerging
methodology whose goal is to specify those crystallo-
graphic planes and interfacial misorientations that improve
on the macroscopic properties and reliability of materials.

For both methodologies, significant advances in experi-
mental and computing power have been achieved through-
out the last thirty years, yielding detailed information of
the materials and their associated intrinsic properties.
These advances have made it possible to collect and analyze
large quantities of experimental data and have provided the
opportunity for accurate material characterization and
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Fig. 1. (a) Three-dimensional representation of the rotation of a crystal-
lographic axis with respect to a laboratory reference system, x, y, z. (b)
Side view of a stereographic projection of a three-dimensionally oriented
crystallographic axis. In-plane radial direction corresponds to 2tan(U/2),
while angular direction corresponds to polar direction, /1. The sphere
possesses a unit size radius.

R.E. Garcı́a, M.D. Vaudin / Acta Materialia 55 (2007) 5728–5735 5729
improvement. Diffraction techniques have developed from
specifying elementary information such as crystal structure
to determining a myriad of microstructural details such as
grain morphology, volume fractions and spatial distribu-
tion of stable thermodynamic phases, plastic strain fields,
orientation distribution of the crystallographic axes, etc.

In the present context, accurate mathematical represen-
tations of the statistical distributions and local grain–grain
correlations of the crystallographic orientations is critical
for the understanding of material response [4–6]. Previous
work has established statistical descriptions for the disori-
entation of randomly oriented (untextured) cubic polycrys-
talline systems [8]. Other approaches have applied two- and
three-point correlation functions to characterize the angle
between two crystallographic directions of neighboring
grains, specify the average misorientation, and address
the effect of grain clustering in experimentally characterized
material systems [9]. These approaches applied two-point
statistics to specify correlation functions by starting from
experimental results [10]. More recently, numerical Monte
Carlo-based studies have shed some light on the relation-
ships between crystallographic texture and the misorienta-
tion of grains [7]. Schuh et al. extensively developed this
idea and presented numerical results where correlation
lengths and percolation distances of specific types of grain
boundaries are quantified [11–13]. The present paper estab-
lishes analytical relationships between a known statistical
representation of the crystallographic orientation distribu-
tion function (ODF) of a polycrystal and the associated
misorientation distribution function (MDF). The descrip-
tion presented in this manuscript shows that an ODF
imposes constraints on the MDF. Furthermore, in the limit
of morphologically isotropic polycrystals, it is demon-
strated that an MDF representation of a solid is equivalent
to an ODF characterization; therefore, the concepts and
ideas developed through interface engineering are applica-
ble in texture design approaches. While the framework
described herein is amenable to directly incorporate the
local grain–grain orientation correlations, topological con-
straints imposed on the misorientation probability distribu-
tion, such as those found at grain corners, are not explicitly
included. An application to fiber-textured solids is pre-
sented. The formulation presented in this paper is indepen-
dent of the specific representation of the rotation; however,
in what follows, orientations are represented in terms of a
set of Euler angles /1, U, and /2, as described by Bunge
[14] (see Fig. 1a).

2. Theoretical framework

2.1. Geometrical construction

Texture is present in a polycrystalline material if a spe-
cific crystal direction of an individual phase, e.g., the c-axis
of a grain or the {111} pole of an face-centered cubic
metal, has a greater-than-random probability of alignment
with respect to a laboratory reference system direction.
Mathematically, texture is quantified through a function,
P O ~to; g

$
;~x

� �
, which determines the probability of finding

a crystallographic orientation between the orientations g
$

and g
$þd g

$
, at a specified location ~x. ~t is the vector of

parameters that characterizes the MDF.
An important piece of information not traditionally

included in macroscopic material characterization methods
is the local grain-to-grain orientation correlation. Such
information can be easily extracted from orientation map-
ping measurements, e.g., electron backscatter diffraction
(EBSD) [15,16], and readily summarized through a misori-
entation probability distribution function, P Mð~tM; n̂ij;Dg

$
ijÞ,

where

Dg
$

ij D/1;DU;D/2ð Þ ¼ g
$�1 /1;i;Ui;/2;i

� �
� g$ /1;j;Uj;/2;j

� �
ð1Þ

is the misorientation between the ith and the jth neighbor-
ing grains. {D/1,DU,D/2} defines the Euler angles describ-
ing the orientation of the principal axes of the jth grain
from the reference system of the ith grain. Similarly, n̂ij cor-
responds to the normal separating the interface between
the ith and the jth grain, and ~tM is the vector of texture
parameters that characterizes the MDF.

The character of an interface in a polycrystal is deter-
mined by specifying five geometrical parameters: the three
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Euler rotation angles that characterize the misorientation
matrix, Dg

$
ij D/1;DU;D/2ð Þ, plus two components of the

normal to the interface, n̂ij, separating the two abutting
grains. Thus, for a fixed interface normal, n̂ij, PM deter-
mines the probability of finding a grain misoriented
between Dg

$
ij and Dg

$
ij þ dDg

$
ij. Similarly, for fixed mis-

orientation, PM measures the probability of finding an
interface whose normal is between n̂ij and n̂ij þ dn̂ij. Poly-
crystals showing some degree of morphological texture will
favor the occurrence of a subset of interfaces. In contrast,
for morphologically isotropic microstructures of homoge-
neous grain size, the MDF is independent of the interface
normal, n̂ij, because every interface normal is equally prob-
able, i.e., P M ¼ P M ~tM;Dg

$
ij

� �
.

Fiber texture is present if a specific crystallographic
direction of each grain, known as the preferred orientation
direction or textured direction, has a different-than-random
probability of alignment in a particular laboratory refer-
ence system direction, the fiber or texture axis, but the ori-
entation of each grain around its textured direction is
random. Thus, the orientations of the grains have axial
symmetry around the texture axis. Set the z-axis of the lab-
oratory reference system parallel to the texture axis of a
polycrystal and propose the separation of variables:

P O ~tO;/1;U;/2

� �
¼ P f ~tU;U

� �
P pð~t/1

;/1ÞP b ~t/2
;/2

� �
ð2Þ

P fð~tU;UÞ is defined as the fiber texture contribution and
P pð~t/1

;/1Þ, as the polar contribution. In fiber-textured sol-
ids, the texture direction is unaffected by the value of /2;
therefore, P bð~t/2

;/2Þ provides no contribution to modulate
the ODF and is set to 1 for the remainder of this paper. U,
the angle between the texture axis and the textured direc-
tion, will be termed the cone angle.

The contributions from the different components of the
ODF are graphically represented through a stereographic
Fig. 2. (a) Geometrical depiction of a stereographic projection of a hypothetica
angle, U ± dU/2 (gray shaded annulus). (b) Shows the distribution of orienta
dashed circle denotes the locus of misorientations with fixed cone angle D
(Dg
$0 ¼ Dg

$0ðD/01;DUÞ is impossible), while the polar angle D/1 has a finite pro
projection. If the textured crystallographic direction (see
Fig. 1b) makes a cone angle, U, with the z-axis of the lab-
oratory reference system, its stereographic projection will
map into a circle of radius 2tanU/2 as the polar angle /
takes values between 0 and 2p. Similarly, a fixed value of
polar angle, /1, of a c-axis with the x-axis of the laboratory
reference system will project into the stereographic projec-
tion plane as a line that makes an angle /1 with the x-axis
of the plane, as U takes values between �p and p.

Therefore, from Eq. (2), a solid possessing only fiber
texture, i.e., P O ~tO; g

$ð/1;U;/2Þ
� �

¼ P f ~tU;U
� �

, produces
contributions to the distribution of crystallographic
orientations whose only variations on the projection plane
are in the radial direction. Similarly, a polycrystal possess-
ing only polar contributions to texture about a polar axis,
i.e., for the case P O ~t; g

$ð/1;U;/2Þ
� �

¼ P p ~t/1
;/1

� �
, pro-

duces a pole-figure where the two-dimensional probability
of orientation reaches its maxima at specific two-dimen-
sional polar angles. The stereographic projection of an
ODF of a hypothetical polycrystal with fiber texture is
shown in Fig. 2. Here, the locus of points of accessible cone
angles on the stereographic projection plane is represented
as an annulus (or ring) of radius 2tan(U/2) and thickness
2tan ((U + dU/2)/2) � 2tan ((U � dU/2)/2) = 2sin (dU/2)/
(cos (dU/2) + cosU), so orientations outside the dashed
area of the ring have a zero probability of occurring. From
the reference system of an arbitrary grain marked as ·, the
possible misorientations of the grains neighboring · are
given by those Euler angle values that can be sampled
within the area spanned by the ring, as in Fig. 2a. Graph-
ically, the proposed situation is equivalent to translating ·
to the center of the projection plane (see Fig. 2b). The ori-
entation distribution remains unaltered and the relative
misorientations between the grains are unchanged. Thus,
in the reference system of ·, the only grains that are
l polycrystal whose crystallographic orientations are constrained to a cone
tions from the reference system of an arbitrary grain, denoted as ·. The
U. For a fixed cone angle, DU, D/01 is an unrealizable misorientation
bability (i.e., D g

$ ¼ D g
$ðD/1;DUÞ is possible).
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misoriented by DU are denoted by the intersection of the
dashed circle of radius 2tan(DU/2) with the shifted ring.

Therefore, the shape of the ODF influences the accessible
values of misorientation that an arbitrary pair of grains can
reach, i.e., specifies the range of possible MDFs. For exam-
ple, from Fig. 2b, the misorientation Dg

$
ij ¼ Dg

$
ijðD/1;DUÞ

has a finite probability of occurring, while the misorientation
Dg
$0

ij ¼ Dg
$0

ij D/01;DU
� �

has zero probability. However, pairs
of grains with a misorientation angle D/01 are likely if DU is
made large (or small) enough to belong to the imposed
ODF. Similarly, for a fixed value of D/1, a range of misori-
entation values for DU is available.

2.2. Mathematical representation

The geometrical construction of Section 2.1 can be
mathematically described for a polycrystal of total volume
X, whose grain size is uniform and morphologically isotro-
pic. The probability of finding a pair of volume elements
whose associated grains (arbitrarily labeled 1 and 2) have
crystallographic orientations g

$
1 and g

$
2, related by a mis-

orientation D g
$

, with position vectors~x1 and~x2, and sepa-
rated by the position vector, ~Dx is given by (see Fig. 3):
P M ~tO; g
$

1; g
$

2;~x1;~x2

� �
¼ P O ~tO; g

$
1;~x1

� �
P Oð~tO; g

$
2;~x2Þ ð3Þ
or in more explicit terms:
Fig. 3. Example of a polycrystal with volume X and unspecified
(correlated) spatial distribution of crystallographic orientations. For a
fixed arbitrary laboratory reference system origin, O, two neighboring
grains at positions~x1 and~x2, with orientations g

$
1 and g

$
2, separated by a

distance vector ~Dx will have a misorientation D g
$

. The ensemble of
crystallographic orientations, g

$
1 . . . g

$
N, i.e., the ODF, constrains the

statistically accessible misorientations (MDF). Micrograph courtesy of
Jay Wallace.
P M ~tM; g
$

1;D g
$
;~x1; ~Dx

� �

¼ P O ~tO; g
$

1;~x1

� �
P O ~tO;D g

$ �g$1;~x1 þ ~Dx
� �

ð4Þ

Eq. (4) illustrates that the probability of misorientation of
two grains, i.e., the MDF, is the product of the position-
dependent ODFs.

Assume that the position-dependent ODF can be sepa-
rated into its spatial and orientation components:

P O ~tO; g
$
;~x

� �
¼ P O ~tO; g

$� �
S ~xð Þ ð5Þ

P Oð~t; g
$Þ is the spatially independent orientation proba-

bility distribution function, as it is routinely extracted from
X-ray diffraction experiments. Sð~xÞ embodies the spatial
modulations of the ODF, such that 0 6 Sð~xÞ 6 1. So, for
a fixed value of g

$
, those regions in the polycrystal where

Sð~xÞ ¼ 0 have zero likelihood of contributing to
P Oð~t; g

$
;~xÞ, while those regions with a value of Sð~xÞ > 0 will

have a finite probability. Sð~xÞ identifies those areas in a
polycrystal that are textured, and distinguishes between
correlated and uncorrelated orientations of grains that
may result during processing of the material, such as those
induced by the macroscopic surfaces, chemical inhomoge-
neities, etc. For example, a polycrystalline material with
two populations of grains, a textured and an untextured
one, will have an ODF of the form:

P Oð~t; g
$
;~xÞ ¼ P Oð~tO; g

$ÞS1ð~xÞ þ S2ð~xÞ ð6Þ
where S1ð~xÞ ¼ 1 for the textured volume fraction of grains,
S2ð~xÞ ¼ 1 for the untextured volume fraction, and
S(x) = S1(x) + S2(x) = 1. The spatial contribution of those
grains is such that:

m ¼
Z

X
S1ð~xÞd~x ð7Þ

m is the textured volume fraction of grains, and X is the vol-
ume of the polycrystal.

By substituting Eq. (5) into Eq. (4), the probability of
finding two grains, one at an orientation g

$
1, a second mis-

oriented by D g
$

, and separated by Dx apart, for all posi-
tions in a polycrystal is:

P Mð~t; g
$

1;D g
$
; ~DxÞ¼

Z
X

Sð~xÞSð~xþ ~DxÞP Oð~t; g
$

1ÞP Oð~t;D g
$�g$1Þd~x

¼P Oð~t; g
$

1ÞP Oð~t;D g
$�g$1ÞCð~DxÞ

ð8Þ
where

Cð~DxÞ ¼
Z

X
Sð~xÞSð~xþ ~DxÞd~x ð9Þ

is the degree of correlation between two points in a poly-
crystal. Cð~DxÞ modulates the probability of finding two
grains at misorientation, D g

$
, separated by ~x. The specific

form of Cð~DxÞ depends on the average correlation between
grains surrounding a central representative one. For exam-
ple, for a hypothetical polycrystal, the step function
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Cðj~DxjÞ ¼ CoX=L3, for Dx < L, and Cðj~DxjÞ ¼ 0, for
Dx > L, provides a measure of correlated grains a distance
L away from each other. Co is a normalizing factor. If L is
much smaller than the characteristic grain size, then the
polycrystal is an ensemble of spatially uncorrelated grains.
If L is on the order of the grain size, then only neighboring
grains are spatially correlated and make contributions to
the MDF. Finally, if L is of the order of the macroscopic
characteristic length scale, then all the orientations of all
the grains are spatially correlated.

An expression that describes the misorientation proba-
bility distribution for neighboring grains is obtained by
starting from Eq. (8) and it considers the contributions
from all the grains, at all orientations, g

$
1, at a fixed dis-

tance Dx, and misorientation D g
$

:

P Mð~t;D g
$
; ~DxÞ ¼ Cð~DxÞ

Z
g
$

P Oð~t; g
$

1ÞP Oð~t;D g
$ �g$1Þdg

$
1 ð10Þ

The grain–grain correlations necessary to solve Eq. (10)
can be extracted from EBSD diffraction experiments. In
the absence of such information, a numerically useful rela-
tion between the ODF and MDF of a polycrystal is ob-
tained by determining the probability of finding an
arbitrary pair of grains, independent of their separation
in the polycrystal, one with a fixed orientation g

$
1, and

the other at a misorientation Dg:

P Mð~t; g
$

1;D g
$Þ ¼MP Oð~t; g

$
1ÞP Oð~t;D g

$ �g$1Þ ð11Þ
with

M ¼
Z

X
Cð~DxÞd~Dx ¼

Z
X

Z
X

Sð~xÞSð~xþ ~DxÞd~xd~Dx ð12Þ

and is defined as the microstructure factor. M sums up all
the spatial correlations between all positions and spatial
separations within the volume X. In the limit of a polycrys-
tal where two arbitrary points are statistically equivalent
(Sð~xÞ ¼ 1=X), M ¼ 1.

For a fixed orientation g
$

1, there is a finite number of
interfaces at a misorientation D g

$
; therefore, the probabil-

ity of sampling a specific misorientation for all possible val-
ues of orientation g

$
1 is given by the expression:

P Mð~t;D g
$Þ ¼M

Z
g
$

P Oð~t; g
$

1ÞP Oð~t;D g
$ �g$1Þdg

$
1 ð13Þ

which is readily proposed by Zhao et al. [25], without de-
tailed justification. Eq. (13) states that the probability of
misorientation constrains (and is constrained by) the
ODF. Therefore, microstructural designs that favor the
occurrence of a specific set of microstructural interfaces
are equivalent to texture designs where the orientation of
one or more crystallographic axes are preferred. In the lim-
it of M! 1, Eq. (13) is defined as the maximal MDF, and
does not distinguish between misorientations sampled for
pairs of grains sharing a common interface or at opposite
extremes in the solid. The spatial contributions to the
MDF are specified through Cð~DxÞ, and together with the
maximal MDF fully characterize the polycrystal. The max-
imal MDF is an upper bound of an experimentally deter-
mined MDF, which measures the orientation correlations
between neighboring grains only.

In the following section, the theoretical framework
described herein is applied to predict the impact of a
well-known analytical expression of fiber texture on the
maximal misorientation probability distribution.

3. Application to a fiber-textured solid

For a solid possessing fiber texture, U is the angle made
by the textured crystallographic axis and the fiber axis, a
cone angle, whose values range between 0 and p. The
March orientation probability distribution predicts the
probability of finding a specific crystal direction of a grain,
e.g., the c-axis, at a cone angle between U and U + dU
away from the textured axis [19,20]:

P fðr;UÞ ¼
1

4p
sin U

r2 cos2 Uþ 1
r sin2 U

� �3=2
ð14Þ

Assume the fiber axis is aligned with the z-axis of the lab-
oratory reference system, as described in Fig. 1. Values of
r range from 0 to 1. The present paper is concerned with
values of r ranging from 0 to 1, which find applications,
among other processes, in tape casting and film deposition.
A limiting value of r = 0 indicates perfect texture: the pre-
ferred orientation direction of each grain is perfectly paral-
lel or antiparallel with the fiber axis. A value of r = 1
signifies complete randomness, or no texture (see Fig. 4).

The maximal MDF is calculated by directly substituting
Eq. (14) into Eq. (13). For r = 0.3, results are summarized
in Fig. 5. Two significant misorientation populations are
predicted, a larger one close to DU = p, D/1 = 0 and p,
and a smaller one close to DU = 0, D/1 = ± p/2. These
two populations of misorientation angles are a result of
the two most probable cone angles that the March distribu-
tion function generates. From the reference system of an
arbitrary grain obeying Eq. (14), the first population of
grains will have orientations very close to each other, i.e.,
sharing essentially the same cone angle (parallel to each
other), and the only difference between them is the value
of the polar angle, /1. The second population of grains is
roughly oriented at a cone angle of p radians (antiparallel)
with respect to the randomly selected central grain of the
first population, and the only difference between the orien-
tations of the second population is the value of polar angle.
For both populations, the values of polar angles range
from zero to ±p, and low polar angle values are favored
with respect to large ones. As a result of such behavior,
the misorientation of the c-axes between two arbitrary
grains will be either very small or very large.

The calculations presented herein distinguish between
those grains whose c-axes are misoriented by p radians.
In general, the crystal structure of a grain imposes restric-
tions on the distinguishable crystallographic misorienta-
tions that can be sampled. For example, for those
polycrystals with an inherent center of inversion, the



Fig. 4. March orientation probability distribution as a function of orientation, U, for different values of texture parameter, r. For highly textured
materials, r � 0, small cone angles are more probable to be sampled than large ones. However, as the value of texture decreases, i.e., as r! 1, larger values
of cone angles are more probable, while small angle values are less likely to be sampled. In the limit of r = 1, the average cone angle is U = p/2, and all
cone angles occur with a probability P(r = 0,U) = sinU. The most probable cone angle and its dispersion is illustrated through a sketch of the associated
pole figure.

Fig. 5. Top left: polar plot of the maximal misorientation probability distribution of the March function, for r = 0.3. The two-dimensional radial direction
takes values of DU between 0 and p. The angular direction, D/1 corresponds to the polar direction, and takes values between 0 and 2p. The key to the
probability density map is shown on the left. Bottom left: the key to the two-dimensional map. Radial direction corresponds to DU and angular direction
to D/1. Top right: March orientation probability distribution, for r = 0.3 (see Eq. (14)). Bottom right: MDF as a function of DU for two fixed values of
D/1.
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accessible values of cone angle misorientations are con-
strained to the range [0, p/2] because for such cases, the ori-
entation of each grain does not distinguish between the
values DU = 0 and DU = ± p. The results shown in Section
3 are directly applicable to describing the statistics of mate-
rials whose crystal structure belong to the point group 1.



Fig. 6. Probability misorientation distribution plots for Eq. (14) for different values of texture parameter, r. For highly textured materials, cone angle
misorientations, DU, closer to zero and p are more probable, while values of D/1 closer to 0, p/2, p, and 3p/2 are easier to access. As the randomness of the
material increases, i.e., as r! 1, intermediate values of polar and cone angles are sampled at a higher rate. In the limit of r = 1, DU = p/2, D/1 = ± p/2 are
the most probable misorientation angles (see text for details). The key to the gray scale values is shown at the bottom. The key to the orientational
dependence of the MDF plot is shown at the bottom right.

Fig. 7. Schematic depiction of the effect of a fiber-textured material on the
associated maximal MDF. The probability of finding a cone angle
misorientation between DU � dDU/2 and DU + dDU/2 is graphically
illustrated by the intersected areas of the dashed ring with the filled ring
(see Fig. 2). For increasing randomness, misorientations with larger values
of D/1 become more likely to sample, while small values of D/1 become
less probable.
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The effect of changes in texture on the MDF is summa-
rized in Fig. 6. In general, as the texture parameter, r,
increases, the smallest most probable cone angle of the
ODF increases, while the largest cone angle decreases.
Also, the dispersion around both cone angles increases.
As a result, intermediate cone and polar angle misorienta-
tions become more likely to be sampled. Therefore, as a
polycrystal becomes increasingly random, the two popula-
tions of most probable misorientations approach each
other. In the limit of no texture, r = 1, the two populations
of cone angles become indistinguishable. Furthermore, the
polar angle misorientations, D/1 = ± p/2, become more
likely to occur than other values, and the cone angle mis-
orientation DU = p/2 is the most probable; moreover, even
though all the crystallographic orientations are equally
probable, all the crystallographic misorientations are not.

Graphically, the effect of fiber texture on the maximal
MDF is illustrated in Fig. 7.

Here, the accessible misorientations with cone angles
between DU � dDU/2 and DU + dDU/2 correspond to the
intersection of the dashed ring and the filled ring in the ste-
reographic projection plane (e.g., Fig. 7). For a polycrystal
satisfying Eq. (14), as the degree of texture in the polycrys-
tal decreases, the radius and the thickness of the filled ring
increases, thus greater values of D/1 are intersected, while
making small values of D/1 less likely to occur. Further-
more, the values of cone angle misorientations that can
be sampled become larger with decreasing texture, and
the probability of sampling small values of polar angle mis-
orientations decreases. This process makes intermediate
values of cone and polar angle misorientations more prob-
able and contributions from an intermediate region less
probable.

4. Summary and conclusions

A complete statistical description of polycrystalline
materials includes the orientation, misorientation, the
interface normals distribution, as well as the degree
of morphological texture that a solid may exhibit. For mor-
phologically isotropic materials, orientation and misorien-
tation probability distributions are correlated functions,
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and the spatially dependent misorientation distribution
function is the product of the maximal MDF and the
degree of correlation factors. The maximal MDF is an
upper bound of the observable set of misorientations.
The derivation presented in this manuscript demonstrates
that the parameters needed to fully characterize the MDF
are the same parameters required to accurately determine
the ODF.

The calculations presented in this paper show that the
probability of misorientation between two grains is con-
strained by the statistics of the neighboring crystallo-
graphic orientations that the grains can reach. The
present analysis outlines a methodology that can be
extended to specify the character of more complex micro-
structural features, such as triple junctions, and thus corre-
late the impact that these microstructural features may
have on the properties of the system.

The framework presented in Section 2, and results in
Section 3 demonstrate that processing techniques where a
subset of grain misorientations is favored are equivalent
to inducing a specific type of macroscopic texture. There-
fore, interface engineering methods are equivalent to tailor-
ing the texture of polycrystalline materials. For the selected
representation of fiber texture (the March function), a sub-
set of polar and cone angle misorientations is favored by
samples where the texture parameters are judiciously
selected. For highly oriented fiber-textured materials,
low-angle misorientations are statistically favored with
respect to high-angle misorientations. High-angle misorien-
tations become more probable as texture decreases; how-
ever, for materials exhibiting no texture, small-angle
misorientations are less likely to occur than large-angle
misorientations. For point group 1 materials, calculations
suggest that two types of misorientations can be preferen-
tially sampled: small polar, large cone angle boundaries,
D g
$ ¼ D g

$ðD/1 ¼ 0;DU ¼ p=2Þ, and large polar, small
cone angle boundaries, D g

$ ¼ D g
$ðD/1 ¼ �p=2;DU ¼ 0Þ.

The two populations are distinguishable for highly textured
solids. As the degree of texture decreases, the polar angle
misorientation distribution becomes less pronounced.
However, in the limit of a completely random solid,
D g
$ ¼ D g

$ðD/1 ¼ �p=2;DU ¼ p=2Þ is more likely to be
sampled than those misorientations with D/1 = 0.
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