Crystal Chemistry and Microwave Dielectric Properties of Ba₃MNb_{2-x}Sb_xO₉ (M = Mg, Ni, Zn)

Michael W. Lufaso,*,[†] Elizabeth Hopkins,[†] Steven M. Bell,[‡] and Anna Llobet[§]

National Institute of Standards and Technology, Gaithersburg, Maryland, TCI Ceramics, Inc.,

Hagerstown, Maryland, and Los Alamos Neutron Science Center, Los Alamos National Laboratory,

Los Alamos, New Mexico

Received March 23, 2005

The effect of Sb⁵⁺ substitution on the crystal chemistry and dielectric properties of Ba₃MNb_{2-x}Sb_xO₉ (M = Mg, Zn, Ni) was investigated using a combination of X-ray and neutron powder diffraction, and dielectric property measurements at microwave frequencies. Rietveld refinements were carried out to characterize the crystal structures of Ba₃ZnSb₂O₉ and Ba₃MgSb₂O₉, which have a 6H–BaTiO₃-type structure. Analyses of X-ray diffraction data of intermediate compositions evolve from a 2:1 ordered perovskite solid solution, to a two-phase ordered perovskite and 6H region, and also a 6H solid-solution for increasing Sb-content. Analysis of the bond distances indicates that the significant strain present in the 2:1 ordered perovskites is relieved in the 6H structure. Differences in the bonding preferences between the Nb⁵⁺ (d⁰) and Sb⁵⁺ (d¹⁰), combined with small changes in the ionic radii, influence the observed crystal chemistry. The magnitude and temperature dependence of the dielectric constant were lowest for compounds in the perovskite solid solution range with intermediate Sb⁵⁺ contents. Ba₃MgNb_{1.75}Sb_{0.25}O₉ ($\epsilon > 25$, $\tau_{\rm f} \approx 6$ ppm K⁻¹, and Qf > 96 000 GHz) and Ba₃ZnNb_{1.625}Sb_{0.375}O₉ ($\epsilon > 33$, $\tau_{\rm f} \approx -3$ ppm K⁻¹, and Qf > 44 900 GHz) display useful dielectric properties, rendering these materials suitable as lower-cost and lower-processing-temperature alternatives to perovskite tantalate ceramics.

Introduction

Inorganic ceramic oxides are used for microwave dielectric applications including filters, oscillators, and dielectric resonators in mobile and satellite telecommunications. Nextgeneration base stations may utilize ceramic oxide materials because of their low cost and high efficiency. In microwave dielectric resonator applications there are three physical properties that require optimization to meet the strict requirements of device applications.^{1,2} One important physical property is the dielectric constant (ϵ). In many applications a larger dielectric constant is preferred because it allows miniaturization, all other factors being equal.³ A second property is the temperature coefficient of the resonant frequency (τ_f) [τ_f is related to the temperature dependence of the dielectric constant (τ_{ϵ}) and the linear thermal expansion coefficient (α_1) by $\tau_f = -(\alpha_1 + \tau_e/2)$], which ideally has a near-zero value in units of ppm K⁻¹. Compositional tuning of $\tau_{\rm f}$ through zero ppm K⁻¹ in many perovskite materials can be accomplished by formation of a solid solution with appropriate cation substitution.⁴ Dielectric loss, tan δ , is the third physical property requiring optimization and at microwave frequencies is often expressed using the quality factor,

- (1) Cava, R. J. J. Mater. Chem. 2001, 11, 54-62.
- (2) Vanderah, T. A. Science 2002, 298, 1182–1184.
- (3) Wersing, W. Curr. Opin. Solid State Mater. 1996, 1, 715-731.
- (4) Vanderah, T. A.; Miller, V. L.; Levin, I.; Bell, S. M.; Negas, T. J. Solid State Chem. 2004, 177, 2023–2038.

 $Q = (\tan \delta)^{-1}$. The quality factor multiplied by the resonant frequency, Qf, is approximately a constant for similarly sized samples and allows comparison of dielectric loss values between samples measured at different frequencies. A low dielectric loss (i.e., larger Qf) value is more desirable for device applications.

The perovskite structure type, ABO₃, and the ordering of the octahedrally coordinated M-site cations has been extensively studied.⁵ When 2:1-type ordering⁶ of the B-site cations occurs for $AM_{1/3}M'_{2/3}O_3$, the formula may be rewritten as A₃MM'₂O₉. The 2:1 ordered perovskites, Ba₃MgTa₂O₉ and $Ba_3ZnTa_2O_9$, exhibit exceptionally high *Of* values which make them suitable for telecommunication applications where frequency selectivity is vital.^{7,8} Significant efforts have been made to synthesize additional materials with comparable physical properties and reduced raw material and processing costs. Solid solutions on both the A and M site have been investigated to observe the effect on dielectric properties. One prospective system is based on the substitution of Nb⁵⁺ for Ta⁵⁺ in order to reduce materials cost and processing temperatures.⁹ Complete substitution results in a higher dielectric constant; however, the $\tau_{\rm f}$ values are more positive and the Qf values are lower. Solid solutions of two compounds with opposite signs of $\tau_{\rm f}$ have been useful in

10.1021/cm050631y This article not subject to U.S. Copyright. Published 2005 by the American Chemical Society Published on Web 07/02/2005

^{*} To whom correspondence should be addressed at current affiliation: Department of Chemistry and Biochemistry, Columbia, SC. E-mail: lufaso@ mail.chem.sc.edu.

[†] National Institute of Standards and Technology.

[‡] TCI Ceramics, Inc.

[§] Los Alamos Neutron Science Center.

⁽⁵⁾ Anderson, M. T.; Greenwood, K. B.; Taylor, G. A.; Poeppelmeier, K. R. Prog. Solid State Chem. 1993, 22, 197–233.

⁽⁶⁾ Lufaso, M. W. Chem. Mater. 2004, 16, 2148-2156.

⁽⁷⁾ Nomura, S.; Toyama, K.; Kaneta, K. *Jpn. J. Appl. Phys.* 2 **1982**, *21*, L624–L626.

⁽⁸⁾ Kawashima, S.; Nishida, M.; Ueda, I.; Ouchi, H. J. Am. Ceram. Soc. 1983, 66, 421–423.

⁽⁹⁾ Hughes, H.; Iddles, D. M.; Reaney, I. M. Appl. Phys. Lett. 2001, 79, 2952–2954.

producing temperature-compensated materials.¹⁰ For example, tunability of τ_f has been demonstrated in the Ba₃Co_{1-x}Zn_xNb₂O₉ perovskite solid solution.¹¹⁻¹³

Bonding preferences and the second-order Jahn-Teller distortion of d⁰ Nb⁵⁺ and Ta⁵⁺ are important in stabilizing the out-of-center distortion of the octahedra that occurs in the 2:1 ordered perovskites. Only one compound with M^{5+} having a partially filled d-shell, Sr₃CaRu₂O₉, has been reported^{14,15} to crystallize as a 2:1 ordered perovskite. Isostructural perovskite derivatives often form with complete substitution of Sb⁵⁺ for Nb⁵⁺ and Ta⁵⁺ because of the similar ionic radii and preferences for octahedral coordination. For example, Ba₂YSbO₆ and Ba₂YTaO₆ (space group $Fm\bar{3}m$),^{16,17} Ca_2MnSbO_6 and Ca_2MnNbO_6 (space group *Pnma*),¹⁸ Sr₂MnSbO₆ and Sr₂MnNbO₆ (space group *I*4/*mcm*),¹⁸ and Ca_2FeSbO_6 and Ca_2FeNbO_6 (space group $P2_1/n$)^{19,20} all crystallize as perovskite variants. $Ba_3MNb_2O_9$ (M = Mg, Ni, Zn) compounds crystallize as 2:1 ordered perovskites.⁶ In contrast, $Ba_3MSb_2O_9$ (M = Mg, Ni, Zn) phases crystallize in space group $P6_3/mmc$ with a 6H-BaTiO₃-type crystal structure containing face-sharing [SbO₆] octahedral, with the M²⁺ ions occupying vertex sharing octahedra.²¹ In this study, we report on the partial substitution of Sb⁵⁺ for Nb⁵⁺ in $Ba_3MNb_{2-x}Sb_xO_9$ (M = Mg, Ni, Zn), and the influence this has on the dielectric properties and crystal chemistry of the system. Crystal structures of $Ba_3MSb_2O_9$ (M = Mg, Zn) refined from neutron powder diffraction data are also reported.

Experimental Techniques

Polycrystalline samples of Ba₃MgNb_{2-x}Sb_xO₉ (x = 0.125, 0.25, 0.5, 1.0, 1.875), Ba₃NiNb_{2-x}Sb_xO₉ (x = 0.1, 0.25, 0.5, 0.75, 1.0, 1.875), and Ba₃ZnNb_{2-x}Sb_xO₉ (x = 0.125, 0.25, 0.375, 0.5, 0.75, 1.0, 1.875) were prepared by conventional solid-state synthesis using high purity starting materials: BaCO₃ (Alfa Aesar, 99.95%), Nb₂O₅ (Alfa Aesar, 99.9985%), Sb₂O₃ (Alfa Aesar, 99.999%), NiO (Alfa Aesar, 99.9988%), MgCO₃•xH₂O (99.996%, Alfa Aesar, preanalyzed by TGA), and ZnO (Alfa Aesar, 99.999%). Appropriate molar ratios of the oxides and carbonates were weighed and mixed with an agate mortar and pestle. Uniaxially pressed pellets were placed on a sacrificial powder of the same composition on top of platinum foil on an alumina plate. Samples were calcined overnight at 900 °C and subsequent heating performed with intermediate grindings until

- (10) Wise, P. L.; Reaney, I. M.; Lee, W. E.; Iddles, D. M.; Cannell, D. S.; Price, T. J. J. Mater. Res. 2002, 17, 2033–2040.
- (11) Scott, R. I.; Thomas, M.; Hampson, C. J. Eur. Ceram. Soc. 2003, 23, 2467–2471.
- (12) Endo, K.; Fujimoto, K.; Murakawa, K. J. Am. Ceram. Soc. **1987**, 70, C215–C218.
- (13) Yue, Z. X.; Zhao, F.; Zhang, Y. C.; Gui, Z. L.; Li, L. T. *Mater. Lett.* **2004**, *58*, 1830–1834.
- (14) Rijssenbeek, J. T.; Malo, S.; Caignaert, V.; Poeppelmeier, K. R. J. Am. Chem. Soc. 2002, 124, 2090–2091.
- (15) Rijssenbeek, J. T.; Saito, T.; Malo, S.; Masaki, A. T.; Takano, M.; Poeppelmeier, K. R. J. Am. Chem. Soc. 2005, 127, 675–681.
- (16) Alonso, J. A.; Cascales, C.; Casado, P. G.; Rasines, I. J. Solid State Chem. 1997, 128, 247–250.
- (17) Fujii, T.; Takahashi, J.; Shimada, S.; Kageyama, K. J. Electroceram. **1999**, *3*, 387–397.
- (18) Lufaso, M. W.; Woodward, P. M.; Goldberger, J. J. Solid State Chem. **2004**, *177*, 1651–1659.
- (19) Lee, S. O.; Cho, T. Y.; Byeon, S. H. Bull. Korean Chem. Soc. 1997, 18, 91–97.
- (20) Chakhmouradian, A. R.; Mitchell, R. H. J. Solid State Chem. 1998, 138, 272–277.
- (21) Treiber, U.; Kemmlersack, S. Z. Anorg. Allg. Chem. **1982**, 487, 161– 177.

the samples reached equilibrium, which was assumed to occur when no further changes were evident in the relative intensities of the diffraction peaks in laboratory X-ray diffraction measurements. Synthesis temperatures were 1250 °C (M = Zn), 1350–1500 °C (M = Ni), and 1450–1550 °C (M = Mg). X-ray data were collected using a Philips diffractometer equipped with incident Soller slits, theta compensating divergence slit, graphite monochromator, and scintillation detector. Lattice parameters were corrected for curvature by applying an external parabolic calibration correction in the MDI Jade software using SRM LaB₆ as the reference pattern.

Preparation of sufficiently dense (>90%) pellets for dielectric measurements was not accomplished by increasing sintering temperatures. Instead, polycrystalline samples were milled with yttria stabilized zirconia grinding media for 15 min in ethanol. The powders were dried, uniaxially pressed, and then isostatically pressed into cylindrical disks under a pressure of 175 MPa. Pellets were preheated to 300 °C to remove any residual solvent and covered with an inverted crucible to minimize cation volatility at the elevated sintering temperatures. Sintering was performed in air for between 4 and 8 h at temperatures of 1450 °C for M = Zn, 1515 °C for M = Ni, and 1575 °C for M = Mg. Typical observed densities of the sintered pellets were greater than 95% for perovskite solid solutions, but were not determined for the two-phase region because of the imprecise value of the theoretical density. The theoretical densities were calculated from the lattice parameters derived from X-ray diffraction measurements.

Time-of-flight neutron powder diffraction data were collected on the high-intensity powder diffractometer (HIPD) at Los Alamos Neutron Science Center. Detector banks are located at $\pm 153^{\circ}, \pm 90^{\circ}, \pm 40^{\circ}$, and $\pm 14^{\circ}$. Samples were contained in a vanadium sample cylinder. Data were collected for ca. 2 h at ambient temperature. The General Structure Analysis System (GSAS) and the EXPGUI interface was used for Rietveld structural refinements.^{22,23} Default neutron scattering amplitudes were used in the refinements. Statistical uncertainties quoted in all of the results represent one standard deviation.

Dielectric properties were measured using a cylindrical resonant cavity with an HP 8720D Vector Network Analyzer. Samples were sintered cylindrical pellets machined to have a diameter/height ratio of approximately 2.5:1; they ranged from 9.9 to 12.6 mm in diameter and from 4.1 to 6.9 mm in height. The dielectric constants of most compositions were obtained with machined samples of a diameter of 6.1 mm and height of 4.32 mm and measurement by the Courtney method.²⁴ Also, the dielectric constants were estimated from sample size and frequency of the $TE_{01\delta}$ resonance mode. Uncertainty of the dielectric constant is estimated to be less than 1%. Unloaded Q values were measured using the transmission method with an estimated uncertainty in Qf of less than 5%. The Qf measurements were made at ambient temperature and $\tau_{\rm f}$ measurements for each compound were obtained at 25 and 60 °C in gold-plated aluminum cavities in a Tenney environmental chamber. The reproducibility in τ_f is estimated to be ± 1 ppm K⁻¹.

Results and Discussion

Crystal Structure and Phase Analysis. Indexing of X-ray powder diffraction data of Ba₃MNb₂O₉ (M = Mg, Ni, Zn) was consistent with a 2:1 cation ordered perovskite with space group $P\bar{3}m1$. For Ba₃MSb₂O₉ (M = Mg, Ni, Zn) the

⁽²²⁾ Larson, A. C.; von Dreele, R. B. General Structure Analysis System (GSAS); Los Alamos National Laboratories: Los Alamos, NM, 1990.
(23) Toby, B. H. J. Appl. Crystallogr. 2001, 34, 210–213.

⁽²⁴⁾ Courtney, W. E. IEEE Trans. Microwave Theory Technol. 1970, 18, 476–485.

Figure 1. Ambient temperature powder neutron diffraction data for $Ba_3ZnSb_2O_9$. Circles are collected data, solid lines are fitted. Differences between observed and calculated intensities are shown below. Vertical marks indicate calculated peak positions. Normalized data are shown for the detector at $+153^{\circ}$.

Table 1. Refined Structural Parameters and Reliability Factors for $Ba_3MSb_2O_9$ (M = Mg, Zn)^a

exp	Ba ₃ MgSb ₂ O ₉	Ba ₃ ZnSb ₂ O ₉
a (Å)	5.8441(2)	5.8538(1)
<i>c</i> (Å)	14.4089(6)	14.4498(3)
Ba2 z	0.90892(23)	0.91015(12)
$\mathrm{Sb}^{5+} z$	0.15072(20)	0.15179(9)
O1 <i>x</i>	0.48075(24)	0.48087(11)
O1 y	-0.0385(5)	-0.03825(23)
O2 <i>x</i>	0.16948(23)	0.16926(11)
O2 z	0.41614(12)	0.41566(6)
$R_{\rm p}$ (profile) (%)	0.71	1.56
R_{wp} (weighted profile) (%)	0.98	2.03
R ² F (Bragg) Bank 1 (%)	3.34	3.04
reduced χ^2 (%) (8 Banks)	1.05	2.73
Sb-O(1) (Å) (×3)	2.067(3)	2.062(1)
Sb-O(2) (Å) (×3)	1.918(2)	1.928(1)
$M^{2+}-O(2)$ (Å) (×6)	2.098(2)	2.1049(9)
Sb-O(1)-Sb (deg)	87.58(14)	86.98(7)

^{*a*} The fixed atomic fractional coordinate positions are Ba1[2b] (0, 0, $^{1}/_{4}$), Ba2[4f] ($^{1}/_{3}$, $^{2}/_{3}$, *z*), M²⁺[2A] (0, 0, 0), M⁵⁺[4f] ($^{1}/_{3}$, $^{2}/_{3}$, *z*), O1[6h] (*x*, *y*, $^{1}/_{4}$) and O2[12k] (*x*, 2*x*, *z*) in space group *P*6₃/*mmc*.

data were consistent with a 6H structure type with space group $P6_3/mmc$. Crystal structures of Ba₃MNb₂O₉ (M = Mg, Ni, Zn)⁶ and Ba₃NiSb₂O₉²⁵ have been previously reported from refinements of neutron powder diffraction data. The structures of Ba₃MgSb₂O₉ and Ba₃ZnSb₂O₉ were refined using time-of-flight neutron powder diffraction data. Rietveld refinements were performed using the lattice parameters refined from X-ray powder diffraction data and the fractional coordinates corresponding to those of Ba₃NiSb₂O₉.²⁵ The neutron powder diffraction pattern and refined model for Ba₃ZnSb₂O₉ are presented in Figure 1. Ba₃MgSb₂O₉ and $Ba_3ZnSb_2O_9$ are both well described by the 6H structure type. Structural parameters, bond lengths, and refinement details are shown in Table 1. The crystal structure of Ba₃MgSb₂O₉ is presented in Figure 2 and is described as a 6-layer structure with mixed hexagonal and cubic stacking of [BaO₃] layers, in contrast to the cubic stacking of perovskites. The facesharing $[Sb_2O_9]$ groups are linked through a single $[M^{2+}O_6]$ octahedra. Face-sharing creates cation-cation $(Sb^{5+}-Sb^{5+})$ repulsion, which is evident in the Sb-O bond distances shown in Table 1.

Figure 2. Crystal structure of $Ba_3MgSb_2O_9$. Atom types are shown in the inset and the unit cell is outlined. SbO_6 octahedra are lightly shaded and MgO_6 octahedra are darkly shaded.

Bonding differences between the Nb⁵⁺ (d^0) and Sb⁵⁺ (d^{10}) play a role in stabilizing the 6H- structure as an alternative to the perovskite structure. $M^{5+}-O-M^{5+}$ bond angles are approximately 180° for $Ba_3MNb_2O_9$ (M = Mg, Ni, Zn) perovskites, whereas the $M^{5+}-O-M^{5+}$ bond angle is approximately 90° for $Ba_3MSb_2O_9$ (M = Mg, Ni, Zn). The empty d-orbitals on Nb5+ and second-order Jahn-Teller distortion assist the out of center distortion and π bonding with the 2p orbitals on oxygen. Stronger covalent bonding of an anion is present if different orbitals are used in the formation of each cation-anion bond, and this effect is reduced if the cations have empty d-orbitals available for π bonding. Stabilization of d¹⁰ Sb⁵⁺ with face-sharing [Sb₂O₉] units and Sb-O-Sb bond angles at approximately 90° optimizes σ bonding with two different O 2p orbitals. Because Sb⁵⁺ has a filled d shell, no π bonding is possible and the formation of 180° Sb⁵⁺-O-Sb⁵⁺ bond linkages are inhibited compared to Nb5+-O-Nb5+. In addition, Sr₃NiSb₂O₉ has Sb⁵⁺ in a corner-sharing octahedron of the perovskite with an octahedral tilting distortion that decreases the M–O–M bond angles from 180°.²⁶ Although it is rare, it is noted that 180° Sb⁵⁺-O-Sb⁵⁺ bonds are found in the perovskites Ba₄LiSb₃O₁₂ and Ba₄NaSb₃O₁₂.²⁷ Stabilization of face-sharing octahedra does not appear to occur solely because of differences in bonding preferences. Six coordinate Sb⁵⁺ adopts both face-sharing coordination environments with $\approx 90^{\circ}$ Sb⁵⁺-O-Sb⁵⁺ bond angles and also cornersharing environments with $\approx 180^{\circ}$ Sb⁵⁺-O-Sb⁵⁺ bond angles. The stability of compounds containing Sb⁵⁺-O-Sb⁵⁺ bonds has been qualitatively described in terms of relative ionic sizes, Madelung energy, polarizability of A-cation cores, and covalent contribution to M-O bonds.^{28,29} The contribution from each of these factors subtly controls the crystal chemistry in the systems of this study.

⁽²⁶⁾ James, M.; Attfield, J. P.; Rodriguez-Carvajal, J. J. Phys. Chem. Solids 1995, 56, 1331–1337.

⁽²⁷⁾ Alonso, J. A.; Mzayek, E.; Rasines, I. Mater. Res. Bull. 1987, 22, 69-74.

Table 2. Chemical Formula, Tolerance Factors, Space Groups, M-O-M Bond Angles, and Structure Types for Select Compounds

	tolerance factor	space group	M-O-M(5+) bond angle	structure type
BaTiO ₃	1.071	P6 ₃ /mmc	84.97(1)	6H ⁴⁰
Ba ₃ NiSb ₂ O ₉	1.057	$P6_3/mmc$	87.01(1)	6H ²⁵
Ba ₃ MgSb ₂ O ₉	1.052	$P6_3/mmc$	87.58(14)	6H
Ba ₃ ZnSb ₂ O ₉	1.048	$P6_3/mmc$	86.98(7)	6H
Ba ₃ NiNb ₂ O ₉	1.043	$P\overline{3}m1$	175.91(13)	perovskite ⁶
Ba ₃ MgNb ₂ O ₉	1.038	$P\overline{3}m1$	175.23(9)	perovskite ⁶
Ba ₃ ZnNb ₂ O ₉	1.034	$P\overline{3}m1$	176.11(1)	perovskite ⁶
Sr_2MnSbO_6	1.000	I4/m	166.3(1)	perovskite18
Sr ₃ NiSb ₂ O ₉	0.996	Pnnm	168.6(1)	perovskite26
Ca ₂ MnSbO ₆	0.964	Pnma	151.2(2), 151.9(1)	perovskite18

Table 3. Bond Valence Sum (vu) and Global Instability Index (GII) Values for $Ba_3MM'_2O_9$ (M = Mg, Ni, Zn; M' = Nb, Sb)^a

	Ba ₃ MgNb ₂ O ₉	Ba ₃ NiNb ₂ O ₉	Ba ₃ ZnNb ₂ O ₉
Ba1	2.41	2.48	2.38
Ba2	2.31	2.36	2.28
M^{2+}	1.96	1.84	1.98
M^{5+}	4.66	4.66	4.65
O1	2.00	2.05	2.01
O2	2.05	2.04	2.03
GII	0.211	0.239	0.204
	Ba ₃ MgSb ₂ O ₉	Ba ₃ NiSb ₂ O ₉	Ba ₃ ZnSb ₂ O ₉
Ba1	Ba ₃ MgSb ₂ O ₉ 2.06	Ba ₃ NiSb ₂ O ₉ 2.12	Ba ₃ ZnSb ₂ O ₉ 2.05
Ba1 Ba2	Ba ₃ MgSb ₂ O ₉ 2.06 1.96	Ba ₃ NiSb ₂ O ₉ 2.12 2.06	Ba ₃ ZnSb ₂ O ₉ 2.05 1.92
Ba1 Ba2 M ²⁺	Ba ₃ MgSb ₂ O ₉ 2.06 1.96 2.01	Ba ₃ NiSb ₂ O ₉ 2.12 2.06 1.92	Ba ₃ ZnSb ₂ O ₉ 2.05 1.92 2.03
Ba1 Ba2 M ²⁺ M ⁵⁺	Ba ₃ MgSb ₂ O ₉ 2.06 1.96 2.01 5.34	Ba ₃ NiSb ₂ O ₉ 2.12 2.06 1.92 5.30	Ba ₃ ZnSb ₂ O ₉ 2.05 1.92 2.03 5.28
Ba1 Ba2 M ²⁺ M ⁵⁺ O1	Ba ₃ MgSb ₂ O ₉ 2.06 1.96 2.01 5.34 2.10	Ba ₃ NiSb ₂ O ₉ 2.12 2.06 1.92 5.30 2.12	Ba ₃ ZnSb ₂ O ₉ 2.05 1.92 2.03 5.28 2.10
Ba1 Ba2 M ²⁺ M ⁵⁺ O1 O2	Ba ₃ MgSb ₂ O ₉ 2.06 1.96 2.01 5.34 2.10 2.06	Ba ₃ NiSb ₂ O ₉ 2.12 2.06 1.92 5.30 2.12 2.04	Ba ₃ ZnSb ₂ O ₉ 2.05 1.92 2.03 5.28 2.10 2.03

^a Crystal structures were refined using neutron powder diffraction data.

Influence of the slight ionic radii³⁰ differences between octahedrally coordinated Sb⁵⁺ (0.74 Å) and Nb⁵⁺ (0.78 Å) was considered by calculating the AMO₃ perovskite tolerance factor, $t = (R_A + R_O)/\sqrt{2(R_M + R_O)}$, which describes the fit of the A-site cation within the corner-sharing network.³¹ The ideal perovskite occurs near t = 1, and octahedral tilting distortions typically occur for t < 1. Table 2 shows tolerance factors, space groups, M-O-M bond angles, and structure type for selected compositions. As the tolerance factor increases, the perovskite structure type becomes less favored relative to the 6H type. The 6H structure type is able to accommodate the relatively large A-site ion by an expansion along the *c*-axis with minimal perturbation of the local octahedral coordination environment of the M-site ions, whereas increased bond strain occurs from compression of the A-O bonds and lengthening of the M-O bonds from ideal lengths occurs for $t \ge 1$ in perovskites. Bond valence sums (BVS), given in valence units (vu), of the ions from the refined crystal structures are shown in Table 3. The perovskites exhibit BVS for Ba that are significantly larger, whereas the BVS for Ba in the 6H-type crystal structures are smaller and closer to the formal oxidation state. The oversized Ba ions in the perovskites cause a stretching of the octahedral, which is evident in the smaller than ideal BVS of the M-site cations. The freedom for expansion along

Figure 3. Portion of the X-ray powder diffraction pattern for Ba₃Mg-Nb_{2-*x*}Sb_{*x*}O₉ ($0 \le x \le 2$) demonstrating the progression from a perovskite ($0 \le x \le 0.5$), through a two-phase mixture (x = 1), to a 6H phase ($x \ge 1.875$).

the *c*-axis in the 6H structure is evident in the M-site cations having BVS nearer the formal values and a slight compression indicated for [SbO₆]. In both series of compounds, the BVS of O remains near the ideal formal value. The global instability index (GII)³² is relatively large in the perovskites, and is near the value which has been described as the threshold of stability; i.e., values greater than 0.2 vu often lead to instability.³³ Partial substitution of the slightly smaller Sb⁵⁺ for Nb⁵⁺ increases tolerance factors and the GII because of the constraints of the corner-sharing connectivity in the perovskite. Crystallization in the 6H or perovskite systems is influenced by the additional bond strain present with increased M = Sb⁵⁺ substitution. Similarly, the bonding preference differences reinforce the 6H structure for the Sb⁵⁺ end member and perovskite structure for M = Nb⁵⁺.

X-ray powder diffraction analysis was performed to establish the phases present. Figure 3 shows the X-ray diffraction pattern of $Ba_3MNb_{2-r}Sb_rO_9$ (M = Mg) for different compositions, which is representative of that observed in the analogous M = Ni, Zn compounds. Perovskite solid solution ranges are $0 < x < \approx 0.75$ for M = Mg and $0 < x < \approx 0.45$ for M = Ni, Zn in Ba₃MNb_{2-x}Sb_xO₉. Mixed perovskite and 6H-type phase regions are observed for $\approx 0.75 < x < \approx 1.5$ for M = Mg and $\approx 0.45 < x < \approx 1.5$ for M = Ni, Zn in $Ba_3MNb_{2-x}Sb_xO_9$. 6H-type solid solution ranges are observed for $\approx 1.5 < x < 2$ for M = Mg, Ni, and Zn in Ba₃MNb_{2-x}Sb_xO₉. Observation of a perovskite solidsolution, two phase region, and 6H-type ranges are consistent with the subtle factors controlling the transition from perovskite to 6H-type. Transition to a perovskite from a 6H- structure was reported in the high-pressure and hightemperature synthesis of Ba₃ZnSb₂O₉.³⁴ Stability difference between the two structure types is relatively small.

Cation ordering in perovskites results from differences in charge, ionic size, and bonding. Long-range cation order in the 2:1 ordered perovskites may be estimated by the c/a

⁽²⁸⁾ Goodenough, J. B.; Kafalas, J. A. J. Solid State Chem. **1973**, 6, 493–501.

⁽²⁹⁾ Mizoguchi, H.; Woodward, P. M.; Byeon, S. H.; Parise, J. B. J. Am. Chem. Soc. 2004, 126, 3175–3184.

⁽³⁰⁾ Shannon, R. D. Acta Crystallogr., Sect. A 1976, 32, 751-767.

⁽³¹⁾ Goldschmidt, V. M. Naturwissenschaften 1926, 14, 477.

⁽³²⁾ Salinas-Sanchez, A.; Garcia-Munoz, J. L.; Rodriguez-Carvajal, J.; Saez-Puche, R.; Martinez, J. L. J. Solid State Chem. 1992, 100, 201–211.

⁽³³⁾ Rao, G. H.; Barner, K.; Brown, I. D. J. Phys.: Condens. Matter 1998, 10, L757–L763.

⁽³⁴⁾ Battle, P. D.; Jones, C. W.; Lightfoot, P. J. Solid State Chem. 1990, 85, 144–150.

Figure 4. Lattice parameters are shown for $Ba_3MgNb_{2-x}Sb_xO_9$ in the perovskite solid-solution range. The c/a ratio is shown in the inset. Symbols: open squares for the *c*-axis and open circles for the *a*-axis.

lattice parameter ratio, which becomes larger than $\sqrt{(3/2)}$ with increased cation order. The c/a ratio has been found to directly correlate with the long-range order parameter.³⁵ A reduced c/a ratio is an indication that long-range cation order decreases with increased Sb content in the Ba₃MgNb_{2-x}Sb_xO₉ series shown in Figure 4. The tendency for Nb⁵⁺ to undergo a larger out of center distortion than Sb⁵⁺ may also play a role in the smaller c/a lattice parameter ratio; therefore, preferential site occupation of Sb⁵⁺ in the 6H phase and Nb⁵⁺ in the perovskite phase cannot be ruled out.

Dielectric Properties. Dielectric constants obtained from measurements at microwave frequencies are shown in Table 4. In the perovskite solid solution range, increased substitution of Sb corresponds to a smaller dielectric constant. The two-phase region flattens out, with minor changes in ϵ with composition. End member and 6H- solid solution range materials were not investigated in detail because of the smaller dielectric constant and difficulty in obtaining wellsintered materials for the measurement. Figure 5 shows $\tau_{\rm f}$ as a function of x value in $Ba_3MNb_{2-x}Sb_xO_9$ (M = Mg, Ni, Zn). Increasing substitution of Sb in the perovskite solid solution range resulted in a less positive $\tau_{\rm f}$. Compositional tuning of $\tau_{\rm f}$ through zero, forming a temperature-compensated material, is demonstrated in the perovskite solid solution range for $Ba_3MNb_{2-x}Sb_xO_9$ (M = Mg, Zn), whereas the negative τ_f of Ba₃NiNb_{2-x}Sb_xO₉ becomes increasingly negative in the perovskite solid solution range. A trendline is shown for $Ba_3ZnNb_{2-x}Sb_xO_9$, where a temperature-compensated material is expected to form in a compound with $x \approx$ 0.33.

General trends observed with $\tau_{\rm f}$ and ϵ are consistent with the observations in a wide variety of materials in that as the ϵ increases, the temperature dependence of the dielectric constant (τ_{ϵ}) tends to become more negative.³⁶ Tunability of $\tau_{\rm f}$ in perovskites and related compounds has been attributed to two mechanisms: (1) dilution of the average ionic polarizability and (2) onset of an octahedral tilt transition above room temperature.^{10,37,38} Tolerance factors

Lufaso et al.

Table 4. Dielectric Properties of $Ba_3MNb_{2-x}Sb_xO_9$ (M = Mg, Ni, Zn)

	phase	$\epsilon_{ m r}$	$ au_{ m f}({ m ppm}~{ m K}^{-1})$	Qf(f, GHz)			
$x, \mathbf{M} = \mathbf{M}\mathbf{g}$							
2	6H	21.5	-5.5	23 020 (5.1)			
1.875	6H	15.0	2.8	84 100 (7.2)			
1	6H,P	16.3	-4.1	33 410 (6.7)			
0.5	Р	14.7	4.8	81 310 (6.3)			
0.25	Р	25	6.4	96 290 (5.6)			
0.125	Р	28.5	14	101 300 (4.7)			
0^b	Р	32	25	78 200			
x. M = Ni							
2	6H	14	-4.7	41 840 (7.8)			
1.875	6H	14.8	-10	38 380 (6.8)			
1	6H,P	20.4	-18	43 880 (6.3)			
0.75	6H,P	18.7	-26.6	16 780 (6.0)			
0.5	6H,P	20.2	-28.5	16 780 (5.7)			
0.25	Р	27	-20.6	27 370 (5.0)			
0.1	Р	26.5	-13.1	31 110 (5.0)			
0^b	Р	31	-10	51 000			
$x, \mathbf{M} = \mathbf{Z}\mathbf{n}$							
2	6H	13		1550 (7.7)			
1.875	6H	12.5		2290 (7.6)			
0.75	6H,P	30.9	-11.9	26 400 (5.5)			
0.5	6H,P	30.9	-11.2	35 620 (5.3)			
0.375	Р	33.2	-2.8	44 940 (5.1)			
0.25	Р	35.8	6.2	35 090 (5.4)			
0.125	Р	35.7	13.9	56 980 (4.8)			
0^b	Р	40.3	26	65 000			

^{*a*} The measurement frequency is given in parentheses. Phase abbreviations are 6H for 6H–BaTiO₃-type, P for 2:1 ordered perovskite, and 6H,P for mixed 6H–BaTiO₃-type and 2:1 ordered perovskite phase. ^{*b*} Average literature dielectric properties.⁶

Figure 5. Temperature coefficient of the resonant frequency (τ_f) as a function of *x* value in Ba₃MNb_{2-x}Sb_xO₉ (M = Mg, Ni, Zn). Symbols: triangles, M = Mg; diamonds, M = Ni; and filled circles, M = Zn.

greater than unity in the compounds of this study rule out the possibility for an octahedral tilting transition; therefore, the primary mechanism of τ_f tunability is attributed to a reduction of the average ionic polarizability. The less positive τ_f with increased Sb content shown in Figure 5 is consistent with modification of τ_f via dilution of the dielectric constant as shown in Table 4.

Qf as a function of x value in Ba₃MNb_{2-x}Sb_xO₉ (M = Mg, Ni, Zn) is shown in Figure 6. A trend is found in which

(37) Reaney, I. M.; Wise, P.; Ubic, R.; Breeze, J.; Alford, N. M.; Iddles, D.; Cannell, D.; Price, T. *Philos. Magn. A* 2001, *81*, 501–510.

⁽³⁵⁾ Kim, I. T.; Oh, T. S.; Kim, Y. H. J. Mater. Sci. Lett. 1993, 12, 182–184.
(36) Harrop, P. J. J. Mater. Sci. 1969, 4, 370–374.

⁽³⁸⁾ Wise, P. L.; Reaney, I. M.; Lee, W. E.; Price, T. J.; Iddles, D. M.; Cannell, D. S. *J. Eur. Ceram. Soc.* **2001**, *21*, 2629–2632.

Figure 6. *Qf* as a function of *x* value in Ba₃MNb_{2-x}Sb_xO₉ (M = Mg, Ni, Zn). Symbols: triangles, M = Mg; diamonds, M = Ni; and filled circles, M = Zn.

Qf tends to decrease with increased Sb substitution. The compound with M = Ni has the smallest Qf values, M = Zn is intermediate, and M = Mg has the largest value. The M-site cation order has been attributed to play a role in determining Qf, with a higher degree of order displaying a larger Qf.³⁹ Smaller c/a lattice parameter ratios from X-ray diffraction data shown in Figure 3 indicate decreased cation order and the reduced Qf are consistent with previously observed trends in the dielectric properties of perovskites. Table 4 contains the ϵ_r , τ_f , and Qf value for compounds in this study measured at microwave frequencies. These Qf values are comparable with those of known perovskite materials, and allow the formation of a Ta-free temperature-compensated material.

Conclusions

The crystal chemistry and microwave dielectric properties of Ba₃MNb_{2-*x*}Sb_{*x*}O₉ (M = Mg, Zn, Ni) were investigated using X-ray powder diffraction and microwave dielectric property measurements. Time-of-flight neutron powder diffraction data were collected and Rietveld refinements were performed for Ba₃ZnSb₂O₉ and Ba₃MgSb₂O₉ to obtain accurate crystal structures and bond lengths. X-ray diffraction was used to obtain the composition of the phases as a function of *x* in Ba₃MNb_{2-*x*}Sb_{*x*}O₉ (M = Mg, Ni, Zn). Differences in ionic size and bonding preferences of Nb⁵⁺ (d⁰) and Sb⁵⁺ (d¹⁰) play important roles in controlling the observed crystal chemistry. Ionic size differences between Sb⁵⁺ and Nb⁵⁺ appear to drive the formation of a perovskite solid solution, a two-phase mixture, and a 6H solid solution with increasing Sb⁵⁺ substitution. With larger *x*-values, the tolerance factors decrease and bond strain increases in the perovskite solid solution region. A bond valence sum analysis illustrates that the large amount of bond strain present in the 2:1 perovskite compounds is relieved in the 6H structure type. The 6H structure type allows lattice expansion, particularly along the *c*-axis, to accommodate the relatively large Ba²⁺ and significantly reduce bond strain. Simultaneously, the bonding preferences for Sb⁵⁺ are optimized for σ bonding with 2 different O 2p orbitals in the face-sharing octahedral coordination.

Compounds in the $Ba_3MNb_{2-x}Sb_xO_9$ (M = Mg, Ni, Zn) series enable tuning of the crystal chemistry, ϵ , $\tau_{\rm f}$, and *Qf.* Substitution of the appropriate level of Sb^{5+} into $Ba_3MNb_{2-x}Sb_xO_9$ (M = Mg, Ni, Zn) enables formation of perovskite solid solutions with tunable $\tau_{\rm f}$. Temperaturecompensated compositions occur for the M = Zn, Mg series. Both Ba₃MgNb_{1.75}Sb_{0.25}O₉ ($\epsilon > 25$, $\tau_{\rm f} \approx 6$ ppm K⁻¹, and $Qf > 96\ 000\ \text{GHz}$) and $\text{Ba}_3\text{ZnNb}_{1.625}\text{Sb}_{0.375}\text{O}_9$ ($\epsilon > 33$, $\tau_f \approx$ -3 ppm K⁻¹, and Qf > 44 900 GHz) display useful dielectric properties with lower processing temperatures and potentially lower production costs compared to tantalum-containing perovskite materials. Clearly, further processing studies would be beneficial to obtain optimal conditions, i.e., sintering duration, temperature, heating and cooling rates, and atmosphere for high-density ceramics with improved dielectric properties (i.e., larger ϵ and *Of*). The phases $Ba_3MM'_2O_9$ (M = Co, Mg, Ni, Zn; M' = Nb, Sb, Ta) provide a substantial opportunity to investigate subtle changes in crystal chemistry and properties, and may also provide materials with interesting and functional physical properties.

Acknowledgment. This work has benefited from use of the Los Alamos Neutron Science Center at the Los Alamos National Laboratory. This facility is funded by the U.S. Department of Energy under Contract W-7405-ENG-36. E.H. was supported by a summer undergraduate research fellowship at NIST, partially supported by the DMR, NSF. M.W.L. thanks the National Research Council for postdoctoral fellowship support at NIST.

Supporting Information Available: Crystallographic information files (CIF) for Ba₃ZnSb₂O₉ and Ba₃MgSb₂O₉. Table containing additional crystallographic refinement details and thermal parameters (pdf). This material is available free of charge via the Internet at http://pubs.acs.org.

CM050631Y

⁽³⁹⁾ Davies, P. K.; Tong, J. Z.; Negas, T. J. Am. Ceram. Soc. 1997, 80, 1727–1740.

⁽⁴⁰⁾ Kwei, G. H.; Lawson, A. C.; Billinge, S. J. L.; Cheong, S. W. J. Phys. Chem. 1993, 97, 2368–2377.