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Abstract

First principles phase diagram calculations were performed for the system NaCl-KCl. Planewave

pseudopotential calculations of formation energies were used as a basis for fitting cluster expansion

Hamiltonians, both with- and without an approximation for the excess vibrational entropy (SV IB).

Including SV IB dramatically improves the agreement between calculated and experimental phase

diagrams: experimentally, the consolute point is {XC = 0.348, TC = 765K}Exp; without SV IB, it

is {XC = 0.46, TC ≈ 1630K}Calc; with SV IB, it is {XC = 0.43, TC ≈ 930K}Calc.

Key words: NaCl-KCl; First Principles; Phase diagram calculation; Excess vibrational entropy;

insulator; ionic system.
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I. INTRODUCTION

In roughly the last decade, there have been many theoretical and experimental investiga-

tions of the effects of excess vibrational entropy, SV IB, on phase stabilities of intermetallics

and alloys: e.g. Garbulsky and Ceder (1994) and (1996); Silverman et al. (1995a, 1995b);

Tepesch et al. (1996); van de Walle et al. (1998); Ozolins et al. (1998); Ravelo et al. (1998);

van de Walle and Ceder (2000); Asta and Ozolins (2001); Wolverton and Ozolins (2001);

van de Walle and Ceder (2002a); and Wu et al. (2003); Anthony et al. (1993) and (1994);

Fultz et al. (1995a) and (1995b); Nagel et al. (1997); Frase et al. (1998); Bogdanoff et

al. (1999); Robertson et al. (1999); Manley et al. (2002); and Delaire et al. (2004). For

a recent review, see van de Walle and Ceder (2002a) which tabulates 19 systems that have

been modeled theoretically and 16 that have been studied experimentally.

The vast majority of studies focus on the stabilities of intermetallic compounds, and

publications on ionic insulating systems are limited to one theoretical study of the MgO-CaO

system (Tepesch et al., 1996). To further investigate vibrational effects in ionic insulating

systems, a first-principles phase diagram (FPPD) calculation was performed for the NaCl-

KCl quasibinary system, which included the effects of both configurational and vibrational

disorder. The FPPD computational approach allows a direct assessment of the effects of

lattice vibrations on phase stability by comparing the phase diagrams that were calculated

with and without the inclusion of vibrational effects.

This work makes two main contributions: first, because the NaCl-KCl phase diagram

is well characterized experimentally (Nacken, 1918; Barrett and Wallace, 1954; Bunk and

Tichelaar, 1953 and Walker et al. 2005), and well fit to regular-type solution models (Thomp-

son and Waldbaum 1969 and Walker et al., 2005) it is an additional benchmark for the

accuracy of the recently introduced ”bond-length-dependent transferable force constants”

approach for calculating lattice dynamics (van de Walle and Ceder (2002a), Wu et al., 2003);

second, NaCl-KCl is an ionic system in which the effects of lattice vibrations are predicted

to be exceptionally large, e.g. when vibrational entropy SV IB is included, we find that the
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calculated consolute temperature, TC , is reduced by ≈ 54% according to the formula:

%∆TC = 100
2(TC − T V IB

C )

(TC + T V IB
C )

(1.1)

where T V IB
C and TC are values for TC that were calculated with and without SV IB, respec-

tively. This is in sharp contrast with previous results of Tepesch et al. (1996), who studied

the isostructural MgO-CaO system, and Silverman et al. (1995a, 1995b) who studied the

semiconductor, miscibility-gap system, GaP-InP: Tepesch et al. (1996) report a reduction

in TC of less than 10% while Silverman et al. (1995a, 1995b) report %∆TC ≈ 3% for

GaP-InP.

II. METHODOLOGY

A. Total Energy Calculations

Formation energies, ∆Ef (see Fig. 1) were calculated for NaCl, KCl, and many

NamKnCl(m+n) supercells. All calculations were performed with the Vienna ab initio sim-

ulation program (VASP; Kresse et al, 1993) using ultrasoft Vanderbilt type plane-wave

pseudopotentials (Vanderbilt 1990) with the generalized gradient approximation (GGA)

for exchange and correlation energies. Electronic degrees of freedom were optimized with

a conjugate gradient algorithm, and both cell constant and ionic positions were fully re-

laxed. Valence electron configurations for the pseudopotentials are: Na 2p63s1; K 3p64s1;

Cl 3s23p5. Total energy calculations were converged with respect to k-point meshes, and an

energy cutoff of 400 eV was used, in the ”high precision” option which guarantees that abso-

lute energies are converged to within a few meV (a few tenths of a kJ/mol of exchangeable

cations; Na+ or K+).

B. Cluster Expansion construction

The cluster expansion (CE; Sanchez et al., 1984), is a compact representation of the alloy’s

configurational total energy. In the quasibinary NaCl-KCl system, the alloy configuration is

described by pseudospin occupation variables σi, which take values σi = −1 when site-i is

occupied by Na+ and σi = +1 when site-i is occupied by K+.
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The CE parameterizes the configurational energy, per exchangeable cation, as a polyno-

mial in pseudospin occupation variables:

E(σ) =
∑

`

m`J`

〈∏
i∈`′

σi

〉
(2.1)

where the cluster ` is defined as a set of lattice sites. The sum is taken over all clusters

` that are not symmetrically equivalent in the parent structure space group, and the average

is taken over all clusters `′ that are symmetrically equivalent to `. Coefficients J` are called

effective cluster interactions (ECI), and the multiplicity of a cluster, m`, is the number

of symmetrically equivalent clusters, divided by the number of cation sites. The ECI are

obtained by fitting a set of FP calculated structure energies, {EStr}. The resulting CE can

be improved as necessary by increasing the number of clusters ` and/or the number of

EStr used in the fit.

Fitting was performed with the Alloy Theoretic Automated Toolkit (ATAT) (van de

Walle, Asta and Ceder, 2002a; van de Walle and Ceder, 2002b; van de Walle and Asta, 2002)

which automates most of the tasks associated with the construction of a CE Hamiltonian.

A complete description of the algorithms underlying the code can be found in (van de Walle

and Ceder, 2002b). The most important steps are: 1) Selecting which FP structural energies

to calculate, which is done in a way that minimizes the statistical variance of the estimated

ECI; 2) Automatically selecting which clusters to include in the expansion by minimizing

the cross-validation score, CV:

(CV )2 =
1

N

N∑
Str=1

(EStr − ÊStr)
2 (2.2)

where E1, . . . EN denote the structural energies calculated from FP and ÊStr is the energy

of structure Str predicted from a CE that was fit to the remaining N − 1 energies. This

criterion ensures that the chosen set of clusters maximizes the predictive power of the CE

for any structure, whether or not it is included in the fit. This is an improvement relative

to the standard mean square error criterion which only minimizes the error for structures

that are included in the fit. The optimal number of clusters was found to be (10 pairs, nine

triplets one 4-body; Table I), corresponding to a CV score of 0.068 eV.
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In addition to the CV-criterion, ATAT also ensures that ground states predicted from the

CE agree with the minimum energy structures for each composition, as calculated from FP.

The code proceeds by iterative refinement, gradually increasing the number of clusters and

the number of structures to provide the best possible fit based on the set {EStr} calculated

so far.

C. Lattice Dynamics

The contribution of lattice vibrations to the alloy free energy were calculated using bond-

length-dependent transferable force constants (van de Walle and Ceder, 2002a; Wu, Ceder

and van de Walle, 2003), as implemented in the ATAT package. This method has the ad-

vantage of avoiding the computationally demanding task of performing full first-principles

lattice dynamic analyses for each supercell configuration that is used to fit the cluster expan-

sion. Instead, a much smaller database of first-principles calculations is typically sufficient

for a FPPD calculation.

This method proceeds by parameterizing the bond-length-dependence of the stiffness for

each type of nearest-neighbor chemical bond. This is achieved by calculating, ab initio, the

reaction forces from various imposed atomic displacements away from their equilibrium po-

sitions, which is done only for a few high-symmetry ordered supercells over a range of lattice

parameters. In the present work, only the two end member structures were considered, for

3 or 4 values of the lattice parameter, ranging from about 2.8 Å to about 3.2 Å (roughly

corresponding to the equilibrium lattice parameters of NaCl and KCl, respectively). Due to

the high-symmetry of these structures, two symmetrically distinct displacements are suffi-

cient to determine all force constants. The parameters defining the bond-length-dependent

transferable force constants are then obtained from a polynomial fit of the calculated forces

as a function of bond length. As shown in Figure 2, a linear relationship was found to

provide a reliable description of interactions in this system.

Once the bond-length-dependence of bond-stiffness is known, the nearest-neighbor inter-

atomic force constants for any supercell configuration in the cluster expansion fit can be

predicted from the relaxed bond lengths that are obtained from the VASP structure energy

minimizations. A standard lattice dynamics based on a nearest-neighbor Born-von Kármán

model (e.g. van de Walle and Ceder, 2002a; Maradudin, Montroll and Weiss, 1971) provides
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the phonon density of states and, consequently, any thermodynamic property of interest,

such as the vibrational contribution to the free energy for each supercell configuration.

Configuration dependence of the vibrational free energy is parametrized with a cluster

expansion, in a similar manner as the energy at absolute zero, except that the resulting

effective cluster interactions are now temperature-dependent. The alloy’s thermodynamic

properties are then calculated via conventional Monte-Carlo simulations of a lattice gas

model using the temperature-dependent cluster expansion Hamiltonian.

III. RESULTS

A. Formation Energies

Calculated formation energies, ∆Ef , for 45 NamKnCl(m+n) supercells are plotted in Fig.

1. Values for ∆Ef are normalized per mol of exchangeable Na+ and K+ ions:

∆Ef = (ES −mENaCl − nEKCl)/(m + n) (3.1)

Where ES is the total energy of the supercell; ENaCl is the energy/mol of NaCl; EKCl is

the energy/mol of KCl.

All supercell energies are positive which indicates a miscibility gap system.

B. Cell Volume

The VASP GGA results for end member cell volumes are listed in Table I. Differences

between experimental and calculated values are less than 6%.

Figure 3 is a plot of normalized excess volumes as percentages: %∆V = 100(V −

VV egard)/VV egard, where VV egard = (1−X)VNaCl +(X)VKCl. Experimental data from Barrett

and Wallace (1954) �, are all greater than zero, with all ∆VEXP ≤ 0.4%. The large •-curve

is for VASP-calculated supercells which, with only one exception, have %∆V = ±2%. A

T → ∞ calculation of %∆V (X) was performed, small-• curve, and it does not deviate

significantly from Vegard’s law. The �-curve was calculated at 1100K which corresponds

to the experimental value of 630C = 903K, in T/TC units. Because of Na/K short-range

clustering, this curve is in somewhat better agreement with experiment, but there is still a
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significant discrepancy.

The results of FPPD calculations that were performed with (solid curve) and without

(dashed curve) SV IB are compared with the experimental data of Nacken (1918) Bunk and

Tichelaar (1953) and Barrett and Wallace (1954). Including SV IB clearly leads to dramatic

improvement in the agreement between experiment and theory, but even with SV IB included

TCalc
C ≈ 1.18TEXP

C , and both with and without SV IB, XCalc
C ≈ 0.43 is significantly greater

than XEXP
C = 0.348, Thompson and Waldbaum (1969). The experimental diagram exhibits

significantly greater asymmetry than the calculated diagrams. Because the effective Hamil-

tonian that included SV IB only has T-dependence in pair interactions, it naturally yields

a more symmetric phase diagram; i.e. the T-dependent part of the Hamiltonian is strictly

symmetric, so adding it to the T-independent part reduces the asymmetry. In light of these

observations, it should be possible to further improve on the accuracy of our calculations by

including T-dependent 3-body interactions, which will require considering a larger database

of structures in the fit of the cluster expansion.

IV. DISCUSSION

The bond-length-dependent transferable force constants approach includes a set of ap-

proximations that beg some motivation and justification. Force constants associated with

interactions ranging beyond nearest neighbors are typically not transferable from one struc-

ture to another, and therefore, are usually not included in this framework. Fortunately,

quantities that are expressed in terms of sums over all vibrational modes, such as the vi-

brational free energy, are typically well-described with short-range spring models, unlike

the phonon dispersion curves themselves (van de Walle and Ceder, 2002a ; Garbulsky and

Ceder, 1996). When, as here, the focus is on phase stability rather than an exact description

of phonon dispersion curves, this approximation is appropriate. It may be surprising that

neglecting the long-range electrostatic interactions would yield a good approximation for the

vibrational free energy, but because the Na+ and K+ ions have identical charges, purely

electrostatic contributions to the force constants are expected to be nearly configuration-

independent (apart from small shifts in atomic positions due to different ionic sizes). Most

errors arising from this simplification should therefore cancel out in calculations of free ener-

gies of formation. Also, it is well known that to properly model phonon dispersions near the
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gamma point of an ionic solid requires a special treatment of the interactions between the

induced dipoles and the associated isotropic electric field via Born effective charges (Resta

et al., 1993). While this effect is neglected in the present calculations, it is also known that

long wavelength phonons make relatively small contributions to a solid solution’s free energy

of formation (Garbulsky and Ceder, 1996).

As noted in van de Walle and Ceder (2002a) and references therein, SV IB is sometimes

significant and sometimes vanishingly small. For example, FP calculations for Ni3Al, van

de Walle et al. (1998), indicate that SV IB makes no significant contribution to the ordering

energy. Similarly, as noted in the introduction, the results of Tepesch et al. (1996) suggest

that it plays a very small role in MgO-CaO, a TC-reduction of less than 10%; and Silverman

et al. (1995a, 1995b) report a TC-reduction of only 3% in GaP-InP. In contrast, the NaCl-

KCl system is a case in which the effect of lattice vibrations is exceptionally large.

Three mechanisms that lead to significant SV IB contributions to the free energies of

solutions have been identified (Garbulsky and Ceder, 1994; Ackland, 1994; Althoff et al.,

(1997); van de Walle et al. (1998); Morgan et al. (2000); van de Walle and Ceder, 2002a)

and it is of interest to identify the mechanisms at work in the NaCl-KCl system.

The ”bond proportion” mechanism results from changes in an alloy’s state of order that

change the relative numbers of different types of chemical bonds. Because each bond has an

intrinsic stiffness, this results in a change in the overall stiffness of the alloy and, consequently,

a change in SV IB. In the lattice dynamics calculations presented here, however, only first-

nearest-neighbor force constants, for Na–Cl and K–Cl bonds are included, and the number

of Na–Cl and K–Cl bond is a function of composition only, regardless of cation ordering.

Therefore, the bond proportion mechanism cannot explain the results presented here.

The ”volume” mechanism is a more likely candidate because NaCl-KCl does exhibit a

positive excess volume of mixing, as seen in Fig. 3. SV IB increases with increasing volume,

which implies a positive entropy of mixing correlates with a positive excess volume of mixing,

and a reduction in TC . However, an excess volume of at most 0.2% (in our calculations)

corresponds to an increase of at most 0.02kB in the vibrational entropy, for plausible values of

the Grüneisen parameter. Such a value is too small to entirely explain the large vibrational

effect observed here.

The ”size mismatch” mechanism is another plausible cause for the large SV IB in NaCl-

KCl. When ions of different size, (Na+ K+) mix in a crystalline solution, smaller Na+ ions
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are under tension, and larger K+ are under compression, which shifts the vibrational den-

sity of states. The ionic radius ratios, Na+/K+=0.74 and Mg+2/Ca+2=0.72 (Shannon and

Prewitt, 1969; Stobolov and Cohen, 2002) are very similar so it seems surprising that vibra-

tional effects are large in NaCl-KCl and small in MgO-CaO, but size mismatch is only part

of the story. The effects of bond-length changes on bond-stiffnesses must also be taken into

account. Figure 5 compares the stiffnesses of bonds in NaCl-KCl with those in MgO-CaO

as functions of composition. The composition-dependences of bond-stiffnesses are obtained

under a series of simplifying assumptions designed to isolate the root of the differences in

the magnitude of the vibrational effect:

1. The equilibrium volume is assumed linear in composition;

2. Atoms do not relax away from ideal crystallographic sites (so that volume uniquely

determines bond lengths);

3. Bond lengths uniquely determine bond-stiffnesses, as shown in Figure 2 for NaCl-KCl

(similar calculations were carried out for MgO-CaO but are not reported here for

conciseness);

4. Only the bond-stiffness along the stretching direction is considered.

In both systems, one type of chemical bond reaches zero stiffness for some composition. Of

course, this does not necessarily imply that the alloy is unstable at that point because the

bending force constants (omitted in the graph) contribute to stabilize the solid. Neverthe-

less, the presence of a vanishing (or negative) force constant along the stretching direction

indicates a relatively soft alloy with a large SV IB. As seen in Figure 5, the Na-Cl bond-

stiffness is positive in NaCl but goes through zero at XKCL ≈ 0.55, which indicates that soft

Na-Cl bonds in the disordered alloy will increase SV IB. In contrast, Mg-O bond-stiffness re-

mains positive over most of the concentration range, and only crosses zero at a composition

at which there are very few soft Mg-O bonds. Therefore, the disordered Mg1−XCaXO alloy

is not significantly softened by Mg-O bonds. This important distinction appears to be at

the root of the difference between the magnitude of vibrational effects in the NaCl-KCl and

the MgO-CaO systems.
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V. CONCLUSIONS

In the system NaCl-KCl, including SV IB in the FPPD calculation dramatically improves

the agreement between theory and experiment, but does not produce quantitative agreement

with respect to either TC or XC . Note, that the improvement which is obtained by including

SV IB in the NaCl-KCl FPPD calculation yields agreement with experiment that is similar to

that achieved for the systems CaCO3 −MgCO3 and CaCO3 −CdCO3, without including

SV IB, Burton and van de Walle (2003). Given the paucity of studies on ionic systems,

and that both this study, and Tepesch et al. (1996) were of simple NaCl-structure solid

solutions, it is premature to draw general conclusions about the benefits of including SV IB in

any particular FPPD calculation. In particular, results for solid solutions in more complex

mineral structures, e.g. Mg2SiO4−Ca2SiO4 or CaCO3−MgCO3, in which cation ordering

interacts with a more complex distribution of vibrational modes.
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TABLE I: Temperature Independent Effective Cluster Interactions in eV/mol.

Cluster Coordinates m(r,t) ECI

minus (0,0,0) Multiplicity eV/cation

Zero Cluster 1 0.061742

Point Cluster 1 -0.001249

(1/2,0,1/2) 6 -0.004344

(1,0,0) 3 0.007531

(1/2,1,1/2) 12 -0.002448

(1,0,1) 6 0.000384

(1/2,0,3/2) 12 0.000243

(1,1,1) 4 -0.000825

(1/2,3/2,1) 24 -0.000836

(2,0,0) 3 0.000559

(2,1/2,1/2) 12 -0.000493

(0,3/2,3/2) 6 -0.000371

(1/2,0,-1/2), (0,-1/2,-1/2) 8 0.000515

(1/2,0,-1/2), (1,0,0) 12 -0.002659

(1/2,-1/2,0), (1/2,-1,1/2) 24 -0.000289

(0,-1,0), (1/2,-1,1/2) 24 0.000237

(1,-1/2,-1/2), (1/2,-1,1/2) 8 -0.001466

(1,-1/2,1/2), (1/2,-1,1/2) 24 0.000995

(1/2,-1,-1/2), (1/2,-1,1/2) 24 0.000675

(1/2,0,-1/2), (1,0,-1) 6 0.002104

(1,0,0), (1,0,-1) 12 -0.001100

(1/2,-1/2,0), (1/2,0,-1/2), (0,-1/2,-1/2) 2 -0.000883
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TABLE II: End member molar volumes.

System V †
EXP VGGA

NaCl 44.852 46.2

KCl 62.262 66.1
† Volumes are in Å3/cation. Experimental values are from Barrett and Wallace (1954).
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FIGURE CAPTIONS

Figure 1) Comparison of 44 VASP (◦) calculated formation energies, ∆Ef , and the

cluster expansion fit (�).

Figure 2) Nearest neighbor bond-stiffnesses (against bond-stretching or bond-bending)

as functions of bond lengths. Diamonds and crosses indicate ab initio data points, and lines

are linear fits used in the calculations of the vibrational free energy.

Figure 3) Calculated percentages of excess volumes for NamKnCl(m+n) super-

cells, •; and experimental values calculated from data in Barrett and Wallace (1954).

VV egard = (1−X)VNaCl + (X)VKCl, where X = mol fraction KCl.

Figure 4) Comparison of the calculated phase diagrams with experimental data that

were tabulated in Thompson and Waldbaum (1969): the dashed curve is the phase diagram

that was calculated without SV IB; the solid curve was calculated with SV IB; � = data of

Nacken (1918); ♦ = data of Bunk and Tichelaar (1953); © =data of Barrett and Wallace

(1954). VV egard = (1−X)VNaCl + (X)VKCl, where X = mol fraction KCl.

Figure 5) Nearest neighbor bond-stiffnesses as functions of composition in the NaCl-KCl

(left) and MgO-CaO systems (right).
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FIG. 1: Comparison of 44 VASP (◦) calculated formation energies, ∆Ef , and the cluster expansion

fit (�).
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FIG. 2: Nearest neighbor bond-stiffnesses (against bond-stretching or bond-bending) as functions

of bond lengths. Diamonds and crosses indicate ab initio data points, and lines are linear fits used

in the calculations of the vibrational free energy.
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FIG. 3: Calculated percentages of excess volumes for NamKnCl(m+n) supercells, •; and experimen-

tal values calculated from data in Barrett and Wallace (1954). VV egard = (1−X)VNaCl +(X)VKCl,

where X = mol fraction KCl.
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FIG. 4: Comparison of the calculated phase diagrams with experimental data that were tabulated

in Thompson and Waldbaum (1969): the dashed curve is the phase diagram that was calculated

without SV IB; the solid curve was calculated with SV IB; � = data of Nacken (1918); ♦ = data of

Bunk and Tichelaar (1953); © =data of Barrett and Wallace (1954). VV egard = (1 −X)VNaCl +

(X)VKCl, where X = mol fraction KCl.
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FIG. 5: Nearest neighbor bond-stiffnesses as functions of composition in the NaCl-KCl (left) and

MgO-CaO systems (right).
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