
Generation of lattice Wannier functions via maximum localization

Eric Cockayne
Ceramics Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology,

Gaithersburg, Maryland 20899-8520, USA
sReceived 28 September 2004; published 21 March 2005d

A method is presented for generating approximate lattice Wannier functionssLWFsd for lattice dynamics
problems, using the dynamical matrix for a supercell as input. The lattice Wannier functions fit selected phonon
frequencies and eigenvectors exactly, are orthonormal, and are optimized to be maximally localized. The
method easily generalizes to the case where LWF centered on more than one distinct chemical species are
desired, as well as to the case of solid solutions. The method is successfully applied to a one-dimensional toy
model.
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I. INTRODUCTION

In many lattice dynamics problems, the temperature-
dependent physical properties are dominated by the low-
frequency phonons. For example, the low-temperature
cv~T3 heat capacity relationship in crystals arises from the
linear dispersion of acoustic phonons near zero wave vector.
A second example is the dielectric constant of dielectrics.
The phonon contribution to the dielectric tensor for a crystal
can be written in the form1,2
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where V is the unit cell volume,e0 the permittivity of free

space,vm the sangulard frequency of phononm, ZWm
! the elec-

tric polarization induced by phonon modem divided by the
phonon amplitude, andm0 an arbitrary mass that appears in

the definition ofZWm
! . In high-k materials, the dielectric con-

stant is typically dominated by the contribution of low-
frequency zone-center optical phonons. A third example is
ferroelectric phase transitions. Typically in ferroelectrics, the
ground state is largely determined by the freezing in of a
particular mode which isunstablein the paraelectric phase.3

To the extent that the anharmonic coupling of the instabilities
of the paraelectric phase to other modes is small, the thermo-
dynamics of the ferroelectric phase transition is determined
by the properties of the unstable modes.4 In all of the above
cases, the number of degrees of freedom of the lattice dy-
namics problem, as it affects the temperature-dependent
physical properties, can be greatly reduced by including only
those degrees of freedom corresponding to the relevant
phonons.5 Furthermore, as shown by Rabe and Waghmare,4

these degrees of freedom can be spanned by a localized “lat-
tice Wannier function”sLWFd basis set. The projection of the
original Hamiltonian onto the LWF yields the harmonic lat-
tice dynamical part of an “effective Hamiltonian” in a form
amenable to Monte Carlo and molecular dynamics simula-
tions.

Despite their usefulness, the generation of LWF to date
has been largely done on a case-by-case basis. Difficulties in
making the generation of LWFs more automatic include

symmetrization, localization,6 basis set completeness, and,
most importantly, the band-mixing or “entangled-band”
problem. Souza, Mazari, and Vanderbilt7 discussed the
entangled-band problem for the case of electronic Wannier
functions. Rabe and Caracas8 discussed the entangled-band
problem for lattice Wannier functions and concluded that a
practical solution is to impose LWF locality and to fit only
the relevantsi.e., low frequencyd parts of the phonon bandssd
exactly.

In many cases, materials with the most useful properties
are solid solutions. For example, temperature stability in di-
electrics for microwave resonators typically requires solid
solutions. Ultrahigh piezoelectric constants are found in solid
solutions of PbfMg,Zng1/3Nb2/3O3 with PbTiO3. For such
systems, LWFs designed for solid solutions would be useful
in elucidating the physics responsible for their properties.

In this paper, an automatic procedure is given for gener-
ating LWFs. As in the previous work by Rabe and Caracas,8

the key idea is to impose LWF locality, while fitting only the
relevant part of the phonon bands exactlysalthough it may
be desirable to include additional phononsd. Furthermore, by
eliminating symmetry as a consideration in generating the
LWF, and using the principle of maximum localization only,
the method easily generalizes to solid solutions.

II. METHOD

To generate the LWF of a solid, one begins with phonon
information. Although it is desirable in principle to know the
full phonon dispersionsincluding eigenvectorsd, this is not
usually possible in practice. Instead, the method presented
here gives an approximate LWF based on phonon results for
finite supercells. The required input is the eigenvalues and
eigenmodes of a supercell dynamical matrix, as might be
determined from first-principlessFPd calculations on the su-
percell, FP linear response calculations on a primitive cell, or
“interpolated” results for a larger supercell using FP inter-
atomic forces obtained for smallerssuperdcells.9

For a supercell withN atoms, leti label theDN atomic
coordinatesswhere D is the dimensionality of the system,
and, for simplicity, the positionr i and Cartesian direction
coordinateâi are folded into a single labeld and j the DN
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normal modes. Letv j be the j ’th dynamical matrix eigen-
value sproportional to the squared frequencyd andeji be the
i ’th component of thesnormalizedd dynamical matrix eigen-
vector for modej .

The LWF determination problem is to fit thev j andeji for
a chosen subset of modeshulj, hv jj, using a set of supercell-
periodic functionswki, wherewki is the displacement of co-
ordinate i in basis functionwk. The wk become the exact
lattice Wannier functions in the limit of an infinite supercell.

There is no absolute criteria for which modesul should be
included, but, for problems where the physics is dominated
by the low-frequency modes, it is necessary to include those
modes for whichn j is less than some cutoff value.sAs dis-
cussed in Sec. IV, it may be desirable to include some addi-
tional modes.d Note that the supercell approach, in effect,
replaces continuous phonon dispersion branches with infor-
mation on a discrete grid inq-space. In fact, it is this focus
on individual phonons rather than phonon branches that
makes it so easy to generalize to solid solutions, etc.

There are also no absolute criteria for the set of positions
hr kj on which to center thehwkj. In many cases, certain
atomic species displaced in certain Cartesian directions
dominate the eigenvectors of the included modes. In such
cases, it is natural to have the LWF set comprise each site
hr kj on which an atom of the given species sits and each
important direction of displacementâk.

To fit the selected eigenfunctions of the original matrix
exactly, one seekssunknownd coordinatesalk and wki such
thatokalkwki=eli . There is no unique solution forwki because
different choices ofhalkj lead to differentwki. To find the
“optimal” set of wki, a “localization criterion” is applied,
namely, to minimize

o
ki

wki
2 dki

2 . s2.1d

The distance metricdki
2 here is chosen to bedki

2

=minfsrk−r i +Rsupercelld2g. Other metrics may be considered,
for example, “anisotropic” metrics wheredki

2 is a function of
âk and âi as well as the distance between the LWF centers.

Additional constraints are imposed to keep the functions
wk orthonormal and the coordinate setsalk orthonormal:
oiwkiwmi=1, k=m; oiwkiwmi=0, kÞm; okalkank=1, l =n;
okalkank=0, l Þn. The problem is then set up as a con-
strained minimization problem. Using Lagrange multipliers,
we write

f = o
ki

wki
2 dki

2 + o
li
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One then needs to solve]f /]wki=0; ]f /]alk=0; ]f /]l1li =0;
]f /]l2køm=0; ]f /]l3løn=0.

Since the above partial derivatives are nonlinear, an ana-
lytic solution does not exist in general. To extract a solution
numerically, it is simpler instead to minimize the function,

F = 1 +o
ki

s]f/]wkid2 + o
lk

s]f/]alkd2 + o
li

s]f/]llid2

+ o
køm

s]f/]l2kmd2 + o
løn

s]f/]l3lnd2.

By construction,F is minimized to 1 if and only if all
partial derivatives off are zero. There may, however, be
more than one solution. A hypothesis for a reasonable start-
ing guess for the variables iswki=1 if r k=r i andâk=âi, else
wki=0; alk=cleli for i such thatr k=r i and âk=âi, with nor-
malization constantscl such thatokalk

2 =1, and all Lagrange
multipliers set to zero.

After the above results are obtained, the dynamical matrix
D can be replaced byD8, a reduced dynamical matrix over
LWF variables. The components ofD8 are, in bra-ket nota-
tion,

Dkm8 = kwkuDuwml. s2.2d

It is straightforward to show that

kaluD8uanl = keluDuenl = dlnvl; s2.3d

that is, the selected eigenvalues of the original dynamical
matrices are also eigenvalues ofD8, and the corresponding
eigenvectors are related to the origin dynamical matrix
eigenvectors through the LWF.D8 also gives the harmonic
lattice terms of an effective Hamiltonian for Monte Carlo or
molecular dynamics simulations.

III. MODEL

The methods of this paper will be applied to a toy model
for the lattice dynamics of a one-dimensional chainsD=1d.
Figure 1 shows the toy linear chain model, created so that the
phonon dispersion would be qualitatively similar to that of-
ten observed in ferroelectric perovskites such as BaTiO3.

10

The chain has four atoms per primitive cell: an “A” or “A8”
cation at eachx=integer n, a “B” or “B 8” cation at
x=n+0.5, and “C” anions atx=n+0.25 andx=n+0.75. For
simplicity, all ions have massm=1, and the length of the unit
cell is set toa=1. Defect and solid solution phenomena are
incorporated into the model through the distribution of
fA,A8g and fB,B8g ions on the corresponding sublattices.

The intersite force constants are given in Table I. The
force constants involving A8 and B8 are set to mimic certain
common characteristics of perovskite solid solutions. B8 is
designed to be chemically very similar to B and to create
relatively minor perturbations of the phonon dispersion, as
might occur for the substitution of one similarly sized isova-
lent ion for another. A8 is designed so that instabilities in-
volving A8 offcenteringsbut not A offcenteringd will occur,
as happens when Li substitutes for K on the perovskite A site
of fK,Li gTaO3.

FIG. 1. Primitive cell of a one-dimensional toy model for lattice
dynamics.
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Figure 2 shows the dynamical matrix eigenvalue disper-
sion for the “ideal” ABC2 chain. There is a single unstable
mode atq=0, dominated by B participation. The instability
only extends through part of the Brillouin zonesBZd. The
mode with largest B participation atq=p /a is not the lowest
one, but rather the second-highest oneseigenvalue 360d.
Note the following analogies with the case of BaTiO3.

5,10 In
BaTiO3, there are instability branches dominated by Ti mo-
tion that do not extend throughout the entire BZ. Ti-
dominated zone-boundary modes, where they occur, are not
always the lowest-frequency modes at these points.

IV. RESULTS

The procedure for generating LWFs was applied to four
structures within the toy model:s1d the ideal ABC2 cell, s2d
a doubled cell with composition AB1/2B1/28 C2
s“AB 1/2B1/28 C2-ordered”d, s3d an octupled cell with
composition AB1/2B1/28 C2, and the B and B8 cations arranged
in the quasirandom11 arrangement BBBB8B8B8BB8
s“AB 1/2B1/28 C2-quasirandom”d, ands4d an octupled cell with
the composition A7/8A1/88 BC2.

For a one-dimensional supercell of periodNa, the BZ
goes from −p / sNad to p / sNad. It is possible to plot the
dispersions of all the examples studied in this work in a
common zone from −p / s8ad to p / s8ad, but that yields com-
plicated diagrams with 32 bands in each case. For simplicity,

we compare instead the density of statessDOSd in each case,
as shown in Fig. 3.

Relative to the DOS in the ABC2 structure, the replace-
ment of B with B8 in AB1/2B1/28 C2-ordered leads to a gap in
the DOS just belowv2=0, a typical phenomenon in period-
doubling perturbations. While the DOS in the quasirandom
AB1/2B1/28 C2 structure is similar, there is only a pseudogap,
and the structure of the DOS is more complicated. The re-
placement of A with A8 in the A7/8A1/88 BC2 structure gives an
additional instability branch which is nearly dispersionless.
Because of coupling of A8 to the other ions, the DOS is
strongly perturbed over the whole frequency range, with
many more singularities.

LWFs were then generated for each structure. In each
case, assuperdcell of length 8a containing 32 ions was suf-
ficient to generate LWFs that reproduced very well the pho-
non DOS in the low-frequency bands. Each structure had a
similar set of optical low-frequency modes dominated by B,
B8 and withv2,10. Based on the analogy of the toy model
to lattice dynamics for ferroelectric transitions, where the
modes of interest are the low frequency optical modessin
particular, the instabilitiesd, all supercell optical modes with
v2,10 were included in the LWF fits. This frequency range
encompasses the additional A8-dominated instability branch
in the A7/8A1/88 BC2 structure. Based on the ions whose mo-
tion dominates the low-frequency modes, LWFs centered on
B and B8 sites were included in all cases. One additional
LWF, centered on the A8 site, was included for the
A7/8A1/88 BC2 structure. In each case, there is a van Hove
singularity in the phonon DOS atv2<360 arising from
q=p /a-type B-dominated modes. Based on the principle that
the singularities in the phonon DOS of the LWF model
should match the singularities in the original DOS as much
as possible, the corresponding mode was included in each fit.
Note that there is no absolute criterion requiring that these
modes should be included. As long as the number of modes
fit per supercell is less than or equal to the number of LWF
centers, the procedure will generate LWFs that reproduce
these modes, and as long as the phonon DOS in the region
that affects the physical properties is correctly reproduced, it
does not matter which higher-frequency modes are included.

In each case, the functionF converges to 1. UsingD8 and
setting the interactions to zero for distances larger than the
maximum distance inD8 allows phonon DOS and disper-
sions to be calculated from the effective Hamiltonian gener-

TABLE I. Interatomic force constants in model. For CuC in-
teractions at distance 0.50,sAd and sBd indicate which ion is be-
tween the two “C” ions.

1 2 d12 FC 1 2 d12 FC

A,A8 A,A8 1.00 −37.5 B,B8 C 0.25 25.0

A,A8 B,B8 0.50 −15.0 B,B8 C 0.75 25.0

A C 0.25 −15.0 C C 0.50sAd −140.0

A8 C 0.25 70.0 C C 0.50sBd 40.0

A,A8 C 0.75 −15.0 C C 1.00 −55.0

B,B8 B,B8 1.00 −107.5

B B,B8 2.00 28.75

B8 B8 2.00 37.5

FIG. 2. Phonon dispersion for the ideal ABC2 structure.

FIG. 3. Density of states ofv2 for the configurations studied.
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ated for each structure. For each case, the calculated DOS are
shown in Fig. 4. The dispersion generated from the LWFs for
ABC2 is shown in Fig. 5 and compared with the original full
phonon dispersion. It reproduces the unstable part of the
original model extremely well and rises smoothly to match
the A-dominated mode atq=p /a. The values for the LWF
displacement of the central cations and their nearest-
neighbor C anions are given in Table II.

V. DISCUSSION

The procedure for generating LWFs succeeds in reproduc-
ing the low-frequency phonon DOS for all of the one-
dimensional model test cases. The phonon dispersion in the
Brillouin zone or reduced Brillouin zone is also reproduced
in each case. The results provide strong evidence that LWFs
can be generated for arbitrary cation orderings in solid solu-
tions.

In principle, the method should work in three dimensions.
Polarization of phonon eigenvectors in dimensionsD.1,
and the corresponding possibility for multiple LWF compo-
nents centered on the same ion, are technical issues to be
resolved. Also, the method requires minimization of a func-
tion of s2DNnm+nmnw+nw

2 +nw/2+nm
2 +nm /2d dimensions,

where nm is the number of modes to be fit andnw is the

number of LWF centers chosen. This gives a practical limit
to how large a supercell can be chosen for the fit.

In the case of the ABC2 and AB1/2B1/28 C2-ordered struc-
tures, the LWFs have “u” symmetry under reflection, and the
LWFs for the same species with different centers are related
by translational symmetry. While these reflect the symmetry
of the lattice, symmetry was not imposed by design. Rather,
symmetry resulted from maximum localization. In fact, in
the AB1/2B1/28 C2-quasirandom and A7/8A1/88 BC2 structures,
LWFs centered on ions that are not on sites with reflection
symmetry do not have reflection symmetry, and LWFs on
sites that are not symmetry-related are not translationally
identical ssee Table IId. Remarkably, even though all the
phonons selected for the fit preserve the center of mass of the
crystal, the individual LWFs do not, in general, conserve the
center of mass. The fact that LWFs centered on the same
species are not in general related by symmetry means that, in
the effective Hamiltonian for a solid solution, the interac-
tions involving these LWF centers will be environment-
dependent.

Tests where the centers of the LWFs were inappropriately
chosen gave interesting results. For the A7/8A1/88 BC2 struc-
ture, if A8 centers were not included in the LWF fits, neither
the density of the low-frequency states nor the phonon dis-
persion were correctly reproduced. For the ABC2 structure,
if the LWF centers were initially put on the A sites, the final
solution had LWFs centered on the B sites. In all the struc-
tures investigated here, various different combinations of

FIG. 4. Density of states ofv2 for the effective Hamiltonians
generated from the LWF for each configuration studied.

FIG. 5. sLeft sided Dispersion inv2 of ABC2. sRight sided Same
as left side, with the effective Hamiltonian dispersion addedsin
grayd.

TABLE II. Lattice Wannier functions generated from each struc-
ture. Although the LWFs extend over the unit cells only the com-
ponents for ions within distance 0.25 from the central ion are
shown. Structures:s1d ABC2; s2d AB1/2B1/28 C2-ordered; s3d
AB1/2B1/28 C2-quasirandom;s4d A1/8A1/88 BC2.

structure ion position wx−0.25 wx wx+0.25

1 B salld −0.233 0.860 −0.233

2 B salld −0.232 0.860 −0.232

2 B8 salld −0.206 0.898 −0.206

3 B 0.5 −0.231 0.859 −0.234

3 B 1.5 −0.237 0.860 −0.238

3 B 2.5 −0.234 0.859 −0.231

3 B8 3.5 −0.211 0.880 −0.226

3 B8 4.5 −0.235 0.860 −0.232

3 B8 5.5 −0.201 0.899 −0.201

3 B 6.5 −0.232 0.860 −0.235

3 B8 7.5 −0.226 0.880 −0.211

4 A8 0.0 −0.491 0.706 −0.491

4 B 0.5 −0.068 0.916 −0.234

4 B 1.5 −0.249 0.854 −0.231

4 B 2.5 −0.236 0.861 −0.211

4 B 3.5 −0.246 0.832 −0.263

4 B 4.5 −0.263 0.832 −0.246

4 B 5.5 −0.211 0.861 −0.236

4 B 6.5 −0.231 0.854 −0.249

4 B 7.5 −0.234 0.916 −0.068
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species on which to center the LWFs were tested. In each
case, the choice described in Sec. IV had a combination of
small nw and small localization functions2.1d that was
clearly superior to the other choices. Complete automation of
the LWF procedure will require algorithms to decide which
low-frequency modes are essential to the fit, where to center
the LWFs, and, perhaps, which higher-frequency modes to
include in order to fit singularities in the phonon DOS as
much as possible.

VI. CONCLUSIONS

A simple, flexible, method has been presented for gener-
ating lattice Wannier functions and the harmonic lattice dy-

namical part of the corresponding effective Hamiltonians,
based on constrained LWF localization. The method requires
only that the user choose the sites on which to localize the
LWFs and which eigenmodes of a supercell to exactly fit.
When applied to various configurations of a toy one-
dimensional model, the method reproduces the desired fea-
tures of the full lattice dynamics problem in each case. The
procedure works equally well for simple compounds, or-
dered solid solutions, and disordered solid solutions.
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