
Contact-resonance atomic force microscopy for viscoelasticity
P. A. Yuya,1 D. C. Hurley,2 and J. A. Turner1,a�

1Department of Engineering Mechanics, University of Nebraska-Lincoln, W317.4 Nebraska Hall,
Lincoln, Nebraska 68588-0526, USA
2Materials Reliability Division, National Institute of Standards and Technology,
Boulder, Colorado 80305, USA

�Received 3 June 2008; accepted 20 August 2008; published online 15 October 2008�

We present a quantitative method for determining the viscoelastic properties of materials with
nanometer spatial resolution. The approach is based on the atomic force acoustic microscopy
technique that involves the resonant frequencies of the atomic force microscopy cantilever when its
tip is in contact with a sample surface. We derive expressions for the viscoelastic properties of the
sample in terms of the cantilever frequency response and damping loss. We demonstrate the
approach by obtaining experimental values for the storage and loss moduli of a poly�methyl
methacrylate� film using a polystyrene sample as a reference material. Experimental techniques and
system calibration methods to perform material property measurements are also presented. © 2008
American Institute of Physics. �DOI: 10.1063/1.2996259�

I. INTRODUCTION

Knowledge of viscoelastic properties at the nanoscale is
essential for the development of advanced materials and de-
vices with applications in various areas of nanotechnology.
However, properties measured from bulk specimens may not
accurately represent those of the nanomaterial. Because the
small length scales prevent the use of many well-established
measurement techniques, other characterization approaches
must be developed. Atomic force microscopy1 �AFM� has
become a valuable tool for studying the mechanical response
of materials at the nanoscale. AFM approaches can be used,
for example, for topography and stiffness imaging2,3 to
evaluate tribological properties of thin films,4 force
measurements,5 and adhesion energy.6 By modeling the tip-
sample interaction as two springs in series, the mechanical
response of the sample can be determined from the contact
portion of the resulting force curve.7 Rosa-Zeiser et al.8 used
the pulsed-force mode of the scanning force microscope to
image elastic, electrostatic, and adhesive properties simulta-
neously with topography. By modeling the tip-sample inter-
action using a spring-dashpot system, Burnham et al.9 were
able to image local energy dissipation through impacts using
a scanning probe microscopy method. Viscoelastic relaxation
can be measured with AFM by determining the dissipation
energy from the hysteresis between the loading and unload-
ing segments of the force curve.10

The work of Attard10 provided an excellent overview of
the extensive research of late regarding viscoelasticity at
nanometer length scales. In spite of the variety of AFM im-
aging methods developed, none has been used to determine
viscoelastic properties quantitatively. Here, we show how
nanoscale viscoelastic properties of materials, namely, the
storage and loss moduli, can be determined using contact-

resonance AFM for viscoelasticity �CRAVE�. The CRAVE
technique is based on the atomic force acoustic microscopy
�AFAM� method of contact-resonance AFM and has similari-
ties with the nanoDMA® approach �Hysitron, Minneapolis,
MN�.11 In both techniques, the displacement amplitude and
phase shift between the excitation force and displacement are
measured using a lock-in amplifier. The contact stiffness is
calculated from the amplitude and phase shift by making use
of an appropriate contact model. In quantitative AFAM,2,12 a
transducer below the sample generates out-of-plane vibra-
tions that excite the resonant modes of the AFM cantilever
when the tip is in contact. Measurements of the resonant
frequencies are analyzed with analytical models in order to
obtain the elastic properties of the sample.13 With few
exceptions,14,15 AFAM studies have been limited to modeling
the tip-sample interaction as a linear spring. Dissipation due
to damping and adhesion16 is normally ignored.

Including a dashpot in the contact-resonance AFM
model of the tip-sample interaction allows the viscoelastic
properties of the sample to be determined. Here, we show
how the complex wavenumbers of the resonant system are
defined and separated in order to determine the contributions
of the elastic components and the dissipation due to damp-
ing. Expressions are derived for the amplitude and phase
angle of the frequency response of a cantilever beam excited
by a harmonic force. Experimental contact-resonance spectra
are then fit to the predicted response in order to determine
values for the loss and storage moduli. The CRAVE tech-
nique demonstrates how contact-resonance AFM methods
can provide information about viscoelastic properties in
cases where indenter-tip size limitations prevent the use of
nanoDMA techniques. Furthermore, the contact loads ap-
plied with CRAVE can be limited to nanonewtons, thus re-
ducing or eliminating sample damage and minimizing poten-
tial effects such as enhanced stiffness due to confinement �an
effect still under investigation�.17
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II. THEORETICAL MODEL

Figure 1 depicts an AFM cantilever in contact with a
viscoelastic surface. Typically, an AFM cantilever is tilted at
an angle ��0�15°� relative to the sample surface.18 As a
result, cantilever forces applied in the vertical direction
therefore have a small component parallel to the sample sur-
face lowering the contact frequencies slightly. For simplicity,
here we assume the cantilever to be aligned parallel to the
sample surface ��0=0�. The cantilever is assumed to be a
rectangular beam with width w, thickness b, and length L.
The tip-sample interaction is represented by a spring of stiff-
ness k and a dashpot with characteristic damping c that de-
pends on the frequency. The position of the AFM tip from
the clamped end is represented by L1, while the length of the
beam from the tip to the unclamped end is L�. The forces
between the tip and the sample surface are modeled using a
Kelvin–Voigt mechanical equivalent. The governing equa-
tion for flexural vibrations for this system is expressed as19

EI
�4q�x,t�

�x4 + �
�q�x,t�

�t
+ A�

�2q�x,t�
�t2 = 0, �1�

where q�x , t� is the cantilever displacement, E is the Young’s
modulus, I is the bending moment of inertia, � is the density
of the cantilever material, A is the cross-sectional area, and �
represents damping in the beam. The cantilever is divided
into two parts with lengths L1 and L� with separate harmonic
solutions q�x , t�=��x�ei�t and q��x� , t�=���x��ei�t, respec-
tively. Here q��x� , t� is the displacement from the free end of
the cantilever, the x�-axis is defined in the negative x-axis
direction, and � is the angular frequency. The geometric and
natural boundary conditions for the problem dictate zero
slope and displacement at the fixed end, and zero bending
moment and shear force at the free end. The continuity con-
ditions at the coupling position �x=L1� ensure that the dis-
placement, slope, and bending moment are equal, while the
shear force in the beam is balanced by the forces due to
contact stiffness and contact damping. The characteristic
equation obtained by satisfying the boundary and continuity
conditions can be expressed as14

2

3
��nL1�3�1 + cos �nL1 cosh �nL1�

= �� + i���nL1�2���1 + cos �nL� cosh �nL��

	�sinh �nL1 cos �nL1 − sin �nL1 cosh �nL1�

+ �1 − cos �nL1 cosh �nL1��sin �nL� cosh �nL�

− cos �nL� sinh �nL��� , �2�

where �=kL3 /3EI=k /kc, kc is the cantilever stiffness, and

�=c�L2 / �9EI�A�. In our analysis, we quantify the vis-
coelastic properties of the sample by the complex wavenum-
bers �nL1= �an+ ibn�, where a represents the stiffness of the
tip-sample configuration, b represents the viscous damping
behavior of the sample, and n=1,2..
 are the mode num-
bers. The values of a and b are determined by fitting the
experimental frequency response. The complex characteristic
Eq. �2� is then solved numerically for � and � once the
values of a and b are obtained.

III. RESPONSE TO HARMONIC EXCITATION

In this section, we look at the response of an AFM can-
tilever beam to harmonic excitation to determine expressions
for displacement amplitude and phase that are used to fit to
experimental data to determine the parameters a and b. If a
harmonic force Fei�t is applied to the beam at x=x0, Eq. �1�
becomes

EI
�4q�x,t�

�x4 + �
�q�x,t�

�t
+ A�

�2q�x,t�
�t2 = F��x − x0�ei�t, �3�

where ��z� is Dirac’s delta function. Equation �3� is solved
by superposition of the natural modes of the unforced sys-
tem. The displacement can then be expressed as

q�x,t� = ei�t�
n=1




PnYn�x� , �4�

where the Pn coefficients give the mode weighting, and Yn�x�
are the spatial eigenfunctions determined from the analysis
of a clamped beam in free vibration as20

Yn�x� = � sin��nL� − sinh��nL�
cos��nL� + cosh��nL�	�sin��nx� − sinh��nx��

+ �cos��nx� − cosh��nx�� . �5�

The wavenumbers �n depend on the resonant frequency.
Substituting Eq. �4� into Eq. �3� gives

�EI�n
4 − �A�2 + i���PnYn�x� = F��x − x0� . �6�

Because the modes are orthogonal, Eq. �6� can be multiplied
by Ym�x� and integrated from 0 to L to determine the con-
stants Pn; thus

�
n=1




�EI�n
4 − �A�2 + i���


0

L

PnYn�x�Ym�x�dx

= 

0

L

FYm�x���x − x0�dx . �7�

For an orthonormal set of functions we have21

�0
LYn�x�Ym�x�dx=L�mn, which allows Eq. �7� to be inte-

grated, resulting in Pn=FYn�x0� /L�EI�n
4−�A�2+ i���. The

response of the beam to harmonic excitations at the end of
the beam can then be expressed as

q�x,t� = �
n=1



FYn�L�ei�t

mb�N�n
4 − �2 + i��̄�

Yn�x� , �8�

where mb=�AL is mass of the beam, N=EI /mbL3 and �̄
=� /�A are beam constants, while �n=�nL are the normal-
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FIG. 1. An AFM tip in contact with a viscoelastic surface. The tip-sample
forces are approximated by a linear spring-dashpot system.
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ized wavenumbers. If we take the tip to be at the very end of
the cantilever �L1=L�, Eq. �8� becomes

q�L,t� = �
n=1



FYn

2�L�ei�t

mb�N�n
4 − �2 + i��̄�

. �9�

From Eq. �5�, Yn�L� can be expressed as Yn�L�=2�1
−sin �n sinh �n� / �cos �n+cosh �n�. Therefore

q�L,t� = �
n=1



Fei�t

mb�N�n
4 − �2 + i��̄�

�2�1 − sin �n sinh �n�
cos �n + cosh �n

	2

.

�10�

For the first mode �n=1�, the frequency response of the sys-
tem is expressed as

G�i�� =
q�L,t�mb

F

=
1

�N�a + ib�4 − �2 + i��̄�

	�2�1 − sin�a + ib�sinh�a + ib��
cos�a + ib� + cosh�a + ib� 2

, �11�

such that �G�i���=��Re�G�i����2+ �Im�G�i����2. The solu-
tion for the displacement at the end of the beam can be
expressed as q�L , t�=D cos��t−�, where D=F /mb�G�i���
is the displacement amplitude. The phase shift between the
applied force and measured displacement is

 = tan−1�− Im G�i��/Re G�i��� . �12�

When the tip is not in contact with the specimen surface,
there is no moment or shear force supported at the free end
�x=L�. The wavenumbers for the free vibration of the beam
are obtained by solving the characteristic equation resulting
from these boundary conditions:22 cos � cosh �+1=0. For
the free case, we have b=0 such that �=a. Therefore Eq.
�11� reduces to

Gfree�i�� =
1

�Na4 − �2 + i��̄�
�2�1 − sin a sinh a�

cos a + cosh a
	2

.

�13�

The values of N and �̄ in Eq. �13� are obtained from the free
frequency spectrum by making use of the known values for a
�1.8751, 4.6941, 7.8547, etc.�.

IV. AFM TIP-SAMPLE CONTACT MECHANICS

The mechanics of the AFM tip-sample contact gives the
connection between the experimentally measured values and
the sample mechanical properties such as modulus. The con-
tact mechanics for AFM tips is very difficult to model be-
cause the exact shape of the tip in contact with the sample is
usually unknown. The most commonly used is the Hertzian
contact model.23 For a Hertzian model, a spherical indenter
with radius R contacting a flat surface with a normal force FN

forms a contact radius given by23 ac=�3 3FNR /4E�, where E�

is the reduced Young’s modulus given by 1 /E�=1 /Mt

+1 /Ms. Here M is the indentation modulus given by M
=E / �1−�2�, where E is the Young’s modulus and � is Pois-

son’s ratio. The subscripts t and s refer to the AFM tip and
the sample, respectively. The reduced complex modulus of a
linear viscoelastic material is given by E����=E��+ iE��.
Here, E�� is the reduced storage modulus, which is in phase
with the strain and represents the elastic behavior, while E��

is the reduced loss modulus and represents the internal
damping. Using the elastic solution for the Young’s modulus
from nanoindentation and the elastic-viscoelastic correspon-
dence principle,24 the reduced storage modulus of a vis-
coelastic material determined by nanoindentation is ex-
pressed as E��=1 /2k�� /A, where A is the contact area
obtained from the tip area function. Similarly, the loss modu-
lus is expressed as E��=1 /2�c�� /A. Because accurate de-
termination of the AFM contact area is extremely difficult,
AFAM methods use an alternative approach involving a ref-
erence material with known properties.2,13 The reduced stor-
age and loss moduli of the unknown sample are then ex-
pressed in terms of the reference sample as Es�

�

=Eref���ks /kref�m and Es�
�=Eref����scs /�refcref�m where the sub-

script “ref” refers to a reference sample, � is the frequency,
and m is a constant that depends on the tip-sample geometry.
For Hertzian contact, m=3 /2, while for a flat tip, m=1.

V. EXPERIMENTAL METHODS AND DATA
ANALYSIS

In the CRAVE technique �as with other contact-
resonance approaches�, an AFM cantilever beam is set into
flexural oscillations by out-of-plane movement of the sample
caused by ultrasonic waves. The sample to be investigated is
mounted on a transducer, which is excited with a continuous
sine wave voltage from a function generator. The amplitude
of the cantilever oscillations is detected by the standard op-
tical beam-deflection scheme of an AFM. A lock-in amplifier
is used to detect the amplitude and phase of the AFM pho-
todiode signal at the transducer frequency. A spectrum of the
cantilever response versus frequency is obtained by sweep-
ing the transducer excitation frequency and recording the
lock-in output signal. The resonant frequency and the shape
of the frequency spectra depend on the complex wavenum-
bers corresponding to the various vibrational modes of the
cantilever beam.
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FIG. 2. Frequency response of the AFM cantilever vibrating out of contact
with the sample.
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To study the damping behavior of the sample, it is im-
portant first to evaluate the damping of the beam when vi-
brating with the tip out of contact. This is mainly because the
damping measured when in contact is a combined response
of the beam and the sample. Using Eq. �13�, a nonlinear
least-squares fit is performed on the measured free-space am-
plitude and phase response to obtain values for N and �̄.
Next, contact-resonance frequency measurements are made
on both the test sample with unknown properties and the
calibration sample whose properties have been determined
independently. Using Eq. �11�, a nonlinear least-squares fit is
performed on the amplitude spectra to determine the values
of a and b of the complex wavenumber. These values of a
and b are then used to determine numerically the values of �
and � from the characteristic equation �Eq. �2��. Finally,
from the values of � and � and independent knowledge of
the storage and loss moduli of the reference sample, the stor-
age modulus E� and the loss modulus E� of the test sample
can be obtained. This is accomplished using modified ver-
sions of the equations relating the storage and loss moduli of
the unknown sample to those of the reference sample as
Es�

�=Eref����s /�ref�m and Es�
�=Eref����s�s /�ref�ref�m.

In our experiments, we used a rectangular, single-crystal
silicon cantilever. The nominal properties of the cantilever
were length L=450 �m, width w=50 �m, thickness b
=4 �m, and stiffness kc=1 N /m. Figure 2 shows the am-
plitude response for the cantilever in free space. From the fit,
the free resonance of the cantilever is f =22.90 kHz, the

beam damping �̄=� /�A is �1.46�0.05�	102 s−1, and the
constant N that depends on the beam properties is
�4.2249�0.0161�	107 s−2. These values represent the av-
erage and standard deviation of six curve fits, corresponding
to two different frequency spectra for each of the first three
free flexural modes.

The test sample for the CRAVE experiments was a film
of poly�methyl methacrylate� �PMMA� approximately 890
nm thick on a �001� silicon substrate. The film was prepared
using a PMMA solution �3 wt %, MW 950 k� in methoxy-
benzene �anisole�. A relatively thick film was obtained by
performing three spin-coating steps in sequence. In the first
two steps, the solution was spin-coated at 500 rpm onto the
silicon wafer and then annealed for 2 min at 150 °C. After a
third spin-coating step at 500 rpm, the specimen was an-
nealed for 10 min at 180 °C.

The reference �calibration� sample was a plate of poly-
styrene �PS� approximately 1.2 mm thick �Goodfellow Cor-
poration, Oakdale, PA�.11 Values for the reduced storage
modulus E�� and reduced loss modulus E�� of the PS sample
were measured with a Hysitron Bio Ubi VII nanoindenter
�Hysitron Inc., Minneapolis, MN�. In the measurements, a
frequency sweep from 10 to 250 Hz was performed with a
quasistatic load of 1000 �N and a dynamic load of 20 �N.
The experimental parameters used resulted in a contact depth
greater than 400 nm. The values of the reduced storage and
loss moduli were determined to be E��= �5.1�0.1� GPa and
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FIG. 3. Example of first mode response of the cantilever for the tip in contact with the PMMA film and the reference sample �PS�. �a� and �b� show the
amplitude spectra for PMMA and PS, respectively. Respective phase spectra are shown in �c� and �d�. The solid line shows the fit to the model given by Eqs.
�11� and �12�.
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E��= �117�35� MPa, respectively. These values are consis-
tent with those reported for PS in the literature.17,25,26 It is
important to note that the accuracy of our approach relies on
accurate knowledge of the properties of the reference
sample. For a diamond indenter tip, E=1140 GPa and �
=0.07 resulting in Mt=1145.6 GPa. The reduced modulus of
the reference PS sample assuming contact with a silicon
AFM tip is calculated to be 4.97 GPa �assuming Mt

=165 GPa�.27

VI. RESULTS AND DISCUSSION

Contact-resonance spectra were obtained for both the
PMMA and PS samples at values of the cantilever deflection

d=30, 50, and 70 nm. Assuming the nominal cantilever stiff-
ness kc=1 N /m, this corresponds to applied static forces of
FN=30, 50, and 70 nN, respectively. Spectra were acquired
first on the PMMA film, then on the PS sample, and then
once more on the PMMA film. Because the samples were
homogeneous, significant changes in property with contact
position were not expected. Figure 3 contains the response of
the cantilever for the tip in contact with the PMMA film and
the reference sample �PS�. The figure shows the amplitude
and phase spectra for the first flexural resonant mode of the
cantilever. Similar plots for the second flexural mode are
shown in Fig. 4. It can be seen that as the static deflection or
applied load increases, the contact-resonance frequency in-
creases. As described in the previous section, a nonlinear fit

TABLE I. Values for the parameters a, b, �, and � obtained from nonlinear fits of Eqs. �11� and �12� to the experimental contact-resonance amplitude data.

Sample Trial number d �nm�

Mode 1 Mode 2

a b�	10−3� � � a b�	10−3� � �

30 4.03 7.46 63.0 0.176 6.48 31.6 61.9 0.0598
PMMA 1 50 4.07 5.07 79.8 0.188 6.67 34.1 78.9 0.0832

70 4.07 5.00 79.2 0.183 6.74 28.2 87.0 0.0774
30 4.00 8.53 53.1 0.147 6.18 34.7 42.4 0.0492

PS 1 50 4.02 6.63 59.0 0.139 6.43 28.5 57.8 0.0508
70 4.03 5.92 62.7 0.139 6.49 25.0 62.1 0.0476
30 4.05 6.73 70.4 0.196 6.51 32.8 64.5 0.0646

PMMA 2 50 4.07 5.05 78.5 0.181 6.66 30.8 78.4 0.0744
70 4.07 4.98 78.5 0.179 6.69 26.9 81.4 0.0680
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FIG. 4. Example of second mode response of the cantilever for the tip in contact with the PMMA film and the reference sample �PS�. �a� and �b� shows the
amplitude spectra for PMMA and PS, respectively. Respective phase spectra are shown in �c� and �d�. The solid line shows the fit to the model given by Eqs.
�11� and �12�.
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to Eq. �11� was performed on the amplitude curves in Figs.
3�a�, 3�b�, 4�a�, and 4�b� to obtain values for the quantities a
and b. The fit is indicated in the figures by the solid lines.
Fits to Eq. �12� were also used to obtain the solid lines in the
phase curves of Figs. 3�c�, 3�d�, 4�c�, and 4�d�. It can be seen
that the predicted response matches the experimental results
very well.

Table I shows the values of a, b, �, and � determined for
the PMMA film and PS sample. The calculated values of the
indentation storage modulus M� and loss modulus M� for the
PMMA film are given in Table II. Values are shown for flat-
punch contact �m=1� and Hertzian contact �m=3 /2�. Ideally,
the values of M� and M� calculated from the contact reso-
nant frequency at a given cantilever deflection �static load�
should be the same for both modes. The values that we report
show slight variations in M� and M� values for the two
modes for all cantilever deflections. The difference in the
values could be due to the fact that the cantilever beam is not
perfectly rectangular as the model assumes. The assumption
of perfectly clamped end may not have been the case for the
particular cantilever used in these experiments. Also, the ef-
fect of the conical tip mass was neglected and the tip position
was assumed to be at the far end of the cantilever. In the
analysis, L� is taken to be zero after the realization that the
adjustable tip position cannot be used as a fit parameter to
obtain consistent values of � and � for the two modes at all
cantilever deflections �as done by others considering only the
elastic case�. When all of the results are averaged, for the
PMMA film we obtain M�= �7.0�0.5� GPa and M�
= �160�16� MPa using m=1, and M�= �8.1�0.9� GPa and
M�= �190�30� MPa for m=3 /2. These values are roughly
consistent with those obtained in previous studies of PMMA
films with various contact methods.17,25,28 Several possible
effects could explain any discrepancies between these and
previously measured values. For instance, most of the previ-
ous work utilized tips with significantly larger radii and /or
higher applied forces. The small size of the AFM tip could
induce a contact strain sufficiently large to produce a nonlin-
ear elastic response.29 In addition, the increase in the glass
transition temperature Tg as a function of tip load could be
different for the two materials. This effect could make the
small-contact-depth stiffness different, even though the bulk
�large contact depth� stiffnesses are similar.

VII. SUMMARY

In summary, this study demonstrates the feasibility of a
contact-resonance force microscopy method �CRAVE� to de-

termine viscoelastic material properties. The method is based
on the AFAM approach originally developed for elastic ma-
terials. The forces between the AFM cantilever tip and the
sample are modeled with a linear spring and dashpot. The
complex wavenumbers of the problem are obtained by fitting
a model curve to the experimental data. The wavenumbers
are then related to the mechanical properties of the sample
through the characteristic equation of the problem. To illus-
trate the technique, properties of a thin PMMA film were
obtained using PS with known properties as the reference
sample. The values of both the storage and loss modulus
obtained were in agreement with those found using other
techniques. Because this method can employ low forces and
small contact depths, its benefit to the research and develop-
ment of small-scale compliant materials is expected to be
substantial.
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