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ABSTRACT 
 
Folding of ballistic fibers comprising soft body armor may be a factor in the performance 
deterioration that has been observed in used soft body armor.  To quantify the impact of this 
mechanism, an apparatus was designed and built to simulate the folding that may occur to the 
ballistic fibers while the vest is in use. The device systematically folds woven fabric and yarns of 
ballistic fibers to assess the impact of folding on ballistic fiber properties.  Initial test results 
indicate that the device does repeatedly fold a piece of woven fabric at the same location.  After 
cycling a piece of woven poly(benzoxazole) (PBO) fabric for 5,500 cycles, a 14 % reduction in 
the ultimate tensile strength and strain to failure of the PBO fibers was observed.  Research is 
continuing to optimize the testing procedure.  It is anticipated that this device will be a useful 
tool in understanding how ballistic fibers degrade.  
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1. INTRODUCTION 
 
It has been suggested that folding of the ballistic fibers comprising soft body armor may be a 
factor in the performance deterioration observed in used soft body armor.  In an attempt to 
quantify the impact of this mechanism, an apparatus was designed and built to simulate the 
folding that may occur to the ballistic fibers while the vest is in use.  This effort is part of a 
research program being conducted by the National Institute of Standards and Technology Office 
of Law Enforcement Standards (NIST-OLES) under the auspices of the National Institute of 
Justice (NIJ).  One of the objectives of this research program is to develop relevant and non-
destructive test procedures that link personal body armor performance to fundamental and 
measurable properties of the materials that are used in its construction.  One long-term goal of 
the folding research on ballistic fibers is the development of a controlled procedure for 
simulating the folding that occurs in an actual vest during various stages of its proposed lifespan.  
This type of procedure would then allow ballistic fiber tests to be performed on body armor 
whose wear and deformation history are known.  Such tests on controlled materials should help 
to establish the link between use and life expectancy of the body armor. 
 
The apparatus described in this report was designed to fold individual yarns and single and 
multiple layers of woven fabrics of ballistic fibers by using servo-hydraulic testing equipment 
that is often available in laboratories that perform fatigue testing of materials.  Since the concept 
is new, a major design goal was to incorporate sufficient flexibility into the design to allow most 
of the deformation parameter space that occurs during actual use to be systematically probed, 



with the end result being an optimized and relevant deformation protocol.  Furthermore, the use 
of off-the-shelf testing equipment, such as the servo-hydraulic testing equipment, should 
facilitate peer review and use by others. 
 

2. MOTIVATION: THE SINGLE FOLD TEST 
 
The research of Cunniff and Auerbach [1] has shown that, within the elastic limit, a correlation 
exists between the ballistic fiber properties and ballistic performance if the ballistic impact on 
fiber properties is decoupled from the vest construction parameter of areal density.  That is, the 
material properties of the fiber are decoupled from the vest construction parameters known to 
depend on a manufacturer�s vest design.  From their research, the correlation between ballistic 
performance and the mechanical properties of the active fiber is quantified by 31* )(U of 
equation 1.  Therefore, (U*)1/3 is a theoretical parameter that estimates the maximum velocity of 
a bullet that the fibers of a vest can stop and is independent of vest construction. This equation 
has also been derived theoretically by Phoenix and Porwal [2,3]. 
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where 
u
fσ   is the fiber ultimate axial tensile strength (UTS),  

u
fε   is the fiber ultimate tensile strain,  

ρ   is the fiber density, and  

fE1  is the longitudinal linear elastic fiber modulus. 

  

In a previous publication, it was shown that a modified single fiber test (m-SFT) [4], based on 
ASTM C1557-03 [5], could be used to obtain the fiber properties for the above equation.  In 
another report, [6] it was shown that changes in ballistic performance could be detected in a 
worn vest that was presumed to arise from ultraviolet (UV) exposure and hydrolytic action.  
Since it is probable that mechanically induced degradation will induce subtle changes in ballistic 
fiber properties, 50 fibers were extracted from a single yarn of virgin poly(benzoxazole) (PBO) 
fibers and placed uniformly across two pieces of poster board (see Figure 1).  The two adjoined 
poster boards were then folded together.  Bricks were placed on the folded poster boards and left 
overnight to simulate a �worst-case� scenario.  The visible damage induced by the single fold is 
shown in Figure 2.  To ascertain the impact of this damage on the mechanical properties of the 
fiber, 50 folded and 50 non-folded virgin PBO fibers were tested randomly using the m-SFT. 
 



Fiber diameters were measured on each specimen using an optical micrometer (Excel 
Technologies Inc., Model VIA-100) [7] attached to a Nikon Optiphot-POL microscope equipped 
with a video camera (Optronix LX-450 RGB Remote Head microscope camera). The standard 
uncertainty in the measurement of fiber diameters is 0.4 µm.    The fiber image was viewed on a 
Sony PVM-1344Q color video monitor.  All fiber samples had diameter measurements made at 
five equally spaced locations along the 6 cm gauge length.  The five individual diameter 
measurements were averaged for each fiber sample.  The average fiber diameters from the folded 
specimens was found to be (12.6 ± 0.5) µm and those of the non-folded specimens 
(12.5 ± 0.5) µm.  The folded and non-folded populations of average fiber diameter values were 
indistinguishable at the 95 % confidence level (p = 0.125).   
 
From the m-SFT, the strain-to-failure and ultimate tensile strengths of the folded virgin PBO 
fiber were reduced by approximately 10 % relative to the non-folded fibers (p = 0.011, 0.004 
respectively).  Histograms depicting the shifts in the distributions are shown in Figure 3.  In 
contrast to previous results on worn vests, the modulus of the virgin fiber was also found to 
decrease by about 15 % from (164 ± 9) GPa to (156 ± 12) GPa.  These results indicate that the 
property changes in folding should be quantifiable and that the m-SFT is sensitive enough to 
observe these changes. 
 
2.1  Apparatus Design and Operation  The design was motivated by the desire to use the 
controlled fatigue testing features inherent in most servo-hydraulic test machines.  To minimize 
damage to the servo-hydraulic machine by the apparatus, the device was designed to fit on a 
250 kN (55 kip) Model 810.25 MTS machine equipped with a 158.5 mm (6.25 in) diameter 
piston rod.  To convert the precise linear motion of the servo-hydraulic machine to precise 
rotational motion, a bracket was fitted to the piston rod that contained a spur gear and rack as 
shown in Figure 4. 
   
To effect the folding of the ballistic fiber material, a two-piece clamshell design is employed (see 
Figure 5).  To minimize mass, most of the apparatus is constructed using aluminum, except 
where otherwise specified.  The lower plate is connected to a platform that attached to the servo-
hydraulic machine through the column mounting brackets.  Interchangeable folding rods were 
constructed out of stainless steel and attached to this plate.  The upper plate is attached to a 
stainless steel rod that is turned at each end to conform to the required bore size of the spur gear.  
The top plate is attached to the platform using two base-mount ball bearings that accommodate a 
shaft. 
 
Each plate is equipped with Teflon sheets to minimize friction between the ballistic material and 
the plate surface.  To hold the fabric or yarn in place each plate is equipped with a sliding 
bracket.  Each sliding bracket is held in place by two stainless steel rods that attach to constant 
force springs obtained from Associated Spring Raymond (rods not shown in Figure 5).  The 
constant force springs were rated for 40,000 cycles and are used to maintain constant tension on 
the woven fabric or yarn. 
 
2.2  m-SFT  This test procedure was described in a previous publication (4) and is repeated here 
for the reader�s convenience.  Fifty individual fibers, each approximately 30 cm to 40 cm long, 
were obtained from a harvested yarn and mounted onto a paper tensile testing template.  The 



template, printed on typical 21.6 cm (8.5 inch) by 27.9 cm (11 inch) printer paper that contains 
1 cm major graduations and 1 mm minor graduations, held two or three rows of five fibers.  
Therefore, one fiber strand generated two or three test samples, each with a 6 cm gauge length.  
Individual fibers were initially attached temporarily to the paper template outside the region of 
the fiber that would undergo diameter measurement and tensile testing with double-sided tape 
(3M Stationary Products Division, St. Paul, MN  55119).  Prior to epoxy gluing, small strips 
(approximately 1.2 cm × 0.2 cm) of silver reflective tape (United Calibration Corp.) were applied 
to the template at the top and bottom of the gauge section of each fiber sample.  The reflective 
tape allows elongation measurements to be made by the laser extensometer (United Calibration 
Corp. Model EXT 62 LOE) while the sample is undergoing tensile testing.  The fibers were then 
permanently bonded to the template by epoxy adhesive (Hardman Water-Clear Epoxy, 
Double/Bubble Green Package #04004).  The epoxy adhesive was allowed to cover up to 0.1 cm 
thickness of the reflective tape to avoid the slip between fiber, paper template and reflective tape. 
The five individual diameter measurements were averaged for each fiber sample.  Between steps 
in the mounting, diameter measuring and tensile testing processes, fiber samples were stored in 
the dark, in wooden map cabinets. 
  
Although the compliance method in ASTM C1557-03 has been found to be satisfactory for 
quantifying the properties of new fibers, the use of non-contact extensometers to detect gauge 
section elongation directly is often suggested if a more accurate measure of strain is required, 
since specimen fragility prevents the use of normal strain-sensing devices, such as strain gauges 
or mechanical extensometers.  Consistent with this recommendation, a United Calibration 
Corporation Model EXT-62-LOE laser extensometer was used.   
  
An initial gauge length of 5.1 cm or greater is required for optimum performance of the laser 
extensometer.  Furthermore, because fiber strength is typically gauge length dependent, a 
specimen length reflective of the amount of material that may be deformed during ballistic action 
is probably necessary.  Therefore, a gauge length of 6.0 cm was chosen.  The laser extensometer 
was calibrated using an Epsilon extensometer calibrator Model 3590C that has 10 cm of travel.  
The standard uncertainty in the strain at 6.1 cm associated with this measurement is 0.0001.  The 
standard uncertainty in the load cell at 100 g is 0.001 g. 
 

3. RESULTS AND DISCUSSIONS 
 
To test the effectiveness of the device, a piece of woven fabric was attached to each sliding 
bracket and under the folding rod (see Figures 5 and 6).  The apparatus was rotated through a 90o 
angle as shown in Figure 7 and held at each end point for approximately 15 s.  Marks, using a 
permanent marker, were made on the edge of the sample to monitor for movement of the folded 
region as the specimen was repeatedly folded for approximately 5,500 cycles.  The folded region 
location remained constant throughout the test.  However, in the open position (90o) (π/2 rad), 
the fabric moved 1 cm away from the folded region.  Analysis of the motion of the apparatus 
indicates that immobilizing the sliding bracket on the lower plate and adjusting the travel 
distance on the sliding bracket of the upper plate can eliminate this movement. 
 
Under the folding conditions with both brackets sliding, the strain-to-failure and ultimate tensile 
strength as measured by the m-SFT decreased by approximately 14 % when subjected to 5,500 



cycles (see Table 1).  The modulus and fiber diameter were unchanged, which suggests a 10 % 
reduction in the ballistic resistance of the fiber as calculated through equation 1.  
 

4. CONCLUSIONS 
  
The apparatus as designed can consistently fold woven fabrics and yarns.  Slight modifications 
are needed to control the damage that can occur to the fibers due to frictional sliding on the 
folding rod.  More testing is planned to determine the optimum and relevant testing conditions 
required to simulate the impact of mechanical folding over a period of (5 to 10) years of use.  
Further tests are underway to quantify the mechanism of mechanical degradation. 
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Table 1. 

Effect of Repeated Folding (5,500 cycles) on woven fabrics  
composed of poly(benzoxazole) fibers 

 
 
 
 
 



 
Figure 1.  Pictorial representation of single fibers stretched across two adjoining pieces of poster 
board. 

 
 



 
Figure 2.  (a) Damage induced by single fold of PBO fiber. (b) non-folded virgin PBO fiber.  

 
 

 
Figure 3.  Histograms showing the change in Strain-to-Failure and Ultimate Tensile Strength of 
virgin PBO fibers caused by the single-fold test.   

 
 



 
Figure 4.  Piston rod bracket for converting linear motion of MTS 810.25 servo-hydraulic 
machine into rotational motion.  Insert shows schematics of spur gear with detailed specifications 
given in the text. 

 
 



 
Figure 5.  Basic design of the folding apparatus attached to servo-hydraulic machine.  Constant 
force springs attach to sliding brackets using stainless steel rods (not shown).  Note: Delrin brace 
on piston rod bracket removed to better show clamshell design. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure 6:  Folding apparatus with fabric clamped in the sliding brackets and around the folding 
rod. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Figure 7:  Images showing the fabric as it goes from a closed position (A) to the fully open 
position (D). 
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