Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films

R. Joseph Kline,a) Dean M. DeLongchamp, Daniel A. Fischer, and Eric K. Lin
National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Martin Heeney and Iain McCulloch
Merck Chemicals, Southampton, S016 7QD United Kingdom

Michael F. Toney
Stanford Synchrotron Radiation Laboratory, Menlo Park, California 94025

(Received 30 September 2006; accepted 11 January 2007; published online 8 February 2007)

The authors report a significant dependence of the morphology and charge carrier mobility of poly(2,5-bis(3-dodecylthiophene-2-yl)thieno[3,2-b]thiophene) (pBTTT) films on the substrate surface chemistry upon heating into its liquid crystal phase. In contrast with films on bare silicon oxide surfaces, pBTTT films on oxide functionalized with octyltrichlorosilane exhibit substantial increases in the lateral dimensions of molecular terraces from nanometers to micrometers, increased orientational order, and higher charge carrier mobility. The large-scale crystallinity of this polymer plays an important role in the high carrier mobility observed in devices, but renders it more sensitive to substrate surface chemistry than other conjugated polymers. © 2007 American Institute of Physics. [DOI: 10.1063/1.2472533]

Semiconducting polymers are being developed for use as the active layer in thin-film transistors (TFTs) for flat panel displays and radio frequency identification tags.1 The charge carrier mobility of the semiconductor is the critical materials parameter that determines TFT performance.2 Understanding the relationship between the processing of the polymer, its morphology, and the resulting thin-film transistor performance is critical to the improvement of the devices. Numerous studies have correlated the morphology of semiconducting polymer films to their charge carrier mobility.4–6 It is widely believed that the substrate chemistry plays a key role in the development of the polymer semiconductor morphology because of observations that substrate surface treatment strongly influences charge carrier mobility.7 Silicon oxide is the most widely used model dielectric in polymer semiconductor TFTs. Treating the oxide with hydrophobic agents can increase the measured charge carrier mobility by up to three orders of magnitude.7–9 Morphology improvement is the most common explanation, but chemical effects than previously observed for polymer semiconductors. We employ a combination of structure analysis methods to study the morphology of poly(2,5-bis(3-dodecylthiophene-2-yl)thieno[3,2-b]thiophene) (pBTTT), a polymer semiconductor that exhibits large crystalline terraces that can extend laterally for several hundreds of nanometers. Because pBTTT thin film domains are larger and more oriented than those of typical polymer semiconductors, they exhibit an unambiguous and directly measurable substrate effect. We find that pBTTT films cast on hydrophobic surfaces are more ordered than identical films cast on oxide surfaces after heating the film into the liquid crystal (LC) regime.

Substrates were cleaned with an ultraviolet-ozone cleaner immediately before film deposition. Octyltrichlorosilane (OTS) was deposited by immersing freshly cleaned silicon substrates in a 0.002 mol/L solution of OTS in anhydrous hexadecane for 12 h. Samples were then sonicated in baths of chloroform, isopropanol, and de-ionized water. Bottom contact TFTs were fabricated by depositing gold/titanium (45 nm/5 nm) electrodes on oxidized, highly doped, (100) silicon wafers (200 nm oxide). The pBTTT films were deposited on the substrates by spin coating from a 5 mg/ml solution in 85 °C 1,2 dichlorobenzene.12 Films were cast at 1500(2 π) rad/min using a 100(2 π) rad/min s ramp rate. Films were divided into as-cast (OX-AC and OTS-AC) and those that received a heat treatment to the LC regime (OX-LC and OTS-LC). The heat treatment involved placing the films on a hot plate (180 °C) for 5 min, followed by a slow cool (≈10 °C/min). All polymer processing and measurements were performed in nitrogen.

In this letter, we find that the morphology, molecular orientation, and charge carrier mobility can depend significantly on substrate chemistry, with much larger morphological effects than previously observed for polymer semiconductors. The authors report a significant dependence of the morphology and charge carrier mobility of poly(2,5-bis(3-dodecylthiophene-2-yl)thieno[3,2-b]thiophene) (pBTTT) films on the substrate surface chemistry upon heating into its liquid crystal phase. In contrast with films on bare silicon oxide surfaces, pBTTT films on oxide functionalized with octyltrichlorosilane exhibit substantial increases in the lateral dimensions of molecular terraces from nanometers to micrometers, increased orientational order, and higher charge carrier mobility. The large-scale crystallinity of this polymer plays an important role in the high carrier mobility observed in devices, but renders it more sensitive to substrate surface chemistry than other conjugated polymers. © 2007 American Institute of Physics.

a)Electronic mail: joc.kline@nist.gov
b)Author to whom correspondence should be addressed; electronic mail: deand@nist.gov
observed for PQT (Table I). OTS-AC and OX-AC exhibited similar saturation mobilities. The charge carrier mobility for OTS-LC increased by about three times while OX-LC decreased by about four times. Figure 1 shows transfer curves for all four films.

Atomic force microscopy (AFM) images of thin pBTTT films (~20 nm) heated to the LC regime have a terraced microstructure, as shown in Fig. 2. OTS-LC has much larger terraces than OX-LC, with the topmost terraces on OTS-LC microns in size and the lower terraces even larger. For OX-LC, the terraces are only about 100 nm in size. All as-cast films show no terrace and appear similar independent of substrate. It should be noted that AFM images of OX-LC appear more crystalline than as-cast films on either substrate despite having a lower charge carrier mobility. The order gained by heating atop oxide, however, could be offset by the apparent grain boundaries created during terrace formation. Grain boundaries in low molar mass P3HT have been shown to be detrimental to charge carrier mobility.

The Bragg scattering intensity of XRD increases upon heating for OTS-LC and OX-LC, as shown in Fig. 3(a). The increases in scattering intensity of the Bragg peaks are consistent with terrace formation. Terrace formation requires both an increased extent of crystal orientation and an increased overall crystallinity. The width of the diffraction peaks decreases upon heating, indicating crystal growth normal to the substrate. From the peak width obtained from both OTS-LC and OX-LC, we obtain a crystal thickness that is the same as the film thickness, which shows that the domains extend from the substrate to the film surface. XRD also shows that the lamellar spacing decreases upon heating for LC films (19.6 Å for OTS-AC and 19.0 Å for OTS-LC) with a slight difference between OTS-LC and OX-LC (19.3 Å on oxide versus 19.0 Å on OTS).

On the other hand, near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, a nondestructive surface-sensitive method for determining molecular orientation, shows that π-plane orientation improves upon heating for OTS-LC but does not improve for OX-LC [Fig. 3(b)]. The higher dichroic ratios of OTS-LC are consistent with the increased crystallinity in AFM and the greater diffraction intensity in XRD. NEXAFS measures the average orientational order of the conjugated plane at the top or bottom interface, while XRD measures the quality and regularity of the lamellar terrace throughout the entire film. Evidently this orientational order is degraded somewhat in the smaller terraces of OX-LC, most likely because disorder is contributed from the greater number of grain boundaries.

The difference in terrace size between OTS-LC and OTS-AC suggests different nucleation densities, with the smaller islands on oxide films resulting from a greater number of nucleation sites.

### Table I. Average saturation mobilities of ~50 TFTs for oxide and OTS-treated oxide substrates before (AC) and after heating to the LC regime (LC). Data are reported with the standard uncertainty.

<table>
<thead>
<tr>
<th>Substrate</th>
<th>$\mu_{AC}$ (cm$^2$/V s)</th>
<th>$\mu_{LC}$ (cm$^2$/V s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxide</td>
<td>0.10±0.02</td>
<td>0.03±0.01</td>
</tr>
<tr>
<td>OTS</td>
<td>0.12±0.02</td>
<td>0.27±0.05</td>
</tr>
</tbody>
</table>

FIG. 1. (Color online) Transfer curves of pBTTT transistors with oxide and OTS surface chemistries before (AC) and after heating to the LC regime (LC). Channel width=1 mm and length=20 μm. The difference in onset voltage between OTS and oxide films is comparable to the run to run variation. The standard uncertainty for current and voltage is 1%.

FIG. 2. (Color online) AFM images comparing (a) OX-LC and (b) OTS-LC. Scale bar denotes 200 nm.
traps on the oxide surface. The increased adhesion could also be explained by the removal of water molecules that formerly passivated the oxide; both this possibility and chemical pinning of the molecule to the substrate could create new charge carrier traps.

The large and oriented crystals of pBTTT films help to manifest the substrate effect. The domain size in as-cast films is independent of substrate treatment because the nucleation is dominated by the casting process. We hypothesize that no clear and measurable effect of substrate chemistry on film morphology is observed in P3HT and PQT because their characteristic domain size is smaller than the mean spacing between surface nucleation sites.

In summary, we have shown that the increased crystallinity of pBTTT reveals an unusually strong morphological dependence on the substrate surface chemistry. OTS treatment reduces the surface nucleation density of bare oxide, resulting in micron-scale terraced pBTTT films with improved charge transport. The strong adhesion of films to bare oxide surfaces after heat treatment indicates the presence of chemical interactions between the substrate and film that could lead to electrical trap creation. Although the influence of substrate chemistry on charge transport will originate from an interrelated combination of morphological and electrical effects at the substrate interface, the strong dependence of morphology on the surface chemistry plays an important role in the large hole mobility of this polymer semiconductor.

One of the authors (R.J.K.) thanks support from the NIST-NRC program. Portions of this research were carried out at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. This work is an official contribution of the National Institute of Standards and Technology, not subject to copyright in the United States.