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Molecular self-assembly at equilibrium is fundamental to the fields of biological self-organization, the
development of novel environmentally responsive polymeric materials, and nanofabrication. Our approach to
understanding the principles governing this process is inspired by existing models and measurements for the
self-assembly of actin, tubulin, and the ubiquitous icosahedral shell structures of viral capsids. We introduce a
family of simple potentials that give rise to the self-assembly of linear polymeric, random surface �“mem-
brane”�, tubular �“nanotube”�, and hollow icosahedral structures that are similar in many respects to their
biological counterparts. The potentials involve equivalent particles and an interplay between directional �di-
polar, multipolar� and short-range �van der Waals� interactions. Specifically, we find that the dipolar potential,
having a continuous rotational symmetry about the dipolar axis, gives rise to chain formation, while particles
with multipolar potentials, having discrete rotational symmetries �square quadrupole or triangular ring of
dipoles or “hexapole”�, lead to the self-assembly of open sheet, nanotube, and hollow icosahedral geometries.
These changes in the geometry of self-assembly are accompanied by significant changes in the kinetics of the
organization.
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I. INTRODUCTION

Molecular self-assembly at equilibrium is central to the
formation of numerous biological structures �1–3�, and the
emulation of this process through the creation of synthetic
counterparts �4–9� offers great promise for nanofabrication
�10–15�. The central problems in this field are an understand-
ing of how the symmetry of interacting particles encodes
information about the geometry of the organized structure
and the nature of the thermodynamic transitions governing
this type of self-organization process. Our approach is in-
spired by a long tradition of modeling and precise experi-
mental observations on the self-assembly of biological struc-
tures: chainlike polymers �actin �16–19� and crystallin
proteins �20��, fiberlike polymers �tobacco mosaic virus
�21–23�, sickle cell hemoglobin �24–27�, type-1 collagen
�28� and amyloid fibers�, hollow cylindrical structures such
as membrane ion channels �29–32� and tubulin �33–38�, and
the normally icosahedral shell structures of “spherical” vi-
ruses �“capsids”� �39–47� and of clathrin-coated vesicles in-
volved in endocytosis �48�.

The term “self-assembly,” and indeed a whole field of
scientific inquiry, was initiated by the remarkable observa-
tion that the sheath proteins and RNA components compris-
ing tobacco mosaic virus could spontaneously regenerate
themselves into active viruses in vitro �21,22�. Moreover, it
was also found that the rodlike protein sheath could regen-
erate itself even without genetic material �RNA� in its core.
These seminal observations prompted further investigations
into the nature of this highly specific, but apparently
equilibrium-based, organizational process. Self-assembly of
spherical viruses under in vitro conditions was later observed

in the nearly spherical cowpea chlorotic mottle virus. �22�
These developments were greatly facilitated by advances in
electron microscopy and x-ray diffraction that have enabled
the resolution of virus molecular structure with atomic-scale
resolution �1�. Further measurements indicated that while
other viruses had the rodlike form of tobacco mosaic virus,
spherical viruses were actually more common and were
prevalent in both plant and animal viruses. This naturally led
to speculations into the physical origins into this regularity of
viral form and to the first theoretical modeling of biological
self-assembly �3,39�.

It is now known that many viruses contain only enough
genetic material for replicating a few proteins, and it has
been appreciated experimentally since the pioneering work
of Rosalind Franklin �23� that the organization of viral pro-
tein sheaths must involve particles having equivalent or
nearly equivalent molecular structure. Crick and Watson hy-
pothesized that the assembly of such equivalent particles
could only occur by the formation of highly symmetric shell
structures �39�. In particular, they suggested that the shells
should take the form of tubes �helical in general� or closed
structures belonging to a family of regular polyhedra �i.e.,
Platonic solids: cube, tetradedron, octahedron, dodecahe-
dron, icosahedron� where each particle has a local environ-
ment that is equivalent to its neighbors. These arguments
amount to a suggestion that the local potentials of the par-
ticles within these shells are invariant under particle permu-
tation P. Crick and Watson’s ideas �39� were subsequently
supported by electron microscopy and x-ray diffraction mea-
surements for polio and later other spherical viruses were
found to form structures having icosahedral symmetry
�1,40,44�.

While the icosahedral shell is a natural structure for en-
capsulating genetic material within the family of Platonic
solids, given its relatively large volume-to-surface area ratio,
it was also found that other icosahedral symmetry viruses
violated the strict equivalence principle �39�. Evidently, a
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strict equivalence of local molecular environments within a
capsid severely limits the size of these structures and it was
later found that spherical viruses overcome this constraint by
utilizing structures built up from subcomponents having both
fivefold and sixfold local rotational symmetries. Caspar and
Klug �3�, with input from architectural theorist Buckminster
Fuller and his students, interpreted this “molecular differen-
tiation” process in virus shell organization through a gener-
alization of the arguments of Crick and Watson. In their clas-
sic paper on virus structure �3�, they replaced the constraint
of perfect equivalence by the hypothesis of “quasiequiva-
lence,” which requires that the defect energy associated with
inequivalent molecular environments to be minimized. For
the closed-shell spherical viruses, this principle of
quasiequivalence implies that spherical viruses must com-
prise a unique family of icosahedral symmetry surfaces
�“icosadeltahedra”� having local fivefold and sixfold symme-
tries �1,3�. In particular, a perfect icosahedron of 60 equiva-
lent proteins has 20 faces, while the larger icosadeltahedra
contain, in general, an integer-T multiple of 60 capsid pro-
teins where the factor T is termed the “triangulation factor.”
There are two topological indices �h and k� that determine
how the hexagons are placed in these structures and that
determine the allowable quantized T values �T=k2+hk+h2

where h and k are non-negative integers such that T�1� �3�.
Remarkably, these quasiequivalent structures describe all but
a small number of spherical viruses �1,3�. The principle of
quasiequivalence in the biological community is currently
considered to be fundamental to understanding virus struc-
ture and, more broadly, biological self-assembly.

Unfortunately, the formal symmetry-based arguments of
Crick and Watson �39� and Caspar and Klug �3� do not pro-
vide any insight into the thermodynamic factors governing
this sort of self-assembly; nor do they provide any specific
indication of what the term “quasiequivalent” really means
in terms of molecular potentials and the proteins actually
involved in this type of assembly process. In particular, there
is the question of why the capsid proteins would assemble
into a hollow shell in the first place. These questions are
practically important because the development of strategies
for treating viral diseases through interrupting this self-
assembly process requires an understanding of the kinetics of
viral capsid self-assembly, as well as an understanding of the
thermodynamic parameters governing the capsid stability
�45�. These concerns have natually led to attempts to simu-
late virus self-assembly and structure.

Bruinsma and co-workers �46,47� recently offered a
physical explanation of quasiequivalence in terms of molecu-
lar conformational transitions �“molecular switches”� of the
capsid protein molecules, an explanation often advocated
heuristically by biologists �3�. In particular, they concluded
that multiple particle “internal states” must be involved for
the quasiequivalent structures of Caspar and Klug to arise as
low-energy equilibrium structures. Notably, the modeling of
Bruinsma and co-workers does not actually address the self-
assembly process itself, but rather the relative energies of
fully assembled viral capsid structures. �This model will be
discussed in further detail below where we show that protein
molecular switches are not required to generate quasiequiva-
lent structures in our multipole interaction model fluids.�

There has also been interesting recent work addressing the
self-assembly process itself based on equilibrium polymer-
ization models of the formation of icosahedral shells �45�.
This approach is apparently able to describe important as-
pects of the virus self-assembly thermodynamics and kinet-
ics, but this kind of coarse-grained kinetic assembly model
does not provide much insight into what aspects of the pro-
tein interaction potentials actually give rise to icosahedral
shell organization. We also note pioneering molecular dy-
namics investigations of the self-assembly of icosahedral
structures by Rapaport and co-workers �49�, which uses
“prefabricated” equivalent subunits and achieves their as-
sembly into icosahedral shell structure by adjusting their in-
teractions and temperature. This work provides a specific
example of self-assembly into closed-symmetric-shell struc-
tures from equivalent particles that seem to follow the
equivalence principle of Crick and Watson �39�. However,
these simulations do not lead to the self-assembly of hexago-
nal and pentagonal subunits that are prevalent in measure-
ments on viral assembly, so the simulations must still be
regarded as rather rudimentary models of viral capsids. We
find a coexistence of hexagonal and pentagonal subunits in
our simulations below, along with the self-assembly of icosa-
hedral shells, providing some further insights into how such
structures might form and the origin of quasiequivalence and
polymorphic assembly more generally.

Stimulated by the philosophical approaches of Crick and
Watson �40� and Caspar and Klug �3� and recent attempts to
simulate viral self-assembly and structure �46,68�, we intro-
duce a family of minimal models that can serve as a testing
ground for understanding principles of self-assembly. Our
approach builds on our systematic investigation of the Stock-
mayer fluid �SF�, which is an ideally simple model of par-
ticle self-assembly that incorporates the basic competition
between directional �dipolar� and isotropic �van der Waals�
interactions �see Fig. 1�a��, which is apparently key to many
real self-assembling systems �50–52�. The SF is a natural
starting point for investigating protein assembly since pro-
teins are often characterized by extremely large dipolar in-
teractions �e.g., the dipole moments of tubulin, collagen, and
hemoglobin�S� are 1410 D, 1150 D, and 545 D, respectively
�53� where 1 Debye �D�=3.336�10−30 C m� or directional
hydrogen bonding interactions, and it is rather likely that
these highly directional interactions are relevant to any

FIG. 1. �Color online� Schematic representation of a dipole,
quadrupole, and hexapole interactions. �a� Dipole. �b� “Square”
quadrupole indicated by �=� /2. A “linear” quadrupole corresponds
to the limit �=0. �c� Hexapole formed by three dipoles at the ver-
tices of a triangle with a head-to-tail orientation where a=�3.
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physical explanation of protein viral capsid self-assembly.
Numerous previous experimental studies of in vitro viral
self-assembly have shown that electrostatic interactions are
implicated in the self-assembly process �54�. Moreover, re-
cent simulations of charged-particle fluids �55� indicate a
strong propensity for the charged species to organize in mul-
tipole clusters, so it is natural to consider multipole poten-
tials in developing generalizations of the SF potential that
have different symmetry characteristics. In particular, below
we consider a quadrupolar generalization of the SF that mod-
els two head-to-tail dipoles or four charged particles �two
plus and two minus charged particles� in a ring �see Fig.
1�b�� and a triangular configuration of SF particles at the
vertices of a triangle in a head-to-tail orientation �see Fig.
1�c��. Such triangular configurations of proteins have been
directly observed in proteins forming viral capsids, and this
model is further motivated below �56�.

While the symmetry arguments of Crick and Watson �16�
do not make predictions for the form of self-assembly �e.g.,
tetrahedron versus icosahedron� in relation to the symmetry
properties of the organizing particles, we may formally ex-
tend their reasoning by hypothesizing that the local rotational
symmetries governing the directional interactions of the self-
assembling particles tend to be locally preserved in the self-
assembled structure. We see that the dipolar potential in Fig.
1�a� has a C�v point-group symmetry and thus has a continu-
ous rotational symmetry. The square quadrupole ��=� /2�
generalization of the SF �52� in Fig. 1�b� exhibits a discrete
�D2h� point-group symmetry, while the triangular configura-
tion of SF particles in Fig. 1�c� has a discrete C3 rotational
symmetry normal to the plane containing the dipoles. Our
requirement that these potentials preserve their local symme-
tries in the organized structure requires the formation of lin-
ear polymeric structures in the case of the SF, while two-
dimensional polymers are predicted for discrete rotational
potential generalizations of the SF. In particular, we expect
that the potentials in Figs. 1�b� and 1�c� to give rise to ir-
regular two-dimensional polymers �“random surfaces”� hav-
ing local rectangular and hexagonal structures, respectively.
We emphasize that it is primarily the symmetries of the di-
rectional interactions in these potentials that are important
for our considerations below and similar particle assemblies
to those found for the multipole potentials can be expected
for other particle interaction potentials �hydrogen bonding,
�-� interactions and localized hydrophobic interactions,
strong-segregation block copolymers in solution, grafted
polymer chains on nanoparticles having attachment points of
prescribed symmetry, etc.� sharing the same point-group
symmetries as the multipole potentials that we considered.
Zhang and Glotzer �57� have recently considered other inter-
esting examples of self-assembly with local short-range di-
rectional interactions that illustrate this point.

Our simulations validate our symmetry arguments relating
the symmetry characteristics of the particles to those of the
self-assembled structures. Specifically, a dipolar potential,
having a continuous rotational symmetry about the symmetry
axis, leads to chain formation at equilibrium �50� �equilib-
rium polymerization �58��, while changing to a potential hav-
ing twofold and threefold discrete rotational symmetries
�e.g., square quadrupole interaction or triangular ring of di-

poles, respectively� leads to the self-assembly of random sur-
faces and to nanotube and icosahedral shell structures resem-
bling those found in the self-assembly of tubular or
icosahedral viruses �1,3,41–47�. �The closing of two-
dimensional polymers in one and two coordinate directions
to form nanotubes and icosahedral shells is the analog of ring
formation for two-dimensional polymers.� We also find that
these changes in assembly organization with the symmetry of
the interaction potential are accompanied by qualitative
changes in the character of the thermodynamic assembly
transition that were not initially anticipated. We devote much
of our attention below to characterizing these changes in the
self-assembly dynamics.

The multifunctional nature of the associations for the par-
ticles with mutipolar interaction leads to strong fluctuations
in the time at which self-assembly initiates and other features
that resemble ordering in supercooled liquids where a first-
order phase transition is involved. Curiously, this behavior
simply does not exist for particles whose directional interac-
tions involve a continuous rotational symmetry �e.g., the SF�.
We find that this change in the nature of the self-assembly
transition in the formation of two-dimensional polymers al-
lows for the selective formation of distinct morphologies un-
der the same thermodynamic conditions through a control of
the “seed” geometry and interaction potential. We also find
that directional growth along a particular direction �“polar
growth”�, as found in certain biological systems �e.g., tubulin
and its structural analog in plants� �35–37�, can be induced
by controlling the symmetry properties of the seed. These
properties �a strong sensitivity of organization to rare “nucle-
ation” events, fibrous, directional growth, etc.� are character-
istic of molecular self-assembly in many important biologi-
cal systems, including sickle cell disease �24–27� and
neurodegenerative diseases �Alzheimer’s, Down’s syndrome,
etc.� �30–32�. Self-assembly processes of this kind are also
relevant to a wide range of commercial additive materials
called “gelators” that self-organize into nanoscale fiber struc-
tures �59–69� and to synthetic peptide gels promising for
tissue engineering applications �70–72�.

II. MULTIPOLE INTERACTION MODELS AS MINIMAL
MODELS OF SELF-ASSEMBLY

A. Stockmayer fluid

First, we briefly recall some basic aspects of self-
assembly in the Stockmayer fluid �50�. Specifically, two SF
particles interact via a Lennard-Jones �LJ� potential and an
additional point-dipole potential placed at the center of each
particle �Fig. 1�a��. The dipolar contribution to the interac-
tion potential is given by

udipole = ��i · � j�/rij
3 − 3��i · rij��� j · rij�/rij

5, �1�

where �i is the dipole moment of particle i and rij =ri−r j is
the interparticle separation, and the LJ contribution to the
potential �uSF�uLJ+udipole� equals

uLJ = 4����/rij�12 − ��/rij�6� , �2�

where the van der Waals �vdW� interaction energy � is a
measure of the “strength” of the vdW interaction and � char-
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acterizes the particle “size.” It is conventional to define a
dimensionless measure of the dipolar interaction energy rela-
tive to the vdW energy, ��*�2=�2 /�D�3� where �D is the
dielectric constant of the medium to describe the relative
strengths the directional to the isotropic interactions in the
SF. Physically, the dipolar interaction energy �2 /�D�3 equals
the Coulombic interaction energy between two charged hard
spheres of common diameter � and valence that are in con-
tact, where � equals the charge magnitude q times the charge
separation �—i.e., �= �q��. For all the simulations below
involving SF particles, we take �*=6, unless otherwise
stated. With this choice of dipole strength, the dipolar con-
tribution to the minimum in the potential is roughly 100
times the LJ contribution �see below� so that the directional
interaction predominates �50–52�. All densities 	 reported in
this paper are number densities, and T is normalized by the
vdW energy � /kB, where kB is Boltzmann’s constant. We
have discussed self-assembly in the SF model in detail in a
previous paper �50�, and in the present work we confine our-
selves to the properties of this model that have relevance to
our discussion of the multipole models that generalize the
SF.

B. Quadrupole-vdW fluid

The inclusion of a quadrupole interaction �Fig. 1�b�� su-
perimposed on the van der Waals interaction is a direct for-
mal generalization of the SF �73–75�. The LJ component of
the potential is the same as in Eq. �2�. The point-quadrupole
interaction between two linear quadrupoles ��=0 in Fig.
1�b�� of magnitude Qi and Qj whose orientations are de-
scribed by the unit vectors ēi and ēj can be written as

uij =
3

4

QiQj

rij
5 �1 − 5 cos2 �i − 5 cos2 � j − 15 cos2 �i cos2 � j

+ 2�cos 
ij − 5 cos �i cos � j�2� ,

cos �i =
ēi · rij

rij
, cos � j =

ēj · rij

rij
, cos 
ij = ēi · ēj . �3�

More generally, the energy between two pure quadrupoles i
and j is given by �73�

uij =
1

9
Q� i:T�

�
ij:Q� j , �4�

where

T�
�

ij = �̄�̄�̄�̄
1

rij
, rij = �r̄ij · r̄ij�1/2, r̄ij = r̄i − r̄ j .

A pure quadrupole charge configuration is defined to have a
zero net charge �i.e., monopole strength is zero� and the di-
pole and higher multipole interactions �octapole and higher-
order multipoles� are also taken to be zero. An example of
such an ideal quadrupole configuration of discrete charges is
shown in Fig. 1�b�. The quadrupole moment tensor for a
molecule i consisting of Ni discrete �point� charges of charge
qj is given by,

Q� i = �
j=1

Ni

qj�3r̄ jr̄ j − rj
2�� � . �5�

More specifically, for the four-particle configuration shown
in Fig. 1�b�, consisting of four point charges of common
charge magnitude q and charge separation a between plus
and minus charges, the quadrupole moment tensor reduces to
the matrix representation

Q� = 4a2q	
−

cos �

2
0 0

0
cos � − 3

4
0

0 0
cos � + 3

4


 . �6�

This represents the quadrupole moment tensor for a pure
quadrupole in its principle axis frame where the matrix be-
comes diagonal. The limit �→ 0 recovers the case of a linear
quadrupole oriented along the z axis where we have

Q� linear = 4a2q�− 1/2 0 0

0 − 1/2 0

0 0 1
� . �7�

Given that Eqs. �3� and �4� for �=0 are equivalent if Q
=4a2q, we write the quadrupole moment tensor for a pure
quadrupole in its principle frame as

Q� = Q	
−

cos �

2
0 0

0
cos � − 3

4
0

0 0
cos � + 3

4


 , �8�

where Q=4a2q is taken to be a general “strength parameter”
of the quadrupole interaction. However, the interaction en-
ergy between two pure quadrupoles also depends on the
“quadrupole angle parameter” � so that two parameters are
required to specify this potential. Similar to the SF, we define
a reduced quadrupole interaction strength relative to the van
der Waals interaction as Q*=Q / ��D�5��1/2. The reader is
warned that there are multiple definitions of the quadrupole
interaction strength in the literature that differ by constants
of proportionality �73–75�.

Surprisingly, previous simulations with the quad-vdW
fluid have generally been restricted to the “linear quadru-
pole,” corresponding to �=0 in Eq. �6� �see Fig. 1�b��. For
example, the critical properties of fluids with linear quadru-
pole interactions are investigated in Refs. �73–75� Dijkstra
and co-workers describe clustering in exfoliated clay solu-
tions �76� in terms of a linear quadrupole interaction and
found the formation of branched equilibrium polymer struc-
tures rather than the linear chains found for the SF, a result
that is echoed in our results below where we briefly consider
the case ���� /2�. The square quadrupole potential ��
=� /2� indicated Fig. 1�b� is characterized by having a two-
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fold rotational symmetry about the plane containing the
charges in the discrete particle cluster analog of this poten-
tial. Below we find that this property gives rise to a general
tendency to the formation of sheetlike polymers with a rect-
angular local symmetry, as suggested in the Introduction.

C. Hexapole fluid with van der Waals interaction

It is evident that many self-assembling structures do not
have the local rectangular symmetry exhibited by the quad-
vdW fluid model and otherwise do not form one-dimensional
polymeric structures as in the SF fluid. Many structures ex-
hibit threefold, fivefold, or even higher-order discrete rota-
tional symmetries. A threefold symmetry is evident, for ex-
ample, in the faces of icosahedral viral capsids �1� and the
hexagonal lattice structure of certain tubular virus structures
�77�. We next introduce a schematic model of the multipole
class that provides some insights into growth forms having
these other symmetries.

A threefold local rotational symmetry can be generated by
simply placing SF particles at the vertices of triangles in a
head-to-tail configuration �Fig. 1�c�� to obtain a “hexapole”
or “triangular dipole” potential, augmented by van der Waals
interactions �hex-vdW model�. For simplicity, the dipole
strength, van der Waals radius, and other parameters are
taken to be exactly the same as in SF �Fig. 1�a��. As men-
tioned earlier, triangular configurations of proteins have been
directly observed in the structures of capsid proteins �56� so
that this structure is plausible for modeling virus assembly.

It should be appreciated that the triangular structures of
the hexapole model do not naturally arise in the SF since
there is a relatively large bending rigidity induced by the
dipole interaction that inhibits small ring formation when the
dipole strength is large �50�. However, such triangular as-
semblies probably form if the monomers had a anisotropic
shape such that they fit together into a triangular shape with
strong hydrophobic interactions at their boundaries to link
the dipolar elements. Such “pre-assembly” is known to occur
in the formation of clathrin cages where the three clathrin
proteins molecules form trimer structures by joining at one
of their ends to a common hub through the formation of a
charge complex �48,49�. These “triskelion” �self-assembled
three-arm star polymer� structures are the basic assembling
unit of clathrin cages �48,49� and were the inspiration for our
hexapole model. In general, it should be possible to form
modular structures having a variety of point group symme-
tries by the “tiling assembly” mechanism proposed for viral
“capsomers” or by the local chain association mechanism of
triskelions. By varying the particle interactions it should also
be possible to have the subunits form “protomers” such that
the capsomeres and triskelions have distinct self-assembly
transitions from the organization of the structures into a
larger-scale superstructure. Increasingly complex structures
could be “programmed” in this fashion.

D. Monte Carlo simulation methods

The simulation of strongly associating systems can
present serious computational challenges. The strong binding
energies between associated particles and large distances be-

tween nonassociated particles can make sampling of impor-
tant regions of configuration space difficult �78�. The time
required for particles to undergo an association-
disassociation transition can be very long compared to typi-
cal molecular dynamics simulation times. There are Monte
Carlo algorithms that can overcome these difficulties, how-
ever. Here we use the aggregate bias Monte Carlo algorithm
�79� to improve the sampling of relevant regions of configu-
ration space and enhance the formation of clusters. At the
heart of this algorithm is an intrabox swap move that is tar-
geted at sampling the formation or destruction of clusters.
We also implement the simple translational and rotational
moves to explore nearby regions of phase space. A discus-
sion of this method is given in our previous paper devoted to
the SF �50�.

The interaction between particle pairs was truncated at
half the box length. This boundary condition was motivated
by previous results for the SF that indicated the treatment of
the full long-range potential using Ewald summations was
not necessary for the density and T range considered here
�50�. We have also chosen the range of T, densities, and
interaction strengths to avoid complications from phase sepa-
ration as much as possible. The densities are in the range
0.001–0.02. While the critical points of these fluids are not
known, we did not observe any evidence of phase separation
�coexisting phases� for the conditions we investigated. The
determination of critical temperature and compositions of
these fluids would be a necessary step for studying these
fluids at higher densities.

III. RESULTS

A. Stockmayer fluid

In a previous investigation �50�, we studied the SF as a
model of self-assembly and mapped out the thermodynamic
transition lines for this fluid as a function of 	 and T. We
briefly review some of the relevant properties of this model,
before extending our discussion to our new results for the
quad-vdW and hex-vdW fluids.

The dipolar interaction leads to a strong propensity for the
dipolar particles to associate in a head-to-tail configuration
and upon cooling the particles polymerize into long polymer
chains that form and disintegrate in dynamic equilibrium
�see Fig. 2� �50�. We see from Fig. 2 that the continuous
rotational symmetry about the dipolar axis is nearly pre-
served in the polymer chains that form in these fluids and
these angular degrees of freedom lead to the formation of
particle chains having roughly random walk configurations.
This figure shows some representative particle configurations
above �T=10.0� and below �T=7.80� the polymerization
transition temperature T�=9.5 for a particle concentration
	=0.001. The transition temperature T� separating the dis-
sociated and self-assembled thermodynamic states �not ther-
modynamic phases, however� is defined by an inflection
point in the T dependence of the extent of polymerization, �
�fraction of particles in the “polymerized” state� �50,58�. In
previous work �50�, we found that the theory of equilibrium
polymerization �58� describes this equilibrium polymeriza-
tion transition rather well, where the interparticle association
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�“sticking”� energy was uniquely fixed by the magnitude of
the energy minimum in the intermolecular potential between
two SF particles �50�. At low temperatures, the long-range
dipolar interaction causes the chains to form ring structures
that minimize the field energy of the polymeric structures,
but the analytic modeling has not been developed to fully
account for these topological effects on the nature of particle
assembly �50,80–82�. Recent work indicates that the low-
energy polymer configurations exhibit nontrivial knot con-
figurations when the van der Waals and dipolar energies in
the SF have comparable magnitudes �81�, so these topologi-
cal aspects of the assembly process have clear relevance for
understanding self-assembly in real systems. Many basic
questions remain about how the topology and disordered ge-
ometry of the assemblies affect the interactions and organi-
zation of these objects into larger-scale assemblies and the
SF provides an interesting model system for exploring these
questions in the future.

Below we consider the scaling relation between the clus-
ter radius of gyration, Rg, and the cluster mass that defines
the fractal dimension of clusters and which provides a dis-
tinguishing characteristic in scattering studies of self-
assembling systems. We recall here that the radius of gyra-
tion of the SF chains exhibits a nontrivial scaling with mass,
Rg
M
, where 
�0.68 �50�. In the next section, we con-
sider the counterpart of this relation for particles with a
square quadrupole interaction where random surface poly-
mers form instead of linear polymers.

Our previous paper did not consider the dynamics of self-
assembly, and we briefly summarize aspects of the assembly
kinetics in the SF that are relevant to our discussion below.
Figure 3 shows the growth of the extent of polymerization
��t� to its asymptotic long-time value � for T near �T
=11.1� and below �T=7.86� the polymerization transition
temperature �50� T�=11.3 for 	=0.04. We observe that the
rate of self-assembly �d��t� /dt� increases with the magni-
tude of the “quench depth,” ��= �T−T�� /T�, and that the
amplitude of the fluctuations progressively diminishes with
increasing ��. In the experimental literature, curves which
monitor the extent of polymerization ��t� in time are con-
ventionally termed “progress curves” �25�. The long-time

limit of ��t� determines the equilibrium value ��t→�� of
the polymerization “order parameter,” and only such equilib-
rium quantities were reported in our previous paper �50�.
Fluctuations are evident in Fig. 3 as chains associate and
dissociate in dynamic equilibrium, the amplitude of the fluc-
tuations in ��t� and other thermodynamic properties �aver-
age energy E, chain length L, etc.� becoming larger and in-
creasingly long lived near T�. This explains the maximum in
the specific heat Cp that occurs near T�, which is a charac-
teristic observable feature in experimental or computational
studies of self-assembling systems.

We see from Fig. 3 that raising T within the polymerized
regime leads to a smooth decrease in the average chain
length L as the system reverts to monomers for T�T�. The
chain growth upon cooling and shrinkage upon heating are
quite reversible, and no nucleation seems to be required for
these processes to occur. This mode of growth, which seems
to be observed in the equilibrium polymerization of actin
�17�, is strikingly different from our findings for the quad-
vdW and hex-vdW fluids below where two-dimensional
polymer morphologies form rather than linear chains and
where large fluctuations in the time at which growth initiates
occurs.

While the interpretation of Monte Carlo �MC� generated
dynamics as a real molecular dynamics is not strictly correct
from a physical standpoint, it should provide a reasonable
qualitative description of the organizational dynamics. For
example, a monotone increase in � and increasingly rapid
rate of polymerization occur with increasing quench depth in
actin polymerization �actin polymerizes upon heating so that
we define quench depth generally as the absolute value of
temperature difference between the T at which polymeriza-
tion occurs and T�� and in the dynamics of many other self-
assembling systems. Previous work has established the va-
lidity of MC simulations in reproducing essential
characteristics of the dynamics of associating polymers
�83,84�.

FIG. 2. �Color online� Representative configurations of the
Stockmayer fluid above and below the polymerization temperature
T�. �a� T=10, �b� T=7.80. The density is constant, 	=0.001 and
T�=9.5. In Ref. �50�, we reduced T by the critical temperature of
the LJ fluid �Tc�1.3�� rather than the strength of the vdW interac-
tion � so that the reported temperatures have smaller magnitude.

FIG. 3. �Color online� Progress curves ��t� for Stockmayer
fluid at low and moderate quench depths. Upper curve indicates
��t� for a relatively deep quench �T=7.86�, while the lower curve
indicates ��t� near the polymerization transition, T=11.1. The den-
sity is constant, 	=0.04 and T�=11.3.
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B. Quadrupole/vdW fluid

Although the local symmetry associated with the ability
of SF particles to freely rotate and translate in space is bro-
ken when linear polymer chains begin to form upon cooling,
the freedom of these the particles to rotate about the local
chain axis between the particles remains preserved in the
organized structure. This rotational freedom causes the re-
sulting structures to be “floppy” and one-dimensional in na-
ture. The discrete rotational symmetry of the quad-vdW fluid
�Fig. 1�b�� gives rise to extended polymer structures that pre-
serve the discrete local rotational symmetry within the orga-
nized structure. In Fig. 4, we show a representative “random
surface” polymer that spontaneously organizes in the quad-
vdW fluid at low temperatures �T=1.35�. These structures
are evidently invariant under local twofold rotations within
the random surface so that this symmetry of the individual
particles is indeed preserved in the organized structure. We
also find that the “dipoles” comprising the quadrupole have a
strong tendency to form closed loops as in the SF. The reason
is the same, minimization of the energy of the resulting clus-
ter �50,80–82�. Thus, the organizations of the SF and quad-
vdW fluids are both driven by directional interactions and the
preservation of local symmetries in the single-particle poten-
tial. The polymerization process also leads to structures with
nontrivial topological structures depending on the system
conditions. These structures are expected to be especially
complicated when the quadrupole interaction has a compa-
rable magnitude to the van der Waals interaction, as in the SF
model, under conditions for which the magnitude of the di-
polar and van der Waal interactions are comparable �81�.

The self-interactions of these assembling surfaces involve
both excluded-volume and long-range quadrupolar interac-
tions, so it is not clear whether the geometry of these random
surfaces should be the same as self-avoiding surfaces or even
whether a universal scaling should exist at all. We briefly
address this important aspect of random surface formation in
this model in Fig. 5 where we show the scaling of Rg of these
two-dimensional polymers against the number of particles,
N, in the clusters. The data are for a range of quench depths
�T=1.35–2.0, 	=0.001, Q*=1.0� and lead to a remarkably
robust apparent scaling exponent describing these random

surfaces, Rg
N0.46±0.02. �The uncertainty is estimated by de-
termining the range of exponent values that are consistent
with fitting the data over the range 10�N�100 rather than
as an estimate of systematic error.� The scaling exponent 

=0.46 is somewhat smaller than the exponent 1

2 expected for
ideal self-avoiding surfaces in three dimensions �85�a��, so
that these random surfaces seem to be somewhat more
“crumpled,” rather than simple flat self-avoiding surfaces
where 
= 1

2 in three dimensions �85�a��. Some crumpling is
visually apparent in the spectrin protein network that pro-
vides the scaffold for red blood cell membranes where an
exponent 
 near 0.42 has been reported from scattering mea-
surements �86�.

We can appreciate how the rectangular local symmetry of
these random surfaces is encoded by the square quadrupolar
potential by examining the impact of modifying the angle �
defining the “asymmetry” of the quadrupolar potential �see
Fig. 1�b��. Changing � from � /2 to � /4, an angle interme-
diate between the square and linear quadrupole, destroys the
local square rotational symmetry evident in Fig. 4, and Fig. 6
illustrates how this symmetry breaking impacts the self-

FIG. 4. �Color online� A sheet formed by square quadrpole–van
der Waals fluid. The figure to the left indicates a view of a repre-
sentative two-dimensional random surface formed at low T from the
top, and the top right image shows a profile view. The “charge
orientation” within the quadrupoles is indicated at the bottom right.
System conditions: T=1.35, Q*=1.0, and 	=0.001. FIG. 5. �Color online� Random sheet radius of gyration, Rg vs

mass N. System conditions: Q*=1.0, T=1.35–2.0, and 	=0.001.

FIG. 6. �Color online� Self-assembly in the quad-vdW fluid with
intermediate angle �=� /4. The angular constraint creates packing
frustration, leading to a more disordered polymeric structure. Sys-
tem conditions: Q*=2.0, T=1.9, and 	=0.02.
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assembly morphology. Apparently, if the generalized quadru-
pole particles cannot “find” a well-defined surface tiling ge-
ometry, then they, by default, organize into branched
polymer structures instead. Previous simulations for linear
quadrupole particles with an additional frustrating aniso-
tropic hard-core interaction superimposed to model the an-
isotropic shape of the clay particles likewise led to the for-
mation of branched equilibrium polymers �76�. Despite the
disordered appearance of the branched polymers in relation
to their random surface counterparts, it has been shown that
branched polymer and random surfaces with excluded-
volume interactions share common scaling characteristics so
that branched polymers can be considered from a topological
standpoint as being perforated random surfaces as far as their
universality characteristics are concerned �85�a��. We thus
expect the Rg of these branched polymer structures to be the
same as for the random surfaces shown in Fig. 4. These and
many other aspects of the geometry of self-assembled struc-
tures in the quad-vdW model require further study. Our main
point here is that they exhibit well-defined geometrical sta-
tistical properties that are potentially universal for this class
of potentials.

We have previously indicated a general tendency for SF
particles to form ring polymers at low T �50�, and we now
show that this phenomenon has its counterpart in the quad-
vdW fluid. Figure 7 shows that the sheet polymers of the
quad-vdW model tend to form tubes. The process by which
these nanaotubes form in our model calculations is curious.
The first stage of this process �Figs. 7�a� and 7�b�� involves
the formation of a bilayer sheet �a structure that we refer to
as “pita bread” since this layer structure is susceptible to
opening and to particles entering this cavity�. The particles
within these bilayer sheets stagger within adjacent layers,
and this leads to the formation of moiré patterns in the
stacked layers �Fig. 8�a��. �Such “checkerboard” patterns

have been observed in tubular structures formed by the
polyoma virus �42�.� These bilayer sheets form either
through sheet folding or more commonly through an initial
stacking into multilayer sheets. There is a natural tendency
for these layers to close off at their edges and for the layers
to open up afterwards, apparently to reduce the energetic cost
of these bare edges �Figs. 7�c� and 7�d��. It is through this
rather involved process that the nanotubes “initiate” or
“nucleate” in our simulations. �The term “nucleation” is used
rather loosely since this process is evidently different than
the formation of nucleating droplets of a new phase as de-
scribed by classical nucleation theory.� In some cases, the
multiple layers of quad-vdW particles evolve into a multi-
wall tube geometry �Fig. 9�, and in this situation the topo-
logical evolution of multisheet layers into a multilayer tube
geometry is more complicated.

Recent observations of lipid nanotube formation have
provided direct evidence for this layer stacking and opening
mechanism of nanotube formation �85�b��, and the emer-
gence of nanotubes from multilayer sheets with a local rect-
angular symmetry has been directly observed in the forma-
tion of H2Ti3O7 nanotubes �85�c��. This geometrically
awkward and time-consuming process can be avoided
through the introduction of seeds that directly initiate tube

FIG. 7. �Color online� Formation of a nanotube in the quad-vdW
fluid. The tube forms through the formation of a two-layer structure,
and seams then form at the edge. This process is schematically
indicated in �a�, �c�, and �e� and corresponding particle configura-
tional realizations are shown in �b�, �d�, and �f�. Once the edges
form, the layers open up to form a nanotube. This evolution can
occur by sheet folding, but more often arises from the formation of
bilayer sheets. System conditions: T=1.7, Q*=2.0, and 	=0.001.

FIG. 8. �Color online� Self-assembly of nanotubes in the quad-
vdW fluid. �a� Left top images are top and side views of a two-layer
�“pita”� structure formed in the square quad-vdW fluid. �b� Top
right and bottom right images are side and profile views of the tube
shown in Fig. 6�f�. System conditions: Q*=2.0, T=1.4, and 	
=0.02. �b�. System conditions: T=1.7, Q*=2.0, and 	=0.001.

FIG. 9. �Color online� A multiwalled tube formed in square
quad-vdW fluid. System conditions: Q*=2.0, T=1.45, and 	=0.02.
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growth. We illustrate this “heterogeneous nucleation” pro-
cess in the next section for the hexa-vdW fluid where the
formation of nanotubes requires some “help” in our simula-
tions.

The geometrical nature of nanotube formation in the
quad-vdW particles is considered from a different angle in
Fig. 8�b� where we show side and profile views of a fully
formed tube in Fig. 7�f�. The local rectangular symmetry of
the tube is evident, and there is the suggestion of some he-
licity developing in the tube structure. Note that this emer-
gent helical symmetry is not related to molecular chirality,
but derives from the staggering of the particles within the
surface to minimize the charge energy. An interplay between
the dipole and quadrupole interaction strengths has been sug-
gested to control the angle of this staggering in the case of
tubulin �53�. �The emergence of chiral symmetry from non-
chiral molecules is discussed by Schnur where he empha-
sizes the role of particle shape anisotropy in the emergence
of chirality in self-assembled nanotubes �13�.� We remark
that tubulin forms nanotubes with a similar rectangular sym-
metry �35� as the simulated structures in Fig. 8 and that the
general tendency to form helical cylinders is consistent with
Crick and Watson’s equivalence arguments �39�. Next, we
focus on the dynamics of the two-dimensional polymeriza-
tion process in the quad-vdW model.

Figure 10 shows the progress curves ��t� for the quad-
vdW fluid for a relatively deep, moderate, and shallow tem-
perature quench. We see that the rate of assembly becomes
more rapid for T increasingly below a characteristic instabil-
ity range �the precise value of the thermodynamic transition
temperature is hard to determine due to our limited system
size and the presence of large fluctuation effects, which we
discuss below.� This same trend was found for the SF—the
stronger the thermodynamic driving force, the more rapid the
assembly. Currently, there is no theory that quantitatively
explains this trend which seems to apply to self-assembling

systems broadly. We also observe that the amplitude of the
fluctuations increases as the transition temperature is ap-
proached; again, this is similar to the SF and this also seems
to be a generic property of self-assembling particle systems.
The feature in Fig. 10 which is quite distinct from the SF is
the appreciable fluctuations in the time at which the polymer-
ization process initiates, the effect being especially large for
shallow quench depths �see the inset to Fig. 10�. Such large
fluctuation effects in the time at which ordering initiates are
characteristic of supercooled liquids where the crystallization
transition is a first-order phase transition and, correspond-
ingly, Zhang and Glotzer �57� have agued that the “hysteresis
effects” �dependence of nominal thermodynamic properties
on the heating and cooling history� found when calculating
the specific heat of multifunctionally assembling fluid im-
plies that this kind of transition is first order. Moreover, Di-
Marzio and Guttman �87,88� have developed a theory of
two-dimensional polymerization that accords with this sug-
gestion. In our view, the question of transition order in self-
assembling random surfaces should remain open until these
systems are studied more carefully. Some aspects of the as-
sembly seem to resemble the SF, while others seem to re-
semble a kind of “crystallization.” At any rate, the large fluc-
tuations in the “nucleation time” tN explain why it is difficult
to obtain well-equilibrated estimates of thermodynamic
properties and why calculations made for fixed, albeit long,
computational times are apt to exhibit “hysteresis” effects
�57�.

It is important to appreciate that these fluctuation effects
in the assembly process are more than a computational nui-
sance. Fluctuations in tN are frequently encountered in the
self-assembly of biological systems and have been particu-
larly well studied in the case of sickle cell hemoglobin fiber
formation where they have direct significance for the disease
expression �89�.

The rather large fluctuations in tN are enhanced by the
relatively small system size of our simulations. For larger
systems, the transition should become sharper and more re-
producible as the probability of having a large number of
seeds form after a short time becomes larger for any given
run. On the other hand, the self-assembly of many real bio-
logical systems often occurs under conditions of small sys-
tem size and confinement �e.g., the interior of a cell or a cell
organelle�, so these fluctuation effects have appreciable inde-
pendent interest for studying self-assembly in biological sys-
tems, and we further consider these fluctuation effects and
how to control them further in the next section.

Measurements on synthetic fiber forming molecules under
bulk solution conditions seem to exhibit rather sharply de-
fined self-assembly transitions, and numerous self-
assembling systems have been found to characteristically ex-
hibit the same Arrhenius temperature dependence for the
critical concentration �65,66,68� of self-assembly as found
for the SF �50�. This suggests to us that that this Arrhenius
concentration dependence of the transition curves should
also hold for the quad-vdW model �and for the hex-vdW
fluid model described in the next section� for large systems,
despite our current difficulty of quantitatively determining
the self-assembly transition temperature in our simulations.
More generally, we suggest that the same thermodynamic

FIG. 10. �Color online� Progress curve ��t� for the quad-vdW
fluid. The growth in general becomes more rapid upon cooling, and
the amplitude of fluctuations correspondingly grows as the transi-
tion temperature is approached. The most rapid growth occurs at
T=1.0, intermediate rate growth for T=1.65, and slow fluctuating
growth for T=1.75 �inset�. System conditions: Q*=2.0, T=1.0,
1.65, 1.75, and 	=0.001.
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analysis that we developed for describing self-assembly in
the SF model should also be applicable to self-assembling
systems broadly. The validity of this suggestion remains to
be checked.

C. Hexapole fluid with van der Waals interaction

Many naturally occurring structures that form by self-
assembly exhibit threefold, fivefold, and even higher-order
discrete rotational symmetries. We next introduce a minimal
fluid model of the multipole type �hex-vdW model� that
gives some insight into the origin of these growth forms. As
described above, we obtain a simple potential model involv-
ing a threefold rotational symmetry by placing SF particles at
the vertices of an equilateral triangle in a head-to-tail con-
figuration so that all particles retain their equivalence of in-
teraction.

Upon lowering temperature in the hex-vdW generaliza-
tion of the SF �interaction parameters are the same as those
in Sec. III A�, we observe a propensity for self-assembly into
random surfaces �see Fig. 11�. As expected, these random
surfaces exhibit a threefold local symmetry deriving from the
symmetry of the hex-vdW particles. Within these sheets,
there is a tendency for the � and � lobes of the hex-vdW
particle potential to form closed-ring dipolar paths �see the
inset to Fig. 11�. These observations provide a direct gener-
alization of our previous findings for the quad-vdW fluid
where instead the twofold discrete rotational symmetry of
the particle potential encoded the formation of random sur-
faces with a local rectangular structure rather than hexagonal
�see Fig. 11�. In addition to random surfaces, however, we
also observe the spontaneous formation of hollow icosahe-

dral structures with remarkable similarities to viral capsids
and the coexistence of these structures with open random
surfaces �3,43–47�. Figure 12 shows an example of one of
these hollow icosahedral structures, which includes a cross-
sectional view that reveals its hollow interior. In this series of
images, we also depict this structure in terms of the primitive
triangles defining the hex-vdW particles. Notably, each par-
ticle exhibits “equivalent interactions” and fulfills the formal
requirements of Crick and Watson �39�.

The formation of icosahedral shells illustrates a new phe-
nomenon regarding how particle symmetry encodes informa-
tion about the geometry of structures that form by self-
organization. In addition to the evident threefold symmetry
of the icosahedron faces, an icosahedral shell is characterized
by 12 fivefold symmetry axes about the vertices of the icosa-
hedron. How did this symmetry arise which is not shared by
the single-particle potential? The answer to this question be-
comes apparent by following the course of the self-assembly
process. In the case of the formation of an open hexagonal
sheet, the growth pattern is nucleated through the formation
of a hexagonal symmetry seed composed of six hex-vdW
particles in a planar configuration �Fig. 13�, while the icosa-
hedral shell is nucleated by the formation of a pentagonal
symmetry seed having a fivefold symmetry �90�. These fun-
damental “seed” structures are shown in Fig. 13. Evidently,
both the symmetries of the hex-vdW particles and the seeds
they form are preserved in the self-assembled structure. The
pentagonal seeds �inset to Fig. 14� form from the hex-vdW
particles by tilting their orientation with respect to their basal
plane, yielding a lower potential energy per particle than for
five hex-vdW particles in an ‘unsatisfied’ flat configuration.
The potential energies of the particles within an idealized
growing icosahedral sheet and a flat hexagonal sheet are
shown in Fig. 14. �Shape fluctuations in the shell and open-
sheet structures will change these energies somewhat, but the
overall energy trends should be preserved.�. Figure 14 shows
a progressive decrease of the potential energy per particle for
an icosahedral shell grown by progressively adding particles
to the edge of the structure until the icosahedral shell is com-
pleted and for a hexagonal sheet where each additional par-
ticle is placed in a position of lowest potential energy at each
step of the assembly of these idealized structures. The energy
per particle for the artificially grown icosahedral shell starts a
little higher than the hexagonal sheet, but it drops sharply
when the pentagon becomes completed, whereupon the po-
tential energy per particle becomes rather slowly varying

FIG. 11. �Color online� Self-assembled random surfaces formed
in the hex-vdW fluid. System conditions: �*=6.0, T=7.75, and
	=0.001.

FIG. 12. �Color online� Self-assembled icosahedral shells formed in the hex-vdW fluid. �a� Icosahedron formed from triangular clusters
of SF particles, �b� slice through icosahedron revealing cluster interior, �c� representation of icosahedron emphasizing position of faces of
triangular particles composing the cluster, and �d� ideal icosahedron. System conditions: �*=6.0, T=7.75, and 	=0.001.
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with the addition of further particles. The potential energy
per particle for the hexagon likewise “sticks” to a relatively
constant value after the hexagon has finally formed. These
results indicate that the energetic driving force can change
during the course of assembly and we can expect the forma-
tion of certain “magic number” clusters that are especially
stable and that can exist in dynamic equilibrium with other
cluster geometries having distinct symmetries. If these struc-
tures are involved in the self-assembly of some larger struc-
ture, then the resulting structures naturally exhibit a
quasiequivalent structure containing different local potential
environments within the assembly at equilibrium. Notably,
this mechanism for quasiequivalent self-assembly does not
require the existence of molecular switches. The general ten-
dency to form relatively stable pentagonal and hexagonal
clusters also accounts for polymorphic growth under non-
equilibrium growth conditions �strong thermodynamic driv-
ing force� where such structures naturally serve as “seeds” to
subsequent growth �54�.

The relative similarity of the potential energies per par-
ticle in the pentamer and hexamer clusters indicated in Fig.
14 means that it should be possible to tune the relative popu-
lations of these clusters through varying the dielectric con-
stant and other solution parameters that influence the inter-
particle interaction strength if these systems are in
equilibrium. In conformity with our modeling, it has been
found that the relative concentration of pentamer and hex-

amer units can indeed be reversibly tuned by varying solvent
conditions �42,45,54,91�. It might be possible to tune the
capsid geometry �e.g., triangulation number� by varying the
population of these “capsomere” species in a large-scale
simulation by correspondingly tuning of the intermolecular
potential parameters to emulate the structures of specific
quasiequivalent �T�1� viral capsid structures �3�. We infer
from the prevalence of quasiequivalent capsid organization
in active viruses that we are dealing with dynamic structures
formed under near-thermodynamic equilibrium conditions.
Equilibrium is required for the clusters to rearrange their
configuration to explore lower-energy particle configurations
to find unique energy-minimizing structures as envisioned by
Caspar and Klug �1,3�.

An interesting recent attempt at explaining the prevalence
of quasiequivalent structures in spherical viruses was made
by Bruinsma and coworkers �46,47�. They start from the as-
sumption that a fully assembled virus can be modeled by
placing idealized circular disks on a sphere where the disk
diameter is varied to model the hexamers and pentamers of
the capsid shell. In particular, they prescribe the relative di-
ameters of these disks to equal 0.88, which is remarkably
compatible with our simulation estimates of the hexagon-
pentagon diameter ratio of 0.88. �Our estimate of this ratio
assumes that the SF particles within the hexapole particles
have a diameter set by the position of the minimum in the SF
particle interaction potential �50� and that the diameter of the
pentamer and hexamer is determined by a cylinder that just
encloses these model capsomere structures.� Bruinsma and
co-workers �46� further assume the existence of equilibrium
in the interconversion of the disk structures representing the
hexagons and pentagons so that the population of these spe-
cies is governed by a Boltzmann distribution with an energy
E related to the difference in the potential energies between
these structures. The most important finding of this work is
that quasiequivalent structures only occur when E is suffi-
ciently small so that the capsomeres can feely interconvert.
Increasing the dipolar energy in our model leads to an in-
crease in the magnitude of E in the hexapole model so that
we would naturally expect a prevalence for the formation of
pentagons for large values of the dipolar energy and to de-
viations from quasiequivalence if our model is combined
with the modeling of Bruinsma and co-workers �46�. Corre-
spondingly, there have indeed been observations that certain
viruses �polyoma and certain wart viruses� exclusively form
assemblies from pentagonal capsomeres, thereby leading to
exceptions to the quasiequivalent pattern of viral capsid as-
sembly �42�. Such exceptions are rare, but understandable.

FIG. 13. �Color online� Formation of hexagonal and pentagonal seeds in the hex-vdW fluid �HF�. Left images show side and top view
of the hexagonal seed, while the right images indicate side and top views of the pentagonal seed. Note that the hex-vdW particles tilt out of
the plane to create a surface of near-constant mean curvature.

FIG. 14. �Color online� Energy per particle in the sequential
�“assembly-line”� formation of hexagonal sheets and icosahedral
shells in the hex-vdW fluid. System conditions: T=7.85, �*=6.0,
and 	=0.001.
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The formation of particle clusters having a fivefold sym-
metry is not a phenomenon unique to virus capsid formation.
The formation of structures having this symmetry is also
prevalent in supercooled liquids where icosahedral clusters
naturally occur in even simple fluids at low temperatures as
the particles evolve towards their lowest-energy local par-
ticle configurations �92�. Of course, the fivefold symmetry of
these clusters is not compatible with the long-range transla-
tional order of bulk crystals �and the acceptable symmetries
of the space groups describing crystals�. The presence of
such structures in cooled liquids can lead to an energetically
frustrated and characteristically slow dynamical evolution
because of the slow rate of interconversion of these relatively
low-energy particle packing configurations into configura-
tions that are representative of a disordered fluid. A frustrated
dynamics should also be characteristic of self-assembling
systems due to the long residence times of the particles
within the dynamic clusters, so we can expect to find many
commonalities between the dynamics of self-assembling and
glass-forming particle systems �83,84�.

In addition to observations of an admixture of hollow
icosahedral capsid shells and hexagonal sheets in solutions
of capsid-forming proteins in vitro �93,94�, spherocylindrical
viral structures having a morphology similar to carbon nano-
tubes have also been observed experimentally �77�. While
tubular structures with a hexagonal local symmetry do not
seem to naturally arise in the hex-vdW model under the con-
ditions we simulated, we can readily generate such structures
through the introduction of an appropriate seed. In the next
section, we discuss how seeding alters the nature of the self-
assembly process.

D. Controlling self-assembly with seeds

Inserting seeds of specific symmetry provides an impor-
tant source of control over the geometry and growth kinetics
of self-assembly. Seeding also provides a way of imposing
growth symmetries that are not shared by the potential of the
assembling particles. It is well known that this templating
process �95�a�,96� is utilized by many biological systems to
regulate self-assembly into unique or nearly unique growth
forms and this templating must also be of crucial importance
for controlling polymorphism in synthetic nanofabrication.

Figure 15 illustrates the growth of a hollow cylinder
nucleated from a seed having the form of a ring of �red�
hexagons formed from hex-vdW fluid particles. �Our choice

of seed structure is motivated by the seeding of microtubule
growth by the ring structures assembled from 
-tubulin rings
positioned on the centrosome �35�b�,35�c��.� We observe
from Fig. 15 that this heterogeneous nucleation process leads
to the propagating growth of a cylinder having a threefold
local symmetry, a structure that otherwise does not readily
form under the thermodynamic conditions of our simulation.
As before, this structure reflects the local symmetries of the
assembling particles and the symmetry property imposed by
the seed �the near continuous rotational symmetry about the
tube axis�. The difference here is that the symmetry of the
seed is imposed artificially rather than by having the seed
form itself through a rare nucleation event. We also found
that making the seed anisotropic �by turning off the dipole
interaction of the two hex-vdW particles on one side of the
hexagon ring seed in Fig. 15� leads to directional growth
along the direction in which the seed dipolar interactions
were preserved. An example of a growth morphology gener-
ated by this process is shown in Fig. 16. “Polarized growth”
of this kind is characteristic of many biological self-
assembly processes such as microtubule growth emanating
from the centrosome in the course of mitosis �36�. Directed
growth dynamics is again a direct consequence of “imprint-
ing” the symmetry properties of the seed particle onto the
self-assembled structure. This type of imprinting process is

FIG. 15. �Color online� Seeded
nanotube formation in the hex-
vdW fluid. The image shows from
left to right the end-on view, side
view, and profile view of the
growing tube. System conditions:
T=7.85, �*=6.0, and 	=0.001.

FIG. 16. �Color online� Seeded nanotube formation in the hex-
vdW fluid with anisotropic seed. The ring seed is composed of
hexagonal “capsomeres” composed of hex-vdW subparticles as in
Fig. 15, but only simple LJ particles are incorporated into the left
side of the ring seed. Self-assembly growth is “polar” with this ring
seed. System conditions: T=7.85, �*=6.0, and 	=0.001.
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probably a significant factor in the templating of inorganic
crystalline forms by complex organic self-assembled struc-
tures that characterizes the growth forms of many simple
organisms �95�b��.

It should also be possible to control the helicity �“chiral-
ity”� of the tubular assemblies to some degree through seed-
ing, but the pitch that we could achieve by such a procedure
must be limited by the energetic cost of the distortions re-
quired by imprinting this structure. Although we do not pur-
sue this generalization here, this “chiral seeding” is an obvi-
ous approach to controlling the chirality of carbon nanotubes
�97�a�� and other organic and inorganic nanotube structures.


-tubulin forms a lock-washer-shaped ring structure
�35�b�,35�c�� that may act in the fashion by regulating the
helicity of microtubules �which seems to exhibit variable he-
licity according to its preparation� that grow from the cen-
trosome during cell division.

As an aside, we note that we had some difficulty growing
long tubes having hexagonal local symmetry due the inser-
tion of pentamer hex-vdW clusters in the course of growth.
Once these defect structures are introduced into the tube,
there is a general tendency for the tube to pinch-off to form
a closed surface. This effect has also been observed in mo-
lecular dynamics simulations at the growth of single wall
nanotubes �97�c��. By Euler’s theorem, the resulting irregu-
larly shaped closed surfaces have exactly 12 pentagonal ver-
tices �98�, as in the case of perfect icosahedral shells. When
this pinching-off effect is very strong and occurs symmetri-
cally along the tube periphery, it apparently can lead to the
formation of conelike closed capsule structures. �These struc-
tures are commonly observed in fullerene molecules and in
the viral core capsids of HIV and retroviruses of disease
interest �77,99�. The physical factors that control the organi-
zation and stability of these asymmetric core capsid struc-
tures are important because the disruption of these structures
has been found to significantly influence virus infectivity
�77�.� Interestingly, these cone-shaped capsules are predicted
to exhibit quantized cone angles associated with the allow-
able positioning of the pentagonal “defects” in the shell and
these exotic structures have been experimentally observed in
viruses and there fullerene “analogs” �77,97�a��.

The introduction of an artificial seed also has a dramatic
influence on the evolution of the self-assembly process. The
growth kinetics without the seed exhibited intense fluctua-
tions in the time for which assembly initiates from simula-
tion to simulation, as discussed in Secs. III C and II D.
Eliminating the requirement for homogeneous nucleation of
a seed structure in the growth dynamics leads to a self-
assembly growth process that is much more reproducible.
Moreover, seeding can dramatically reduce the average time
required for growth initiation and thus can reduce the time
required for self-assembly. We next discuss the origin of the
fluctuations in the initiation time, and we then show how
these fluctuation effects can be controlled with seeds.

The fluctuations in the initiation time occurring in the
quad-vdW and hex-vdW models can be traced to the forma-
tion of hexagonal and pentagonal seeds, which are especially
rare events close to the thermodynamic transition tempera-
ture where the energetic driving forces are weak. �Recent
measurements have been able to directly observe quasiplanar

nuclei in protein crystallization �100�, but otherwise obser-
vations of seed structures in protein self-assembly are quite
rare.� Under these conditions, there are large fluctuations in
the nucleation timescale. We illustrate this general phenom-
enon in Fig. 17�a� where ��t� for the particular case of the
hex-vdW fluid is shown for temperatures close, moderately
below, and far below T�. As noted before, the fluctuations
become larger for smaller quench depths, while the rate of
self-assembly increases with quench depth. Nucleation
events are apparently more sharply defined in the quad-vdW
model than for the hex-vdW fluid, an effect no doubt related
to the larger number of particles needed for the formation of
the hex-vdW fluid seeds.

It is apparent that all the ��t� curves in Fig. 17�b� grow in
a similar qualitative fashion once nucleation has initiated.
The main source of variability is then the nucleation time tN
itself. We can gain some insight into this general property of
the ��t� curves by shifting the time coordinate to a time t
relative to tN. The time-shifted ��t− tN� data nearly superim-
pose, and a similar procedure also works for ��t� data for the
well-studied case of the self-assembly of sickle cell hemo-

FIG. 17. �Color online� Progress curves ��t� for the hex-vdW
fluid. The top image shows the large fluctuations that occur in
nucleation time tN and in the magnitude of ��t� close to the ther-
modynamic transition. The bottom image shows the result of time-
shifting ���t�→��t− tN�� the curves in the top image. System con-
ditions are identical for each run: �*=6.0, T=7.85, and 	=0.001.
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globin protein fibers under confinement �solution volume

O�10−15–10−16 m3�� conditions �101�. By performing
many simulations and averaging the results, we can deter-
mine the average rate of these inherently stochastic tN fluc-
tuations �102,103�. This procedure, which has been per-
formed in the case of sickle cell hemoglobin �89,101,102�,
requires hundreds of simulations to acquire good statistics,
and this ambitious task is avoided in the present paper. Next,
we consider how the introduction of a seed influences the
kinetics of self-assembly.

Figure 18 shows an example of how the introduction of an
artificial seed modifies growth kinetics under conditions
where intense fluctuations were formerly exhibited �see Fig.
10�. We see that by eliminating the requirement for homoge-
neous nucleation of a seed, we obtain ��t� curves that are
much more reproducible. �Seedlike structures that form at
the early stage of growth due to homogeneous nucleation
evidently compete with the artificial seed, leading to some
residual fluctuations at short times, but this is a secondary
effect.� Seeding generally reduces the average time for
growth to initiate and thus can substantially reduce the over-
all time required for self-assembly. After seeding the ��t�
curves for the quad-vdW and hex-vdW models are reason-
ably smooth and do not require any time shifting to achieve
superposition. Moreover, the qualitative shape of the ��t�
curves with the seeded growth then resembles the assembly
kinetics of the SF model where nucleation effects are not
apparently operative. Thus, seeding is apparently a powerful
means of regulating both the structure and kinetics of assem-
bly structures involving two-dimensional polymerization.

IV. CONCLUSIONS

We have sought to understand how the symmetry proper-
ties of the particle potential encodes information about the
geometry of self-assembled structures and to determine pri-
mary factors that influence the kinetics of the self-assembly.
Our principle motivation for this work is to provide guidance

in the fabrication of synthetic self-assembling systems. Al-
though our treatment has been restricted to potentials com-
bining directional �multipole� interactions with isotropic van
der Waals interactions, similar effects can be expected to
arise from other highly directional interactions �9� �hydrogen
bonding, hydrophobic interactions, �-� interactions of aro-
matic species, metal chelation, etc.� in competition with van
der Waals interactions. Anisotropic contributions to the inter-
action potential arising from particle shape anisotropy are
also basic to understanding real self-assembling systems. On
the other hand, biological molecules characteristically have
large Coulombic, dipolar, and multipole interactions, so this
class of potentials offers a reasonable starting point for mod-
eling certain broad trends in biological self-assembly and for
ascertaining factors of practical significance in controlling
synthetic self-assembly in future nanofabrication applica-
tions. The long-range character of these interactions would
make shape anisotropy contributions to the interparticle in-
teraction weaker than in fluids with short-range interactions.

In previous work, we extensively studied the Stockmayer
fluid as prototypical model of molecular self-assembly. In
this model, we observe the formation of linear polymer
chains that exist in dynamic equilibrium and which have
well-defined equilibrium properties that are well described
by the theory of equilibrium polymerization �50,58�. The po-
tential of this model is characterized by a continuous rota-
tional symmetry about the dipole axis �50�, which allows us
to continuously tune the extent of polymerization �, chain
length L, and other thermodynamic properties as a function
of temperature. The organization and disordering processes
are readily reversible �50�. This model of self-assembly pro-
vides a reference point for comparison to our new results for
self-assembly in fluids where the particle potential has a dis-
crete rotational symmetry and where many new effects
emerge in association with this symmetry change.

The hex-vdW fluid is constructed from the same Stock-
mayer fluid particles, but we array the particles at the verti-
ces of a triangle to create composite particles with a threefold
rotational symmetry. Unexpectedly, we found that the dis-
crete rotational symmetry of the hex-vdW fluid particle po-
tential qualitatively changes the kinetics, as well as the struc-
tures that form upon self-assembly. The self-assembly
transition exhibits large fluctuation effects reminiscent of a
first-order phase transition, and it becomes difficult to esti-
mate thermodynamic properties from simulations. In particu-
lar, the progress curves ��t� describing the organizational
kinetics become dependent on an essentially random “nucle-
ation time” tN at which self-assembly initiates. We also find
that the form of the self-assembly is quite sensitive to the
geometry of the seeds that arise in the course of growth and
to seed particles added before assembly has initiated. As a
consequence, the resulting self-assembled structures tend to
be polymorphic if the organizational process is not subjected
to control through the introduction of artificial seeds �54�. On
the other hand, it is possible to generate essentially unique
structures and to control the fluctuations in the organization
time through the introduction of seeds to direct the growth.
This templating effect �104� and the observation of stochastic
evolution arising from fluctuations generated by relatively
rare nucleation events are characteristic features of biological

FIG. 18. �Color online� Progress curves ��t� for the hex-vdW
fluid with a seed. System conditions are identical to those for Fig.
17, except that a hexagonal seed �see Fig. 13� has been incorpo-
rated. System conditions: �*=6.0, T=7.85, and 	=0.001.
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self-assembly, and the quad-vdW and hex-vdW models pro-
vide a laboratory for studying these fundamental effects.

The self-assembly of random surface structures in both
the quadrupole–van derWaals and hexapole–van der Waals
fluids provides clear examples of how the local symmetries
of the particle potential encode information about the self-
assembly organization, thus validating our central hypothesis
that the particle point-group symmetries tend to be preserved
in the particle assemblies. In particular, the quad-vdW fluid
led to the formation of random surfaces with a local rectan-
gular symmetry, while the hex-vdW fluid led to two-
dimensional polymer surfaces having a three fold local sym-
metry. Curiously, the icosahedral shells that form in the hex-
vdW fluid exhibit symmetries that are not possessed by the
assembling particles. The formation of these hollow shells
occurs through the formation of low-energy pentagonal seeds
in the course of the early assembly, and the curvature of this
structure causes the assembly to evolve into completed shells
having an icosahedral symmetry in which both the symme-
tries of the hex-vdW particles and the seeds that form from
them are encoded. Numerous important biological structures
�virus capsid shells and the core capsid structures of complex
viruses such as HIV, clathrin, etc.� involve an organization of
closed surfaces built up from a combination of similar hex-
agonal and pentagonal structural elements, and this simple

model gives some insight into the nature of this growth pro-
cess. For example, we find that no molecular switch is re-
quired for the pentagonal and hexagonal structures of
quasiequivalent virus structures to form in our model, al-
though this does not deny the existence of these structures or
their functioning in real viral capsid assembly, as originally
conceived by Caspar and Klug �3�.

Although the matter is challenging computationally,
charged and dipolar particles characteristically exhibit a hi-
erarchy of self-assembled structures. Recent works �54,55�
have shown that even simple charged spheres will organize
into dipolar and multipolar configurations to reduce their lo-
cal charge energy �see Fig. 19�. Square quadrupole configu-
rations are energetically favored on an energy per particle
basis if the particles have the same size and valence, but
dipolar or linear quadrupole geometries can have lower en-
ergies when there is a particle size or valence asymmetry.
These ionic clusters, in turn, can be viewed as forming the
structural elements in our simulations. In this way, it should
be possible to build up complex patterns having symmetries
quite distinct from the primary particles. Apparently subtle
differences in the size and electrostatic or other interaction
characteristics can impose themselves onto the large-scale
symmetry of the resulting self-assembly. Further computa-
tional investigations will be needed to understand the general
principles that underlie these additional factors that influence
the geometry and nature of molecular self-assembly. Real
particle clusters involve a superposition of charge, dipolar,
quadrupolar, and higher-order polar interactions, in addition
to shape anisotropy and other anisotropies in the interaction
potential. Evidently, it should be possible to trigger transi-
tions between the various types of self-assembled structures
by varying the relative strengths of these interactions so that
there is a change in dominant symmetry in the self-assembly.
Changes of this kind could well explain the transformation
from a nanotube to a ring morphology in microtubules ex-
posed to certain drugs and proteins associated with viral in-
fection �105�.
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