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G. TEGZEy, J. A. WARRENz and J. F. DOUGLASz

yResearch Institute for Solid State Physics and Optics, H-1525 Budapest,
POB 49, Hungary

zNational Institute of Standards and Technology, Gaithersburg,
MD 20899, USA

(Received 1 February 2005; in final form 28 April 2005)

We discuss the formation of polycrystalline microstructures within the framework
of phase field theory. First, the model is tested for crystal nucleation in a hard
sphere system. It is shown that, when evaluating the model parameters from
molecular dynamics simulations, the phase field theory predicts the nucleation
barrier for hard spheres accurately. The formation of spherulites is described
by an extension of the model that incorporates branching with a definite
orientational mismatch. This effect is induced by a metastable minimum in the
orientational free energy. Spherulites are an extreme example of polycrystalline
growth, a phenomenon that results from the quenching of orientational
defects (grain boundaries) into the solid as the ratio of the rotational to the
translational diffusion coefficient is reduced, as is found at high undercoolings.
It is demonstrated that a broad variety of spherulitic patterns can be recovered by
changing only a few model parameters.

1. Introduction

Many of the structural materials in use are polycrystalline, i.e. they are composed of
a large number of crystallites, whose size, shape, and composition distributions
determine their properties and failure characteristics. The size scale of the constituent
crystal grains ranges from a few nanometres to centimetres in different classes of
materials. The formation of polycrystalline matter is generally poorly understood.
For example, little is known of the initial fluctuation-driven formation of crystallites,
nucleation, especially when heterogeneities (foreign particles, walls) are involved in
the process. While nucleation takes place on the nanometer scale, its influence
extends to larger size scales. Controlled nucleation [1] is an established tool for
tailoring the microstructure of matter for specific applications. The enormous mor-
phological richness of polycrystalline structures observed in thin polymer layers
reflects the complexity of polycrystalline freezing, and gives important clues to the
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mechanisms that govern their formation. Polycrystalline patterns have also bio-

logical relevance: semi-crystalline spherulites of amyloid fibrils are found in associa-

tion with Alzheimer and Creutzfeldt–Jakob diseases, type II diabetes, and a range of

systemic and neurotic disorders [2].
Polycrystalline materials can be divided into the following three classes

(see figure 1):

(a) Polycrystalline structures formed by impinging single crystals.
(b) Polycrystalline growth forms, where new grains of different crystallographic

orientations form at the perimeter of the particle.
(c) Structures formed by impinging polycrystalline particles.

Figure 1. Polycrystalline patterns. Impinging single crystals: (a) Foam-like morphology
formed by competing nucleation and growth [3]. (b) Polycrystalline dendritic structure formed
by competing nucleation and growth in the oxide glass (ZnO)61.4 � (B2O3)38.6 � (ZnO2)28 [4].
Nucleation at the perimeter: (c) ‘Dizzy’ dendrite formed in clay filled polymethyl
methacrylate–spolyethylene oxide thin film [5, 6]. (d) Spherulite formed in pure Se [7].
(e) Crystal sheaves in pyromellitic dianhydrite–oxydianilin poly(imid) layer [8]
(f) Arboresque growth form in polyglycine [9]. (g) Polyethylene spherulite crystallized in the
presence of n-paraffin [10]. (h) ‘Quadrite’ formed by nearly rectangular branching in isotactic
polypropylene [11]. (i) Fractal-like polycrystalline aggregate of electrodeposited Cu [12]. To
improve the contrast/visibility of the experimental pictures, they are shown here in false
colour.
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Crystal nucleation plays a central role in the formation of all these structures.
Following a terminology widely used by the polymer community, we distinguish
primary and secondary nucleation of crystallites. Primary nucleation produces
individual single crystals or growth centres. Secondary nucleation, in turn, produces
new crystal grains at the perimeter of existing particles. Both these processes may be
induced by the internal fluctuations of the system (homogeneous process) or by
foreign particles (heterogeneous process). The micro-mechanism of the homogeneous
secondary nucleation as yet needs identification/clarification, though it is expected
that crystallographic branching, which happens in directions favoured by grain
boundary energy minima, may play an important role.

Considering these distinct modes of nucleation, a general theory of poly-
crystalline solidification needs to incorporate the following minimal ingredients:

(i) Diffusional instabilities;
(ii) Primary nucleation (homogeneous and heterogeneous); and
(iii) Secondary nucleation (homogeneous and heterogeneous, random branching

included).

The phase field theory proved a very successful approach in describing complex
crystallization morphologies [13–15]. Such a field theoretic formulation provides a
promising starting point for developing a general model of polycrystalline freezing
especially in the light of recent developments in phase field modelling of crystal
nucleation briefly reviewed next.

Homogeneous primary nucleation: Nucleation is traditionally modelled in the
phase field theory by adding Langevin noise terms to the equation of motion.
Such an approach has been used for describing homogeneous nucleation in single-
component [16] and binary alloy systems [17], and during eutectic solidification in
binary models [18–20].

Besides performing simulations of the nucleation process, the phase field
approach can also be used to calculate the features of the critical fluctuations
[17, 21]. This includes the determination of the order parameter profiles and the
height of the nucleation barrier. In a few cases, all parameters of the phase field
theory can be fixed, and such calculations can be performed without adjustable
parameters. For example, in the one-component limit, the free energy functional
contains only two parameters, the coefficient of the square-gradient term for phase
field and the free energy scale (height of the central hill between the double well in
the local free energy density). If the thickness and the free energy of a
crystal–liquid interface are known for the equilibrium crystal–liquid interface, all
model parameters can be fixed and the properties of the critical fluctuation,
including the height of the nucleation barrier, can be predicted without adjustable
parameters. Such information is available from atomistic simulations/experiments
for a few cases (Lennard–Jones system and ice–water system). This procedure
leads to a good quantitative agreement with the magnitude of the nucleation
barriers deduced from atomistic simulations for the Lennard–Jones system, and
from experiments on ice nucleation in undercooled water [17]. Similar results have
been obtained for the hard-sphere system using a phase field model that relies on
a structural order parameter coupled to the density field [22]. Again, the model
parameters have been fixed via the interface thickness and interfacial free energy
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from atomistic simulations, so the calculations were performed without adjustable

parameters.
Heterogeneous primary nucleation: Recently, steps have been made towards a

physical modelling of heterogeneous nucleation within the phase field theory.

Castro [6] introduced walls (boundaries) into a single-order parameter theory by

assuming a no-flux boundary condition at the interface (nr�¼ 0, where n is the

normal vector of the wall), which results in a contact angle of 90� at the

wall–solid–liquid triple junction. Langevin noise is then introduced to model nuclea-

tion. We generalized this approach to the nucleation of crystallites with different

crystallographic orientation in a binary system [15]. Prescribing (nr�)¼ 0 and

(nrc)¼ 0 at the wall perimeter, we introduce chemically inert surfaces, and perform

simulations to address heterogeneous volume nucleation on foreign particles, on

rough surfaces, and in confined space (porous matter and channels).
Homogeneous secondary nucleation: Polycrystalline patterns that grow by

producing new crystal grains at the perimeter have been observed in liquids without

particulates or detectable molecular impurities. Considering the observations of

Magill [23], who noted that spherulites only seem to appear in highly undercooled

pure fluids of sufficiently large viscosity, we hypothesize that the decoupling of the

translational and rotational diffusion coefficient observed in such systems is respon-

sible for the propensity for polycrystalline growth in highly undercooled liquids.

Specifically, a reduced Drot should make it difficult for newly forming crystal regions

to reorient with the parent crystal to lower its free energy at the growth front that is

advancing with a velocity scaling with the translational diffusion coefficient Dtr.

Thus, epitaxy cannot keep pace with solidification, and consequently the orienta-

tional order that freezes in is incomplete. This trapping of orientational disorder can

be captured within the phase field theory by reducing the orientational mobility

while keeping the phase field mobility constant as discussed in detail by Gránásy

et al. [15, 24]. Specifically, in our model the growth velocity scales linearly with M�,

so consistency requires M�/Dtr. Since we also expect that M�/Drot, the difference

in the temperature dependences of the translational and rotational diffusion

coefficients can be modelled by changing the ratio M�/M�.
Heterogeneous (particle-induced) secondary nucleation: The formation of

the new grains at the interface might be induced by the foreign particles float-

ing in the liquid. We have recently developed two methods to incorporate

them: insertion of orientation pinning centres, areas of random but fixed

orientation, Gránásy et al. [25]; and introduction of particles of 90� contact

angle as described above [15].
Experiments on polymeric systems indicate an additional mechanism of

homogeneous secondary nucleation, which we term here random crystallographic

branching and produces new grains of well-defined orientational relationship with

the initial grain at the growth front.
In this paper, we formulate a general model of polycrystalline freezing that

incorporates all the primary and secondary nucleation modes mentioned above,

including random crystallographic branching, and address the formation of diverse

polycrystalline growth patterns.
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2. Phase field theory for polycrystalline solidification

We start from a phase field theory of polycrystalline solidification by Gránásy

et al. [17], which has been modified to incorporate foreign particles [25], and is

able to describe primary and secondary nucleation in two dimensions [15, 24]. The

mechanism of random crystallographic branching, is a new feature that has now been

incorporated, as described below.
In our approach, the local phase state of matter (solid or liquid) is characterized

by the phase field � (a structural order parameter). Other basic field variables are the

solute concentration c, and the normalized orientation field � that specifies the

orientation of crystal planes in the laboratory frame. Note that in two dimensions

a single orientation angle suffices, and that this formulation of the theory is valid

for two dimensions or for quasi-two-dimensional objects such as thin films. A true

three-dimensional formulation, in contrast, needs minimum three fields to describe

crystallographic orientation. Work is underway to develop a three-dimensional

generalization of the polycrystalline phase field theory [26, 27].
The free energy in the present two-dimensional formulation consists of several

contributions that will be discussed next:
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Here "� is the coefficient of the square-gradient term for the field �, wi is the free

energy scale for the ith pure component (i¼A,B), s, g, and p are the anisotropy

function, the quartic double-well function, and the interpolation function. # is the

inclination of the normal vector of the interface in the laboratory frame. s0 is the

amplitude of the anisotropy of the interface free energy, while k is the symmetry

index (k¼ 6 for sixfold symmetry). The square gradient-term is responsible for the

diffuse interface appearing in the model, while fs(c,T ) and fl(c,T ) are the composi-

tion and temperature dependent free energy densities in the bulk solid and liquid

phases, respectively, that provide the driving force for solidification.
The present model differs from previous versions used by Gránásy et al.

[17, 24, 25] in the form of the orientational contribution fori to the free energy density

that represents the excess free energy density due to inhomogeneities in crystal

orientation in space, in particular, the misorientation due to a grain boundary.
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It is now modified so that preferred crystallographic misfits appear in the model.

fori ¼ 1� pð�Þ½ �
HT

2�0
xF0 þ ð1� xÞF1

� �

F0 ¼
sin 2pm�0 r�j jð Þ
		 		 for �0 r�j j <

3

4m
1 otherwise

8<
:

F1 ¼
sin 2pn�0 r�j jð Þ
		 		 for �0 r�j j <

1

4n
1 otherwise

8<
:

ð2Þ

Here H sets the value of the small angle grain boundaries, and �0 is the correlation

length of the orientation field. The orientation field extends into the liquid, where it is

made to fluctuate in time and space. Local temporary value of the orientation field in

the liquid is understood as follows. Due to geometrical and/or chemical constraints,

a short-range order exists even in simple liquids, which is often similar to the short-

range order in the solid. Rotating the crystalline first-neighbour shell so that it aligns

optimally with the local liquid structure, one can assign a local orientation to every

atom in the liquid. The orientation obtained in this manner fluctuates in time and

space. The correlation of the atomic positions/angles shows how good this fit is.

(In the model, the fluctuating orientation field and the phase field play these roles.)

Approaching the solid from the liquid, the orientation becomes more definite

(the amplitude of the orientational fluctuations decreases) and matches to that of

the solid, while the correlation between the local liquid structure and the crystal

structure improves. In the present model, the orientation field and the phase field

are strongly coupled to recover this behaviour.
This form of fori ensures that � takes an essentially constant value (scaled between

0 and 1) in the solid, while in the liquid it fluctuates. The latter feature reflects the

local order in the liquid. Orientational ordering takes place at the diffuse interface

simultaneously with the structural transition. The orientational free energy has two

local minima as a function of the angle �0|r�|, corresponding to no misorientation

and a preferred misorientation (figure 2). This means that regions with large enough

orientation difference from a neighbouring parent crystal will relax towards a finite

misorientation. This selection of grain orientation only occurs provided that noise

does not disrupt the process. The branching angle and the depth of this metastable

minimum of fori are specified by m, n, and x. In any real system, there will be many

preferred (low energy) orientations, a reflection of the underlying crystallographic

symmetries. In our illustrative calculations n¼ 1
2 has been set, while m¼ 1, 2, and 3

correspond to branching with 90, 45, and 30�, respectively. We note that,

with appropriate choice of the parameters (x¼ 0), the orientational preference by

the metastable free energy minimum can be removed.
The orientational contribution to the free energy is multiplied with 1� p(�) to

avoid double counting the orientational contribution in the liquid, which is per

definitionem incorporated into the free energy of the bulk liquid. With appropriate

choice of the model parameters, an ordered liquid layer surrounds the crystal as seen

in atomistic simulations. With such a choice, double counting of the orientational

contribution to the interfacial free energy is also avoided, and the relations between
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the model parameters "� and wi and the measurable interfacial properties of the

constituent elements,

"2� ¼
6

ffiffiffi
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2

p
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, ð3Þ

remain unchanged in the presence of the orientation field. Here �i, �i, and Ti are the

interfacial free energy, the interface thickness, and the melting point for the ith pure

component (i¼A,B).
Time evolution is governed by relaxational dynamics and noise terms are added

to model thermal fluctuations,
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where I is the total free energy density (including the gradient terms), vm is the molar

volume, D the diffusion coefficient in the liquid, and �i are the appropriate noise

terms.
The time scales for the three fields are determined by the mobility coefficients

appearing in the coarse-grained equations of motion: M�, Mc, and M�. The

mobility, Mc, is directly proportional to the classic interdiffusion coefficient for a

Figure 2. Orientational free energy fori as a function of misorientation angle (in degree) for
two-fold symmetry (k¼ 2), while n¼ 1

2, m¼ 2, and x¼ 0.2. If the neighbouring pixel has a
smaller misorientation than �36� (local maximum), it can reduce the free energy by relaxing to
the bulk crystal orientation (0�). If misorientation is larger than this, the closest minimum is
45�. So, neighbouring pixels of large misorientation tend to relax to 45�, unless fluctuations
prevent this. Note that � is an angular variable, so the maximum possible misorientation is
��max¼ 0.5.
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binary mixture. The mobility M� dictates the rate of crystallization, while M�

controls the rate at which regions reorient. In the simulations, we use an anisotropic

mobility for the phase field M�/ 1þ �0 cos[k(#� 2p�/k)], where k and # have the

same meaning as in the anisotropy function for the interfacial free energy, while �0 is
the anisotropy parameter. The equations of motion are detailed elsewhere [15, 17].

Gaussian white noises of amplitude �¼ �sþ (�l� �s) p(�) have been added to the

non-conserved fields, where �l and �s are the amplitudes in the liquid and solid.

The noise has been discretised as described by Karma and Rappel [28] and

Plapp [29]. The noise amplitude scales with the spatial and time steps, with the

temperature and the film thickness as follows:

�0 ¼ �
�x

�x0

� �
�

�t 0

�t

� �1=2

�
T 0

T

� �1=2

, ð5Þ

where the primed quantities are for the actual simulation, and those without prime

belong to a reference state, in which the noise amplitude was �.
In the case of conserved concentration field, a random flux has been added to the

equation of motion as described by Karma and Rappel [28].

2.1. Numerical solution

The governing equations have been solved numerically using an explicit finite

difference scheme. The size of the rectangular grid has been varied between

500� 500 and 5000� 5000. Periodic boundary conditions have been applied.

The time and spatial steps were chosen to ensure stability of the solutions. As the

computed morphologies are fundamentally determined by thermal fluctuations at

the growth front, convergence to a particular morphology, as we refine the grid and

time step, is possible only in a statistical sense (i.e., the rate of secondary nucleation,

and the solid fraction inside the solidification envelopes). We note that accurate

solutions to the orientation equation require approximately 1/50 of the time step

required for the stable solution of the other fields.
A parallel code has been developed that relies on the Message Passing Interface

(MPI) protocol and was run on a PC cluster built up at the Research Institute for

Solid State Physics and Optics, Budapest, exclusively for phase field calculations.

This cluster consists of 80 nodes and a server machine. The present paper is based on

computations exceeding 40 CPU-years on a 2GHz processor.

2.2. Primary nucleation

In order to demonstrate the accuracy of the phase field theory in describing crystal

nucleation, we perform an extended analysis in a case (crystal nucleation in the

one-component hard-sphere liquid) where all the model parameters can be fixed

and the properties of the critical fluctuations are known from atomistic simulations.
As the critical fluctuation is in an unstable equilibrium with the initial liquid,

it represents an extremum of the free energy functional, which is subject to conserva-

tion constraints when the phase field is coupled to conserved fields such as

solute concentration or energy. Such constraints are imposed by the method of
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Lagrange multipliers. The field distributions, that extremize the free energy, obey the
appropriate Euler–Lagrange equations,

�F

� i

¼
@I

@ i

� r
@I

@r i

¼ 0, ð6Þ

where �F/� i stands for the first functional derivative of the free energy with respect
to the field  i, while I is now the constrained free energy density (including the terms
with the Lagrange multipliers). Here  i stand for all the fields (conserved and non-
conserved) used in theory. These equations are solved assuming that unperturbed
liquid exists in the far field, while, for symmetry reasons, zero field gradients exist at
the centre of the fluctuations. This solution can also be obtained as the nontrivial
time-independent solution of the governing equations for field evolution. The work
of formation of the nucleus (height of the nucleation barrier) can now be obtained by
inserting the solution into the free energy functional. Herein we present an extended
test of theory for the hard-sphere system.

3. Materials and simulation parameters

For specificity, we employ the well-studied, ideal solution phase diagram of the
Ni–Cu alloy (for the relevant properties see [30]). This choice is not particularly
restrictive, as it is formally equivalent to a pure material [30], where thermal diffusion
replaces solute diffusion as the dominant transport mechanism. Moreover, the model
is in no way restricted to metals as our application to polymer materials below
demonstrates. We fix the temperature to be 1574K, as in previous studies.
The orientation dependence of the molecular attachment kinetics is modelled via
an anisotropic dimensionless phase field mobility. The fibre-like crystallites that form
in many polymeric materials imply a twofold symmetry (k¼ 2) and a large kinetic
anisotropy, which was chosen as �0¼ 0.995. A similar anisotropy function has been
used for the interfacial free energy, � ¼ �0. Crystal growth is sensitive to both kinetic
and interfacial free energy anisotropies, where increasing either yields sharper needle
crystal morphologies. The calculations were performed with supersaturations S in the
range of 0.75�S¼ (cL� c)/(cL� cS)� 1.2, where cL¼ 0.466219, cS¼ 0.399112, and c
are the concentrations at the liquidus, solidus, and the initial homogeneous liquid
mixture, respectively.

Since the physical thickness of the interface is in the nanometer range and the
typical solidification structures are far larger (mm to mm), a full simulation of
polycrystalline solidification from nucleation to particle impingement cannot be
performed even with the fastest of the present supercomputers without substantial
algorithmic improvement. Such improvements are an active area of research. Since
we seek here a qualitative understanding, following other authors ([30, 31]), the
interface thickness has been increased (by a factor of 20.8), the interface free energy
has been reduced (by a factor of 6), while the diffusion coefficient has been increased
(by a factor of 100). This allows us to follow the life of crystallites from birth to
impingement on each other.

The non-dimensionalisation of the equations of motion has been done using
the length and time scales � and �2/Dl, where Dl is the diffusion coefficient in
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the liquid. In the computations, we used �¼ 2.1� 10�4 cm and Dl¼ 10�5 cm2/s.
The dimensionless time and spatial steps were chosen as �t¼ 4.75� 10�6 and
�x¼ 6.25� 10�3, while the reduced correlation length of the orientation field was
assumed to be �0/�¼�x (corresponding to �13 nm). Dimensionless mobilities of
m�¼m�,0{1þ �0 cos[k(#� 2p�/k)]}, mc¼mc,Sþ (mc,L�mc,S)p(�), and m�¼m�,Sþ
(m�,L�m�,S)p(�) have been used for the phase-, concentration-, and orientation
fields, respectively. Unless stated otherwise, we applied m�,0¼M��

2
0T/Dl¼ 1.0,

mc,L¼ (RT/vm)Dlc(1� c), mc,S¼ 0, m�,L¼M�,L�HT/Dl¼ 360, and m�,S¼M�,S

�HT/Dl¼ 0.

4. Results and discussion

First, we demonstrate that the present model gives a reasonable description of the
individual primary and secondary nucleation modes needed in a general case.
We then address the form and growth of spherulites that are the most prominent
representatives of complex polycrystalline structures forming in highly non-
equilibrium liquids, and show an amazing morphological variability.

4.1. Homogeneous primary nucleation

Recent developments in atomistic modelling of small crystalline clusters in the
hard-sphere system allow for an extension of the quantitative analysis described
by Gránásy et al. [22]. Cacciuto et al. [32] evaluated the free energy of clusters in
the hard-sphere liquid of equilibrium density as function of size that allowed the
determination of the size dependence of the solid–liquid interface free energy. The
results extrapolate to �R!1¼ 0.616(3) kT/�2, the cluster average of the interfacial
free energy for infinite size (� is diameter of the hard spheres). This value agrees well
with results from molecular dynamics simulations (e.g. with �av/(kT/�

2)¼
0.612� 0.02 for the average of the values for the (111), (110), and (100) directions
by Davidchack and Laird [33]; and with �av/(kT/�

2)¼ 0.63� 0.02 by Mu et al. [34]).
This allows the fixing of the coefficient of the square-gradient term with a higher
accuracy than in previous work, since it was uncertain how far the cluster (or
orientational) average of the interfacial free energy falls from the average for the
(111), (110), and (100) directions. A further refinement of the theory is that
the density dependence of the coefficient of the square-gradient term, "2� /
d 2CðkÞ=dk2, and of the free energy scale, w/ 1/S(k), are taken into consideration,
where C(k) is the direct correlation function of the liquid which is related to the
structure factor of the liquid via S(k)¼ 1/[1�C(k)].

The parameter-free predictions of the PFT and the exact Monte Carlo (MC)
results are compared in figure 3. The agreement between theory and MC simulations
is convincing; considerably better than the (also parameter-free) predictions of the
classical nucleation theory. The uncertainty of the input data (interfacial free energy,
equations of state, etc.) does not influence this result perceptibly [35].

These findings suggest that, using the physical interface thickness, the phase field
theory is able to predict the height of the nucleation barrier quantitatively. This
success, together with the parameter-free prediction of the dendritic growth rate
[14], suggests that a multiscale approach to the phase field theory with model
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parameters deduced from atomistic simulations is capable of quantitative predictions
for both crystal nucleation and growth.

Homogeneous primary nucleation is incorporated into our model via adding
noise to the governing equations. This method has been analysed in detail by
Castro [16].

4.2. Heterogeneous primary nucleation

We performed phase field simulations to model primary heterogeneous nucleation
on particles and rough surfaces, and solidification in porous medium in two (figure 4)
and three dimensions (figure 5). In the three dimensional calculations, a simpler
phase field model has been used, that neglects the differences in crystallographic
orientation. The latter model has been used to explore primary heterogeneous
nucleation on a stair-like surface, in a porous medium (represented by cubes placed
on a bcc lattice), and on a three-dimensional checkerboard-like modulated surface
(figure 5). Such studies might contribute to a better understanding of processes that
can be used in micro/nano-patterning. A detailed analysis of this method in 2D has
been presented by Castro [16].

4.3. Heterogeneous secondary nucleation

Foreign particles may induce polycrystalline growth. For example, a disordered
dendritic structure termed a ‘dizzy’ dendrite (figure 6) forms by the engulfment of
the clay particles into the crystal, inducing the formation of new grains [5, 6].
This phenomenon is driven by the impetus to reduce the crystallographic misfit

Figure 3. Homogeneous primary nucleation. The height of the nucleation barrier vs. the
initial density of the hard-sphere liquid as predicted by the phase field theory (PFT), the sharp
interface droplet model of the classical nucleation theory (CNT). These calculations contain
no adjustable parameters. For comparison the height of the nucleation barrier from Monte
Carlo (MC) simulations is also presented [36].
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Figure 4. Heterogeneous primary nucleation in two dimensions: on rough surfaces (left)
and on foreign particles (right). Note that nucleation happens in the ‘notches’ of the
foreign surfaces. Composition fields are shown (white — solidus, dark grey — liquidus,
black — foreign matter/walls).

Figure 5. Heterogeneous primary nucleation in three dimensions: on stairs (left) and on a
checkerboard-modulated surface (right).

Figure 6. ‘Dizzy’ dendrite in experiment (left) and phase field simulation
(composition: centre; orientation: right).
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along the perimeter of clay particles by creating grain boundaries within the polymer
crystal. This process changes the crystal orientation at the dendrite tip, changing thus
the tip trajectory (‘tip deflection’). To describe this phenomenon, Gránásy et al. [25]
incorporated a simple model of foreign crystalline particles into the phase field
theory: They are represented by orientation pinning centres — small areas of random,
but fixed orientation — which are assumed to be of a foreign material, and not the
solid �¼ 0 phase. This picture economically describes morphological changes deriv-
ing from particle–dendrite interactions. Using an appropriate density of pinning
centres, comparable to the density of clay particles, a striking similarity is obtained
between experiment and simulation (figure 6). This description extends to such fine
details as curling of the main arms and the appearance of extra arms. The disorder in
the dendritic morphology reflects the underlying polycrystalline structure that
emerges as dendrite tips deflect on foreign particles. Increasing the number density
of the foreign particles, a gradual transition is observed between the single crystal
symmetric dendrite and a polycrystalline seaweed structure (figure 7, upper row).
The latter morphology is observed in the case of single crystals when the anisotropy
is small. Here the seaweed morphology forms due to the randomization of the
orientation caused by the small crystallites, which restores isotropy at large scales.
A more detailed analysis of this mode of secondary nucleation has been presented by
Gránásy et al. [15, 24, 25].

4.4. Homogeneous secondary nucleation

(a) Trapping of incomplete orientational ordering: We have performed a systematic
study of polycrystalline morphologies formed by reducing the orientational mobility
while keeping the phase field mobility constant. The reference value of M�/M� has
been selected to be large enough to ensure single crystal growth. When M�/M� is
sufficiently small, the system can no longer establish the same orientation along
the perimeter of the growing crystal, as suggested by our initial hypothesis.
This homogeneous mechanism of secondary nucleation gives rise to a transition to
polycrystalline growth (figure 7, lower row). We observed that homogeneous and
heterogeneous secondary nucleation lead to strikingly similar morphologies and
grain structures (figure 7). These findings demonstrate a duality between the
morphologies evolving due to the effects of static heterogeneities (foreign particles)
and dynamic heterogeneities (quenched-in orientational defects). An interesting
observation is that the polycrystalline seaweed structures do not show the doublon
structure commonly seen in simulations for single crystal seaweed patterns. This
finding may deserve a closer inspection as – if proven a general feature – it could
serve as a criterion for deciding whether a seaweed structure is polycrystalline or not.
A more detailed analysis of this mode of secondary nucleation has been presented
by Gránásy et al. [15, 24].

(b) Random crystallographic branching: Another possible mechanism of
homogeneous secondary nucleation is random crystallographic branching with
fixed misorientation. This is expected if a strongly preferred branching orientation
exists in the system, which then yields a random formation of new grains at the
growth front whose orientations are in well-defined relationships with the parent
crystal.
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As this is a mechanism newly incorporated into our phase field theory, we

explore its consequences in more detail. The branching angle and the depth of the

metastable minimum of fori are specified by model parameters m, n, and x. We have

chosen n¼ 1
2, and vary the other two parameters. Since this type of branching

phenomenon is expected in polymeric matter that forms fibre-like elongated crystals,

we assumed here a large anisotropy (�0¼ 0.995) and a two-fold symmetry of the

phase field mobility (k¼ 2). We investigate the effect of these parameters on the

growth patterns below systematically.
Setting the branching angles to 90, 60, 45, and 30 degrees (m¼ 1, 1.5, 2, and 3),

only one, two, three, and five extra orientations are allowed in the growth forms in

addition to the one that nucleated, as illustrated in figure 8. Note that while the

growth form produced by 90 degrees branching is rather similar to a single crystal

dendrite grown at a fourfold symmetry of the interfacial free energy or phase field

mobility, it has been grown with a twofold symmetry of the phase field mobility and

consists of grains of two different crystallographic orientations. These results demon-

strate that indeed metastable minima of the orientational free energy fori yield

branching in well-defined orientations.
We find that the branching frequency increases with an increasing depth of the

metastable minimum (figure 9), and a transition between the needle crystal and more

space-filling forms is observed. With further increase of the depth of the metastable

minimum, fractal-like polycrystalline aggregates consisting of small crystallites

appear. A similar morphological transition has been found when increasing the

driving force of solidification (figure 10). In contrast, increasing the amplitude of

orientational noise reduces the propensity for branching, as the enhanced noise drives

the system towards the stable minimum of fori.

Figure 7. Dendrite to seaweed transition induced by heterogeneous (upper row) and
homogeneous (lower row) secondary nucleation. (Upper row: the number of particulates
increases from left to right as N¼ 0, 12 500, 50 000 and 200 000; lower row: the orientational
mobility is multiplied by the factors 1, 0.4, 0.3, or 0.1. Computations were performed with the
thermodynamic properties of Ni–Cu, at a supersaturation of 0.8, and on a 500� 500 grid.
Composition fields are shown).
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Finally, we emphasize that mechanisms (a) and (b) discussed in this section
provide two examples of homogeneous secondary nucleation. It seems highly
probable that the micromechanisms of homogeneous secondary nucleation differ
for the many diverse systems that display polycrystalline solidification at high under-
coolings. Trapping of orientational disorder and branching with fixed misorientation
might be coarse-grained representations of many of them, though probably not

Figure 8. Polycrystalline patterns formed by random crystallographic branching with branch-
ing angles of 90, 60, 45, and 30�, in a system of extreme large twofold anisotropy of the phase
field mobility (�0¼ 0.995). (Upper row: composition map; lower row: orientation map.
Computations were performed with the thermodynamic properties of Ni–Cu, at a supersa-
turation that varies from left to right as 0.85, 0.95, 1.00, and 1.00. Depth of the metastable well
of fori was x¼ 0.2. A 500� 500 grid has been used). All patterns nucleated as a small needle
crystal with its axis tilted 30� relative to the horizon.

Figure 9. Branching vs. depth of the metastable well (x) of the orientational free energy.
From left to right: x¼ 0.1, 0.15, 0.2, and 0.25. Note the decreasing grain size. Other conditions
are as for the rightmost column of figure 8. Upper row: composition map; lower row:
orientation map.
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for all. Nonetheless, processes leading to homogeneous secondary nucleation are

expected to be associated with incomplete ordering of some kind, frozen into the

crystal, i.e. analogous in essence to those discussed here.

4.5. Formation of polycrystalline spherulites

Spherulites are ubiquitous in solids formed under highly non-equilibrium conditions

[23]. They are observed in a wide range of metallurgical alloys, in pure Se [7], in oxide

and metallic glasses [37], mineral aggregates and volcanic rocks [38, 39], polymers

[23, 40], liquid crystals [41], simple organic liquids [42], and diverse biological mole-

cules [2, 43]. Many everyday materials, ranging from plastic grocery bags to airplane

wings and cast iron supporting beams for highway bridges, are fabricated by freezing

liquids into polycrystalline solids containing these structures. While the term

‘spherulite’ suggests a nearly spherical shape (circular shape in two dimensions

where the term spherulite is still employed), this term is used in a broader sense of

densely branched, polycrystalline solidification patterns. Spherulitic patterns exhibit

a diversity of forms (see e.g. figure 1d–g).
Experimental studies performed over the last century indicate that there are two

main categories of growth forms commonly termed spherulites [11]. Category 1

spherulites grow radially from the nucleation site, branching intermittently to

maintain a space-filling character (figure 11). In contrast, Category 2 spherulites

grow initially as thread-like fibres, subsequently forming new and new branches at

the growth front (figure 11). This branching of the crystallization pattern ultimately

leads to a crystal ‘sheaf’ that increasingly splays out during growth. At still longer

times, these sheaves develop two ‘eyes’ (uncrystallized regions) on each side of the

primary nucleation site. Ultimately, this type of spherulite settles down into a

spherical growth pattern, with eye structures apparent in its core region. In some

materials, both categories of spherulites occur in the same material under the same

nominal thermodynamic conditions.

Figure 10. Polycrystalline patterns formed by random crystallographic branching as a
function of supersaturation that varies as S¼ 0.7, 0.8, 0.9, 1.0, and 1.1 from left to right.
The branching angle is 30�. Other conditions are as for figure 8. (Upper row: composition map;
lower row: orientation map). Note the transition from needle crystal to an essentially isotropic
object as a result of increasing branching frequency.
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Category 1 spherulites have been seen to form from transient single crystal nuclei

[44]. Our model captures the gradual transition from square-shaped single crystals to

circular-shaped under isothermal conditions. As seen in simulation, square-shaped

single crystals nucleate after an initial incubation period. After exceeding a critical

size (that depends on the ratio of the rotational and translational diffusion

coefficients), the growing crystal cannot establish the same crystallographic

orientation along its perimeter. The new grains form by a random version of the

mechanism ‘interface breakdown’ suggested by Oldfield et al. [45]. The new grains

are initiated by orientational defects frozen into the solid (figure 12). This process

gradually establishes a circular perimeter for mature growth forms. Our simulations

indicate that the formation of Category 1 spherulites may also start with the forma-

tion of polycrystalline nuclei consisting of multiple twins and other defects, a

phenomenon known to happen even in metals [46] and simple model liquids [47].

Remarkably, similar patterns can also be obtained by branching with fixed branch-

ing angle at sufficiently large supersaturations (see rightmost column in figure 10).
Many studies of the early stages of the growth of Category 2 spherulites,

especially in polymers, indicate that these structures initially grow as slender

thread-like fibres [11, 23, 44, 48]. These structures successively branch to form a

space-filling morphology. Our simulation with a fixed branching angle shown in

the fourth column of figure 10 reproduces this phenomenon fairly well. A large

kinetic anisotropy of twofold symmetry has been assumed, as is appropriate for

polymeric systems that have a propensity to form crystal filaments. We included a

preferred misorientation angle of 30� (m¼ 3 and x¼ 0.15). Ideally, in a system where

filament branching happens with a 30� misfit, the polycrystalline growth form may

consist of only grains that have six well-defined orientations (including the one that

nucleated), which differ by multiples of 30�. With increasing driving force, the

branching frequency increases, and more space-filling patterns emerge, while the

average grain size decreases (figure 10). This leads to a continuous morphological

transition that links the needle-crystals forming at low supersaturation to axialites,

to crystal sheaves, and later to Category 2 spherulites (with ‘eyes’ on the two sides of

the nucleus). With further increasing supersaturation the ‘eyes’ diminish and

Figure 11. Concepts for the formation of category 1 and 2 spherulites. From left to right:
Category 1 spherulite formed via central multidirectional growth. Formation of category 2
spherulite from a folded-chain single crystal (A) to the fully developed spherulite (E)
via unidirectional growth and low angle branching [11]. Note that the latter mecha-
nism may lead to the formation of two ‘eyes’ (uncrystallized holes) on the sides of the
nucleation site.
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the Category 2 features gradually disappear, and we obtain eventually Category 1
spherulites.

The time evolution of a Category 2 spherulite is shown in figure 13. First, fibrils
form and then secondary fibrils nucleate at the growth front to form crystal
‘sheaves’. The diverging ends of these sheaves subsequently fan out with time to
form eyes, and finally a roughly spherical growth form emerges. This progression of
spherulitic growth is nearly universal in polymeric materials [11, 23, 44, 48].

Similar morphological evolution can be obtained via homogeneous secondary
nucleation without preferred misorientation (i.e., random branching angle; see
figure 14). Here – as in the case of Category 1 spherulites – frozen-in orientational
defects initiate the branching of the fibres.

Summarizing, both homogeneous secondary nucleation mechanisms studied
here (driven by quenched-in orientation defects and crystallographic branching
with fixed misorientation) can produce Category 1 and Category 2 spherulites.
Category 2 spherulites are expected in systems that grow crystal fibres, provided

Figure 12. Formation of a Category 1 spherulite from a square-shaped single crystal via
interface breakdown as predicted by the phase field theory. Upper row: composition map
(left); magnified section of the orientation map of the interface (right). Lower row: snapshots
of the orientation map. Time increases from left to right. Note the gradual morphological
transition, and the lack of a sharp demarcation line between areas solidified with square and
spherulitic morphology in the fully grown spherulite. With increasing size, the shape becomes
more isotropic due to the randomizing effect of the newly formed grains. Note also the
self-organized selection of grains whose maximum growth direction is perpendicular to the
interface, yielding a cross-like pattern of grains with equivalent crystallographic orientations.
(The simulation has been performed on a 4000� 4000 grid. Snapshots taken at 1000, 2500,
5000, and 13 500 dimensionless time-steps, respectively are displayed. The left three panels
show the central 2000� 2000 section of the simulation, while fourth panel shows the full
4000� 4000 simulation).
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Figure 14. Formation of a Category 2 spherulite from a needle crystal via branching with
random angle induced by trapped orientational disorder. Upper row: composition map (left);
magnified section of the orientation map of the interface (right). Lower row: snapshots of the
orientation map. Time increases from left to right. With increasing size, the shape becomes
more isotropic due to the randomising effect of the newly formed filaments. (The simulation
has been performed on a 2000� 2000 grid. Snapshots taken at 500, 1000, 2500, and 7500
dimensionless time-steps are displayed).

Figure 13. Time evolution of a Category 2 spherulite formed by random crystallographic
branching as predicted by the phase field theory. The branching angle is 30�. Other conditions
are as for the fourth column of figure 10. (Upper row: composition map; lower row:
orientation map).
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that crystallization is initiated by single crystal nuclei. The coexistence of Category 1

and 2 spherulites has been reported in some systems. This can be understood if single

crystal nuclei and multi-domain nuclei form parallel, a situation, which we have

observed in our simulations at sufficiently low orientational mobilities.
Analysing the isothermal growth of Category 1 spherulites, we observed

that, in agreement with experiment, the radial growth rate is constant.

We investigated the time evolution of the crystalline fraction X for homogeneous

primary nucleation of Category 1 spherulites under isothermal conditions on a

5000� 5000 grid. We find that the transformation is well described by the

Johnson–Mehl–Avrami–Kolmogorov model

X ¼ 1� exp �½ðt� t0Þ=	�
p

� �
, ð7Þ

where t0 is an incubation time due to the relaxation of the athermal fluctuation

spectrum, 	 is a time constant related to the nucleation and growth rates, and

p¼ 1þ d is the Avrami-Kolmogorov exponent, while d is the number of dimensions

[49]. Fitting equation (7) to the simulation data between 0.01<X<0.95 (where the

data are the least noisy), we find p¼ 3.04� 0.02 (and 	¼ 0.0106� 0.00005,

t0¼ 0.00178� 0.00005), which value is reasonably close to p¼ 3 expected for con-

stant nucleation and growth rates in 2D [49].
These results imply that our phase field model captures many of the important

features of spherulitic solidification.
Finally, we explore whether the morphological variability of spherulites can be

recovered within the framework of our model. Figure 15 shows a selection of specific

spherulitic morphologies and their theoretical counterparts. These simulations differ

only in the driving force, anisotropies, branching angle, and mobilities, indicating

Figure 15. Polycrystalline spherulitic morphologies in experiment (upper row) and in the
phase field theory (lower row). From left to right the experiments are from Wang et al. [50],
Keith and Padden [51], Walker et al. [52] and Lotz and Wittmann [53]. In the lower row the
contrast of the composition maps has been changed to match the experimental images. Diverse
growth morphologies can be recovered varying only a few model parameters (anisotropies,
branching angle, depth of metastable minimum).
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that the essential features of a broad variety of spherulitic morphologies can be
captured, using only a few coarse-grained model parameters. Although the model
parameters we use are unknown for most of these substances, and we have chosen
them so that the particular morphology is reproduced, microscopic studies and
atomistic simulations may give clues as to how these parameters should be chosen.
For example, in the case of ‘quadrites’, the branching angle was known from visual
inspection of the experimental images and from microscopic studies [11]. We expect,
that as in the case of metallic dendrites [14], a parameter-free approach will become
feasible in the future.

We conclude that rather complex solidification morphologies can be modelled
using the phase field approach presented here. Work is underway to address the
formation of spherulites and other complex morphologies in more detail [54].

5. Conclusions

The phase field model presented offers a general approach to polycrystalline
solidification, and can be used to address a broad variety of processes including
homogeneous and heterogeneous primary and secondary nucleation. In addition,
a range of polycrystalline morphologies can be modelled, including disordered
dendrites, spherulites, fractal-like aggregates, and many others.
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