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Breakup of a fluid thread in a confined geometry: droplet-plug transition, perturbation
sensitivity, and kinetic stabilization with confinement
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We investigate the influence of geometrical confinement on the breakup of long fluid threads in the absence
of imposed flow using a lattice Boltzmann model. Our simulations primarily focus on the case of threads
centered coaxially in a tube filled with another Newtonian fluid and subjected to both impulsive and random
perturbations. We observe a significant slowing down of the rate of thread bré&kogtic stabilization’)
over a wide range of the confinement=R,,,/ Rinreaq= 10 and find that the relative surface energies of the
liquid components influence this effect. FAr 2.3, there is a transition in the late-stage morphology between
spherical droplets and tube “plugs.” Unstable distorted drogfetpsules) form as transient structures for
intermediate confinemerit\ =2.1—2.5. Surprisingly, the thread breakup process for more confined threads
(A=<1.9 is found to be sensitive to the nature of the intial thread perturbation. Localized impulsive perturba-
tions (“taps”) cause a “bulging” of the fluid at the wall, followed by thread breakup through the propagation of
a wavelike disturbanc€‘end-pinch instability’) initiating from the thread rupture point. Random impulses
along the thread, modeling thermal fluctuations, lead to a complex breakup process involving a competition
between the Raleigh and end-pinch instabilities. We also briefly compare our tube simulations to threads
confined between parallel plates and to multiple interacting threads under confinement.

DOI: 10.1103/PhysRevE.69.056312 PACS nunerd7.20.Dr, 47.1%+j, 47.20.Hw

[. INTRODUCTION lar structures containing multicomponent fluids are also char-
acteristic structural features of plants, influencing the fluid
The breakup of fluid threads and films by capillary insta-distribution within these structurg4&2(a)] and transport pro-
bility is ubiquitous in engineering, science, and nature. Foicesses vital for life.
example, an understanding of this phenomenon is essential to The study of capillary breakup has a long history. Savart
the the technologies of ink-jet printifd], the production of [13] gave the first scientific report of the breakup of liquid
stable thin coatingge.g., polymer films, coating optical fi- threads in 1833, followed by Magny§4] in 1855. Plateau
bers, and wires[2], the morphology and stability of ex- [15] and his assistants performed experiments on the breakup
truded polymer blendg3,4], the formation of polymer fibers of fluid threads, and Plateau provided the first theoretical
from polymer blendq5], the transportation of oil in pipe- explanation of the occurrence of this instability when the
lines [6—9], and tertiary oil recovernyj10(a@)]. In many of thread length is greater than its circumference. For threads of
these technological applications, thread breakup occurs umyreater length, boundary undulations reduce the surface area
der tubular confinement conditions. Examples include thdor a fixed volume of fluid. Rayleighil6] formulated the first
phase separation of blends and other fluid mixtures in poroutheory of the dynamics of thread breakup in the absence of
media or in the presence of large quantities of filter particleviscosity effects in either the thread or the surrounding fluid
where a near tubular geometry exists locally, oil recoverymedium. He estimated that the wavelength of the undulatory
from porous rockg[10(a)] and synthetic tubular networks instability along the thread should be comparable to the sta-
encountered in multicomponent fluid processing, ranging irbility length (now known as the Rayleigh-Plateau stability
scale from plant pipelines to microfluidic devices length estimated using thermodynamic reasoning by Pla-
[6-9,1Q@b)]. Moreover, the consequences of this type of in-teau. Later, Weber generalized the theory to describe the
stability are apparent in a multitude of natural phenomenaombined effects of the viscosity of the fluid thread, density
such as the stability of liquid jetée.g., kitchen faucets of and surface tensiofl7] and Tomotika[18] included the ef-
garden hoses[1], the beading of liquids on naturgk.g., fect of the matrix viscosity while excluding density effects.
spider weby and synthetic fiber§1l1l] and perhaps even in Lee and Flumerfel{19] have given a unified treatment of
fundamental biological processes such as morphogenedisiid thread breakup that includes viscosity mismatch, den-
[12(a)]. Tubular confinement of multiphase fluids is known sity and inertial effects. The simpler Tomitika theory is suit-
to have important consequences for respiration and pulmable for understanding the breakup of viscous fluid threads
nary diseas¢12(b)] and for transport processes occurring in having nearly the same density as the surrounding fluid. This
a host of biological structures in animals ranging in scalesituation often applies well to polymer mixtures, but the non-
from the arteries, veins, and capillaries of the circulatoryNewtonian rheology of high molecular mass polymers is of-
system to microtubules and other structures within animaten a complication in interpreting measurements on this tech-
cells. Hierarchically organized vascular structures with tubunologically important class of fluidg3].
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FIG. 1. Schematic illustration of thread
breakup in a confining tubga) Initial configura-
tion of a fluid thread confined to a tubeb)
Thread undergoing capillary undulations. The im-
age corresponds to the simulation described be-
low. (c) Schematic images of post-rupture
structures—"plug,” plug with “collar,” and
“capsule.”

capsule plug with collar simple plug

In the present paper, we are concerned about how tharrays of threads subjected simultaneously to parallel plate
presence of boundaries influences the capillary breakup afonfinement since multiple thread geometry illustrates some
viscous fluid threads and we focus particularly on the natur@ssential aspects of the influence flafxible boundaries on
of thread breakup within a coaxial tube in the absence othread breakup.
imposed flow. Figure 1 illustrates a thread subjected to tube In the absence of dispersion interaction effects and other
confinement where Fig.(&8 shows the initial stage in which non-hydrodynamic effects relevant to capillaries having a
the thread has a cylindrical form, while Figb}l shows in-  sub-micron scal§22], geometrical confinement of an infinite
cipient thread breakup by the Rayleigh-Plateau instabilityNewtonian thread surrounded by another liquid in a coaxial
[15,16. Schematic images of the late-stage morphologiepipe does not provide thermodynamic stability against capil-
observed after thread breakup, i.e., “plugs,” plugs with “col-lary breakup[9,23. The rate of breakup and fluid morphol-
lars” and “capsules” are indicated in Fig.cL The collars on  ogy is certainly influenced by confinement, howej2t,25.
the plugs are transient features and these structures relax intabrication theory in a linearized approximation predicts
plugs at long times. Capsules are sometimes observed to béat the rate of thread breakup relative to the bulk vanishes as
come unstable to plug formation at long times and the plugshe thread radius approaches the tube raffi@s25 and this
tend to coalesce slowly at still longer times so that the lateeffect has been qualitatively indicated in numerical boundary
stage evolution of the ruptured thread is characterized by mtegral calculationg24]. These former simulations also in-
succession of long-lived transient states. Geometrical paranticate that the geometrical form of the thread breakup mor-
eters that are important in specifying the simulation condiphology changes under high confinemgM]. Notably, this
tions are also indicated in Fig. 1. type of “sharp interface” model has difficulty following the

Since fluid threads embedded in files.g., spinodal de- singular thread rupture and coalescence processes so that the
composition in film$ and between parallel plat¢20,2] are  simulations have primarily focused on phenomena occurring
common in processing applications, we briefly compare oubefore thread breakup. This method also does not apply to
tube confinement simulations to those for a threads confinefluids for which the interfacial width is comparable to the
between two parallel plates. We also consider the breakup afcale of confinement since this type of model assumes a van-
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ishing interfacial width(The interfacial width describing the of the particle velocity distribution function satisfies the fol-
composition profile or “interface” of two liquids at equilib- lowing LB equation:

rium can be appreciable in polymer and other complex fluids _ _ _

and even for “simple” fluids near thier critical point for phase Na(X+ €1+ 1) = ny(x,t) = Qy(x. 1), (1a)
separatior). We can readily treat the long time evolution of
thread breakup using the lattice BoltzmgihuB) method and
this allows us to obtain a more complete picture of geometri
and kinetic aspects of thread breakup in confined geometrie
although this method also encounters difficulties when thé&
scale of confinement is comparable to the interfacial width _ 1 _
(see the discussion belpwlrhe LB model is advantageous QL% 1) == —={nj(x,t) - n';eq)(x,t)}, (1b)
because it allows for the incorporation of polymer-fluid ther- Ti

modynamic interactions that allow for surface segregation Oflvhereni(eq)

he fiuid hvsical aff v difficul . (X,1) is the equilibrium distribution afx,t) and
F € fui compqngnts, a physical affect apparently di I(T‘Uttocontrols the rate of approach to equilibrium. The equilibrium
incorporate in finite element and boundary element simula

. . : - 27 “distribution can be represented in the following forms for
tions of thread confinement since these models implicitl P 9

\ /A .

assume that the fluids aperfectly immiscible particles of each type:
The present work focuses on the geometrical character of , _ 3

the thread breakup instability due to finite size effects and the n*¥(x) = tan'(x)[i(l —d,) +3e,-U
influence of the fluid-surface interaction on kinetic aspects of
this process using the LB model of multiphase fluid dynam-
ics. LB simulations allow for both the treatment of a diffuse
interfacial width between the liquid phases and the thermo-
dynamic interaction between the fluid and confining wall. 1
These interactions are commonly important in polymeric na(gw(x):ni(x)[do——uz} (a=19), (2b)
blends and other fluid mixture@.g., surfactant solutiops 2
that are only weakly immiscible and the boundary interac- . _ _
tions lead to a compositional segregation of the energeticalI$’(:/l'fr?1t‘;’;r ld/elr?sifto ' iljn%iG 3“%:7‘[;”%/ 3352& 75;%{&68' fL?g
preferred coexisting phase to the walls, thereby ConSiderab%ixture are theyg definedqb the wei htedyavera es
affecting the rate of thread breakup. This effect is found in y g 9
our simulations and, moreover, recent measurements have i_ i i
demonstrated the crucial role of fluid “wetting” properties on n= § Ny = pi/m, (33)
the stability and form of two-phase flows of immiscible flu-
ids in microchannel$10(b)].

where the collision operatof);(x,t) describes the rate of
é:hange of the particle distribution due to collisions. This
guantity is simplified by use of the single relaxation time
pproximation

+ (3eaea:uu—u2)] 1<a=<18, (29

N w

S
E miz niaea/Ti
Il. BRIEF REVIEW OF THE LATTICE BOLTZMANN i a
MODEL AND THREAD BREAKUP IN BULK us=—g ’ (3b)
i A i
In the LB model that we emploj27-29, the fluid within 2 mn' (/7

a volume element is described in terms of the particle veloc-

ity distribution function nj(x,t) at each point in space, where the sum ovea ranges from 1 to 19. Similarly, can
n,(x,t) is the number of particles per unit volume at noge be related to the temperatufeby the following average:
time t with velocity, e,, where the subscripta=1, ... b)

indicates the velocity direction and supersciigtbels the > ni®9(x,t) (e, — u)?
fluid component. Time evolves in discrete time steps, and T(xt) = a _ (4)
the fluid particles can collide with each other as they move ' 3n'(x,t)

under applied forces. For this study, we use the D3@1@e . o .
dimensional lattice wittb=19) lattice [29] where eache, This leads to the relatiol=(1-d,)/2 (units are chosen such

corresponds to the velocity of particles that stream to nearedpat Boltzmann’s contant equaly The c<_)ntir_1uum |im_i1[27]
neighbor site§1<a<6) and next nearest sit¢g<a<18)  Of these LB equations leads to a velocity field that is a solu-

on a cubic lattice, while,q=0 corresponds to a rest particle. tion of the Navier-Stokes equation wheres the kinematic
The units ofe, are the lattice constant divided by the time VISCOSItY,

step. s

~ Macroscopic quantities such as the number density, > (ciri - 1/2)
n'(x,t), and the fluid velocityu', of each fluid component, i

are obtained by taking suitable moment sumsnbfx,t). v=Atc 6 '

Note that while the velocity distribution function is defined
only over a discrete set of velocities, the actual macroscopiwith At the LB time step, and wheig is the volume fraction
velocity field of the fluid is continuous. The time evolution of each(“Newtonian”) fluid component.
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Following Shan and Chef27], we model fluid phase depth into the two-phase regiosee Ref.[28]), creating
separation by introducing an interactipshp'/dt(x)] that ef-  some uncertainty about the interface position. To make its
fectively perturbs the equilibrium velocity location specific, we defined the thread “boundary” as the

” location where the local fluid volume fraction is equal to
i Fron — 50%. This criterion normally corresponds to the inflection
PO = plulx) + T‘E(X) ®) point of the composition profile governing the liquid-liquid
interface[28]. We then defined the ratio of the tube radius
u’ is the new velocity used in Eq2). We further take the Ry, to the thread radius after equilibratid®y,esqas a di-
interaction to depend on the density of each fluid componentinensionless measure of confinemeht Rype/ Riread
_ < In the discussion below, we express time in terms of the
dp ' a i rate of growth of the capillary instability in bulk, as de-
E(X) = _nl(x)g 2@1: Gj, ' (x+ey)e,, (6)  scribed by the theory of Tomotikl8]. According to this
: theory, the amplitudex(t) of a perturbation of the thread
with G2,=2G for |e,=1, G2, =G for |ea|:\5’ andG2 =0 for boundary (infinitely long threag grows exponentially at

i/ i’ i’ “ " g ; .
i=i’. Gis a “coupling constant” that controls the strength of early” times (see Fig. 1

thermodynamic interaction between the fluidS.is the ana- (1) = o(0) explgt), t— 0%, q=0 DP\,P) /27 Riread
log of the usual “exchange or van der Waals interaction” in
the usual lattice models of fluid mixturgs$t has been shown 7

thg_t this interaption leads to pha;e separatiqn and associateg growth rateq depends on the interfacial tension the
critical propertiesphase boundaries, correlation length, Sur-ghear viscosityy,, of the “matrix” fluid, and the viscosity of
face tensionof this model fde mixture hgve recently been o threads,,,. The “dimensionless capillary wave growth
repqrted[28]. I_Dhase separation occurs n the model UpPOhtate factor"® (A, p) is a function of the matrix-thread viscos-
cooling for a fixed value of5 or for a critical valueG, at ity ratio (p=y,/ 7,) and wavelength. of the perturbation

fixed T [28]. Comparison to measurement is facilitated byand this function is tabulated by Tomotikag] (see below
expressingG in terms of a reduced variablg; that ranges The growth rateq is maximal for the wavelengthy ’
between 0 and 1 in the two-phase region where the fluids are, o {5, in bulk fluids (i.e., threads not SUb-E(;tne]?jx to
immiscible, a larger value ofg implying a larger quench thread < Y J

: ) : ! : ... confinementwhere the “dimensionless wave numbéralso
depth and interfacial tension and a smaller interfacial width n

between the coexisting phag@s]. In real fluids, g should depends orp [18,30. This scale grows to predominate at

be taken as directly comparable to the reduced temperat long times and is thus “selected” in the late stages of thread
rectly pe u P u[:)E'reakup. Simulation times are expressed in the reduced time,
|T-T |/ T. whereT, is the critical temperature for phase sepa-

ration. The LB model is notably a mean field model and doedred = Gt whereq..(Rupe = ) is the bulk capillary instabil-
, . .1ty growth at the sclae) .. Confinement alters the rate of
not account for fluctuation effects that can renormalize criti-

cal properties near, [28]. In the simulations below, we take growth of the capillary instability) [or equivalentlyb(x, p)]
76=0.329 which fc?r aTé near room temperaturéaoo K) and the wavelength,,,, of the disintegrating thread and the-

corresponds to a quench depth of 99 K, a moderately dee%%eétéizlggd dli‘sij'sggcljagglr:)\risu'ts relating to these finite size

quench. All distances are reported in lattice spacings or as Our treatment of finite size effects on the rate of thread

dimensionless ratios of scales. At this quench depth, the rel%- . . . . . )
. . . o reakup is restricted to the case in which the fluid and matrix
tive volume fractions in the two coexisting phases for our . - - . "
; viscosities are equdp=1). In this case, the Tomitika theory

model are determined to equal 0.998 and 0.(f8. dicts thatd=0.56 andd(x =1)=0.0714[18,19. W

A fluid-surface interaction is incorporated by modifying pre '?S alo="9. aﬂaﬁ_o%’g"?_ h_ ) [h ' q'h €
Eqg. (6) in the region surrounding the fluif28,29. While notc_e or comparlson_t =0.69 for the case w ere t € VIS
" (x+e,.t) normally corresponds to a particle number den_cosny of both the fluid thread and matrix are negleqtiéat
N XTE, 1 N d y | PO hp des i viscid” fluids) and thats approaches 0 for a viscous fluid in
sity, It '_S assigned a vaiue 1a|n_ E(F) whenx+e, resides ”? an inviscid medium(i.e., the instability wavelength relative
the solid where the value @, is then set to allow the solid i the initial thread radius divergegl6).
to attract(we) or repulse(dewe) the fluid componeni [29]. Our restriction to simulations of viscosity-matched fluids
A no-slip boundary condition is maintained at the wall by js made because of the large parameter space that must be
utilizing a second order ‘bOU?CE back’ boundary condition.investigated. Moreover, previous work on thread breakup has
Here, Eq.(1a) is replaced byn,,(x,t+1)—ny(x,t)=Q(x,t),  indicated that this assumption leads to results that are “typi-
wherea’ is defined such that, =—e,. cal” for the case where the viscosity mismatch is not large

The simulations were initialized in the following way. De- (p~1) [24,25 and evidence for this insensitivity is de-
noting the two fluid components & and B, a thread of scribed in Sec. Il A.
radius R with compositionc,=0.98 andcg=0.02 was sur- Although no qualitative changes in the nature of the
rounded with a fluid having compositiogy=0.02 andcg thread breakup should occur for modest values of viscosity
=0.98. We then allowed the system to equilibrate. As a remismatch, the growth raigis affected byp and its variation
sult, the thread radius shifted slightly. It should be appreci-s often of practical interest. Some insight into the magnitude
ated that the interface between the thread liquid and the suof this effect can be obtained from tabulated values of
rounding fluid is diffuse because of the moderate quencld(\,,p) in the bulk limit [18]. While no concise analytic
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a) simulation b) experiment

FIG. 2. Simulated and experimental fluid thread breakup under weak confingadrB. simulation of a thread of radius 9.7t units
of lattice spaciny confined to a tube of radius 24=2.45 and a length of 600. This length corresponds to about ten Rayleigh-Plateau
lengths, but the image only shows a section corresponding to a couple of instability wavelengths. The time units of the simulation are given
in the reduced units of thread breakup in the bl (see the teyt The walls of the tubes are omitted for visual clarity and to facilitate a
comparison with the measurements in the accompanying figur&epresentative experiment of the thread breakup of a polymer thread in
a polymer matrix(see the teyt The timet is given in units of seconds. This measurement is for a thread confined between parallel plates
and having gap to thread diameter ratio of 1[2@]. Confinement effects are weak in this measurement, so that these can be considered
“bulk limit” observations.

expression exists fob (N« P), even in bulk fluids, we note the threads as “long.” In Fig.(2) we show only a section of
that ®(\ ) is reasonably well described by the Padé ap-the simulationabout two wavelengthghat is comparable to

proximant[31] the measurement image for a polymer thread in a polymeric
matrix shown in Fig. &) (experimental conditions are sum-
P(\maxp) = (@+bp)/(1 +cp+dp?), (8)  marized below. The thread was perturbed by introducing

random impulsive perturbation throughout the thread, as de-

with a=0.963,b=456.5,c=806.2, andd=12 199. This rela- scribed in Sec. 11l C.

tion agrees with _th_e exact results (_)f Tomotfi#] to within The rupture of the fluid thread in Fig(& occurs through
a maximum deviation of 0.03 fop in the broad range be- he growth of collective sinusoidal undulations about the
tween 10° to 10° where ®(\pap) varies monotonically  griginal circular cylindrical thread, as in the schematic image
over a corresponding range between 1 and 0. From this @shown in Fig. 1b). At a late stage of this instability, the large
pression we see that thread breakup generally occurs moggnplitude regions of positive deformaticire., “bulges’) are
slowly when the thread is less viscous than the matrix fluidseparated by thin, nearly circular filaments that break up by a
Simulation of thread breakup with a “large” viscosity mis- secondary capillary instability, leading to the formation of
match( p<0.1 orp=5 requires an alternate formulation of satellite droplets[1,33—-36. A whole hierarchy of droplet
the present LB methof32]. We defer this more general in- sizes can be created by thread breakup through a recursive
vestigation to the future. occurrence of capillary instabilities to ever-finer scales
[33,35. Treatment of these higher generations of the droplet
breakup and the fine structure of the singular thread breakup
IIl. SIMULATION RESULTS morphology requires a finer discretization of the lattice
A. Fluid thread breakup by capillary instability modgl calculations. In our simulations, we Qbserve .on'Iy the
leading order satellite droplets shown in Figa)2 This is
also often the case in measurements where various physical
As a reference case and a further check of our LB mixturesffects(surface tension, viscosity, non-Newtonian fluid char-
model of Newtonian fluid mixturef28], we briefly consider acteristics, impuritiescut off this hierarchical instability. For
capillary breakup of a fluid thread where finite size effectsexample, the breakup of a polymer thread under weak con-
have a weak effect on the morphology of thread breakup. Ifinement conditions shown in Fig.(t® exhibits only one
Fig. 2@, we show a progression of images of thread breakupvell-formed “generation” of satellite dropletéThese mea-
as a function ot,q. The tube radius is 2dattice spacings  surements are actually performed for fluid threads under con-
and the length of the tub@nd threaglin the simulation is  finement between parallel plates, but the scale of confine-
600. Periodic boundary conditions are applied along the axiaihent is so large that confinement effects are sin&lle
direction. The initial thread radius equd®s, 9.9, so that  discuss these measurements further below, after further sum-
the tube length-thread aspect rattbe length of tubd. di- marizing our results for the LB simulations undeeak con-
vided by Ryead IS @pproximately 60. This is about an order finement
of magnitude larger than the Rayleigh-Plateau length We next quantify the growth rate of the capillary instabil-
(27Rynread for thread breakup in bulk so that we can considerity. In Fig. 3, we show a semi-log plot of the growth rate of

under weak confinement
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FIG. 3. Growth of capillary undulations under weak confine- &

ment conditions« is the amplitude of the thread surface undula- > 0.7
tions and is defined ak the difference between the maximum and — 1
minimum distances from the original cylindrical thread surface. © 0'6__
Data are taken from the run shown in Figapand terminate at the 0.5
point of thread rupture. The solid curve indicates the data range .
where we have fitted to the exponential growth law predicted by 0.4 -
linearized stability theory18], and dashed lines indicate the early ]
“induction regime” and late stage “rupture regime” where the 0.3
growth dynamics exhibits a more complicated behavior. Note the
accelerationof the breakup process near the point of thread rupture(b)

in this example of confined thread breakup.

the thread undulation log(t,eg). The nonlinear increase of
log a(t,ey) at long times is associated with the thread rupture
process and the data terminates at the time of rupture. Th He
solid curve is a fitted “steady state” growth rate of the cap-
illary instability and the dotted curve represents the simula-
. . . . 8 o9} -
tion data for all times, including early and late stages where,< 0.1
the instability growth is non-exponential. Although the size ~__ 05
of the confining tube is sufficiently large that confinement < 45l -
effects do not have an appreciable influence ongéhemetry
of the thread breakup process, the confinement is sufficien
to influence therate of thread breakugsee below. This o7 3 -
situation is evidently similar to measuring fluid viscosity by 10
studying the sedimentation of a sphere in a capil[&%] or . . .
the Brownian motion of a sphere in a capillary where finite 060 5 10 15 20
size effects act over appreciable distances to affect particlgc) A
mobility [38]. A typical rule of thumb is that the tube diam-
eter should be at least an order of magnitude larger than that FIG. 4. Growth of cail dulati function of confine-
of the sphere diameter in order to avoid significant finite size - 4. Growth of capillary undulations as function of confine
effects[39]. ment,A.fj(Xa? ';he grgv_vth r:at$ data sr;]own ||'2| Fig. 3 is Ocle_xtendeg todthe
The simulations described below indicate that finite size - 2c oi \cated in the figure. The solid curve indicates the data

ff b ally infl h f thread break range where we have fitted to the exponential growth law predicted
efiects can substantially influence the rate of thread breaku linearized stability theory18], and dashed lines indicate the

over a large range of tube confinement and that the rule ol «ingyction regime” and late stage “rupture regime” where the
thumb, just mentioned, describes these confinement effect3oth dynamics exhibits a more complicated behavior.Capil-
reasonably well. Notably, these corrections are relevant to agy instability growth rates|(A) obtained from a fit to linear por-
accurate estimate of surface tension by observations of th@ns of curves shown ite). Growth rate data have been reduced by
dynamics of capillary breakup. Despite the potential importhe bulk growth rateg(A — ) = q... (c) Theoretical prediction of
tance of these corrections, there has been little discussion efe influence of confinemerit\) on the wavelengti,(A) of the
them in the experimental literature, apart from recent work ofmaximum growth rate. Wavelength data have been reduced by the
Sonet al.[21]. Indeed, the thread confinement scales are nobulk value, Ay, (A — «)=\... The curves are calculated from the
normally reported40]. Such corrections are quantified be- linearized stability theory of Mikami and Masd#1].

Mikami—Mason Theory
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low for the tube geometry in the case where the matrix and¢onfinement range(2.3<A <), i.e., q(A,p=1)/q.=
thread fluids have the same viscosities and where the tuble-Q exd-vA] where g.=q(A —c), v=0.637, andQ
boundary does not have an energetic preference for either2.67. The magnitude of the deviation between this approx-
fluid componenisee Sec. Il D. Our results should be suit- imant and the exact numerical data is generally less than
able for comparison with the breakup of real fluids, provided0.005 so that we do not discriminate between the approxi-
the viscosity mismatch is not too large. Equati@pprovides ~mant and the exact numerical data in Fighy We also

an estimate of the uncertainties caused by this approximatiopbserve that this simple analytic expression agrees well with
in the bulk case and we expect this expression to provide 8ur LB data forq(A,p=1)/q., indicated by the filled circles
rough estimate for the viscosity mismatch effect for thein this figure. Notably, the value of the “bulk” capillary
breakup of confined threads. This approximation remains t@rowth rate(q..) derived from this fit is used to define the
be tested, however, and should not be adopted uncritically.time scales of our simulations below. .

In our next test of the LB model, we consider the wave- Ve also observe from Fig.(4) that order of magnitude
length of the most rapidly growing undulatory instability in changes in the ratio of the thread to matrix fluid viscogity
our simulations in comparison with the analytic theory ofhave a relatively small effect on the calculatgd\)/q..
Tomotika [18] The dimensionless wave numbérfor the When p iS Sma”. The deViation becomeS SubStantial, hOW'
data in Fig. 2a) is equal to5~0.58+0.03, where the confi- €Vver, for largep and the uppeidotted curve shows this
dence interval reflects the uncertainty in determining theeffect for the representative cages 10. This relative insen-
Mmax @nd a due to the lattice discretization of the thread Sitivity of q(A)/q.. to p does not extend to other properties,
boundary. This value accords within experimental uncersuch as the “wavelength of the instability\i,a{A). This
tainty with the theoretical value 0.56 for thread breakup inpoint is illustrated in Fig. é&) which shows the analytic pre-
bulk (see Sec. I diction of Mikami and Masori41] for A a{A), relative to its

In order to quantify the role of finite size effects on the bulk value\,, and for representativp values between 0.1
kinetics of thread breakup in the limit of “weakly confined” and 10. It is apparent that,,{A)/\., depends strongly op
threads, we simulated the thread breakup for a rang& of and the finite size dependence of this ratio becomes increas-
values between 2 and 8. The resulting growth rate data aregly large asp becomes larger.
shown in Fig. 4a). The data from Fig. 3A=2.45 are in- The apparent increase g(A) for A=2.1 and the mini-
cluded for comparison in this figure. Growth raigs\) for ~ mum nearA=2.54 in Fig. 4b) deserves comment. Appar-
confined threads, obtained from the ling¢solid curvg por-  ently, the onset of strong confinement can actually lead to an
tions of these curves are indicated in Figoy4 (Curves have enhancemenodf the early-stage rate of capillary breakup. It
been shifted horizontally so that they do not overlap onemust be noted, however, that the geometrical character of the
anothen Dotted portions of curves correspond to early andthread breakup process becomes substantially modified in
late-stage regimes. Each curve in Figa)ds shifted relative  this confinement regimésee the detailed discussion bejow
to the previous curve by an amouty =5, from left to  so that the thread breakup process is not directly comparable
right. For A >2.45, the growth rat@(A) increases mono- to the weak confinement data > 2.54). For more confined
tonically, becoming relatively constant fok ~O(5-10. systems(A <2), we find below that thread breakup no
This finding accords well with the usual intuition about the longer occurs by a capillary instability process like that of
scale where finite size effects tend to “saturate.” the bulk fluid. Thus, it is not generally sensible to speak of

It is interesting to compare the kinetic data for threadthe Rayleigh-Plateau instability under high confinement con-
breakup to the generalization of the Tomitika theory to con-ditions. Nonetheless, we usgA) to define the dimension-
fined threads derived by Mikami and Masdgdl]. This less time of our simulations since the bulk measurements still
theory is rather algebraically complex and does not lend itprovide a natural reference point for describing the relative
self to a closed analytic description of the rate of threadate thread breakup in confined threads, regardless of the
breakup, but we can accurately fit the results of this theory tanode of thread breakup. Direct comparison to measurement
analytic approximants that are useful in comparisons to oucan be made in the same reduced time units.
simulation data and experiment. Rigorous application of the We now return to the representative experimental data
“linearized” hydrodynamic theory is limited to “short” times, [21] in Fig. 2b) for the breakup of a polymer fluid thread
but experience has shown that this type of approximation caand compare these results to the LB simulations above. The
be a remarkably good at longer times approaching the threastales of the images in Fig. 2 have been adjusted so that the
rupture time and we next compare our calculations to thesmitial thread sizes are comparab(&;ead127um). The
predictions. Figure @) shows estimates of the reduced fluid thread is a polyamide-@ylon) polymer and the matrix
breakup rateq(A)/q(A — <) determined numerically from is polystyrene where the molecular masses of the polymers
the analytic results of Mikami and MasdA1] for the cases are relatively low to avoid significant “entanglement” effects
where the viscosity of the threag,, is ten times that of the and the temperature is rather higi=503 K) to avoid non-
matrix fluid (dotted ling, equal to that of the matrix fluia,, Newtonian effects arising from the glass transition. We also
(solid line) and a factor of 0.1 times,, (dot-dashed ling By note the viscosities of the nylon and polystyrene are 300 and
utilizing the equation discovery algorithm of Judith Devaney1200 Pa s, respectively, so that the viscosities are not exactly
a NIST [41], we find that theexact numerical values of matched, as they are in the simulations. Confinement effects
g(A)/q.. determined from the Mikami-Mason theory can be are weak in these measurements since the thread is confined
described by a simple exponential functionobver a broad between two parallel plates where the ratio of the gap width
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between the plates and the thread diameter equals 10.6.
(Measurement details are given by Sairal. [21] and similar )
observations for non-polymeric fluids are described by Ma-

son and co-workerg30].) It is apparent from Fig. 2 that the

LB simulation captures the geometrical form of the “bulk”
thread breakup process rather well, including the process of
satellite formation.

B. Confined fluid thread breakup:
Localized impulsive perturbations

In the preparation of fluid threads for observation of their
breakup, it is common to subject the threads to intentional
local perturbations that can influence subsequent thread
breakup[30]. These perturbations are distinct from perturba-
tions of the thread arising from equilibrium interface fluctua-
tions associated with the thermal energy of the fluid and can b
have a very large impact on the time scale of the thread
breakup. Alternatively, there are instances under processing
conditions where we wish to stimulate thread breakup
through the application of some localized external perturba-
tion such as an acoustic or oth@lectric, magnetic depend-
ing on the nature and responsiveness of the ¥lfield, me-
chanical force or laser pulse to a particular part of the fluid
thread. We thus consider the influence of finite size effects on
thread breakup in the case where the thread has been sub-
jected to a localized impulsive perturbati¢itap”). Specifi-
cally, a localized impulse is directed towards the center of
the thread for the duration of ten LB time steps was applied
over five consecutive lattice spaces along the thread surface FIG. 5. Thread breakup of a strongly confined fluid threads sub-
and parallel to the thread orientation. The magnitude of thgected to a tapping perturbatiote) LB simulation of a thread of
impulse was quantified by, the extent of thread deforma- radius 9.47(in units of lattice spacingconfined to a tube of radius
tion induced at the time of its application relative Rg,.,q  18(A=1.9 and having a length 600. The arrow indicates the posi-
Figure Ra) illustrates the progressive breakup of a liquid tion along thread where impulsive force was applign). Thread
thread having an initial radius of 9.4l&ttice unit9 and con- breakup evolut_ion for a tapped thread with incrgaseql confinement
fined within a tube of radius 19 so that=R e Riread IS (A:l._9). Sa'_celllte droplets _dlsgppear by “dls_splvmg” into the sur-
equal to 1.9. The length of the tube is 600, again as in Figfoundlqg fIU|q. The arrow |nd|c§tes the position along the thread
2(a), but in this case we show the entire tube. The arrow in*Neére impulsive force was applied.

figure indicates the position where the localized impulsiveThere s a correlation, however, with the rupture point and
perturbation was applied and the magnitude of the impulsivene tapping position when the tapping amplitude is suffi-
perturbation equals;=0.1, which is a typical value for mea- cjently large(see. Fig. 5 The relation between the,,,, of
surements on threads subjected to large and localized “tapsfie early-stage thread undulations to the spacing between the
(e.g.,e in the range 0.05-0.6 are investigated[8)). This  plugs is unclear, however. The somewhat larger distance be-
figure indicates the full progression of the thread breakupween the plugs, relative to the initial wavelength of the in-
process and new features evidently arise because of confinstability, might give the impression of an effectively longer
ment. The response of the thread to “tapping” is nearly sinu-instability wavelength,” but this conclusion is questionable.
soidal and rotationally symmetric about the fluid thread withOnce the thread ruptures, we see a propagdtang pinch?

a wavelengthé=0.57+0.03(uncertainty estimate same as instability that grows from the ruptured thread ends towards
described above This is again in close accord with bulk the capsule center. A near periodic array of plugs forms as
thread breakugll] (see Sec. )l At these later times, we the capsule shortens through progressive fission of droplets
observe the growth of fluid “bulges” where the wall fluid from the capsule end$Propagating instabilities of this kind
thickens at the expense of the fluid thread. At intermittenthave also been observed in the breakup of the confined liquid
points, this thickening becomes large enough to rupture theapsule§10], and highly extended droplets and vesicles un-
thread to form “plugs.”(This phenomenon has been ob- der flow conditions[44(a),44(b)].) Notably, satellite forma-
served in liquid thread breakup in highly confined fluid tion is suppressed in confined thread breakup, relative to the
threads of water in an oil matrixL0].) The thread pinch-off weak confinement case shown in Figa2 This is apparently
appears to be a nucleationlike process, corresponding to edue to the “flattening” of the thread undulation bulges of the
sentially random points along the thread where the threathread due to confinement. This flatteniisge Fig. 11 below
happens to grow to a scale sufficient to lead to rupfdB.  where this effect is clearly illustrated for parallel plate con-
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A ted A=21 <g>=5x10"

2.54 33.0
345
245 36.0
2.38 375
38.0
2-29 38-5
2.18 40.6
41.6
2.09 43.1
1.99 58-3
1.90 FIG. 7. Rayleigh-Plateau instability distorted by finite size ef-
fects. LB simulation of thread of initial radius 9.5& units of
1.80 lattice spacingconfined to a tube of radius 20=2.09 and having
length 600. The corresponding late-stage morphology is indicated in
Fig. 5.

FIG. 6. Influence of tube confinement on late-stage thread
breakup morphology. Image shows a cross sectional view of tube o
where the white fluid initially forms a cylinder at the center of tube. S&Me as in Fig. @) (=0.1). We observe a transition from
The initial thread radii vary from 9.44 t@n units of lattice spac-  Plugs to droplets occurs fot =~ 2+6, whered is on the order
ing), while the tube radius varies from 17 to 25, so thavaries  Of the interfacial widthw relative to the tube radiusy/Rype
from 1.8 to 2.54. where w=3-4 lattice spacings in the present calculations.

(Further measurements over a range of quench depths will be

finemeny leads to a more gradual tapering of the connectingequired to verify the generality of this findingat this scale
threads between the thread bulges, which then do not sof relative confinement, the droplets resulting from the
readily break up into satellite droplets by capillary instability. thread breakup are just small enough to form without appre-
We also find that the spacing of the plugs becomes regular iniable distortion from a spherical shape in the enclosing tube.
the late-stage of the capillary breakup, leading to a patterkiVe can appreciate the physical origin of this crossover scale
wavelength comparable to the bulk thread breakup procesy a simple geometrical argument. Assuming that the volume
Figure §b) shows the case of =1.8 where the confinement of the droplets formed from the ruptured thread equals the
effect is enhanced further. It is evident that this apparentlyvolume of a section of the thread having length,,, implies
slight increase in confinement leads to a strong slowinghat the radius of the droplets is equal Byqpe
down of the rate of thread breakup and an increase in the(3w/ 8)®Ryread FOr viscosity-matched fluidép=1), this
number of plugs. implies, Ryropied Rinread™ 2-03, Which is close to the observed

From these observations, we conclude that morphologicglug-droplet transition in Fig. 5. We also observe that the
evolution of highly confined thread breakup is qualitatively interdrop and interplug length scale of the late-stage pattern
different from unconfined or weakly confined thread$ is not strongly sensitive t\. The maximum growth rate
=2.5). With increasing confinement, thread breakup is prewavelength\,, of the capillary instability atarly stages
dominated by non-periodic and sparse thread rupturingor highly confined thread¢A ~1) is predicted to equal,
events. Extensive collective motion develops from these rupAmax= 22?mRiyead d =2712=0.707 [11]. This corresponds
ture points through propagating wavaleveloping along the to a 26%decreaseof the instability wavelength relative to
thread which ultimately leads to a string of plugs in the tubebreakup in the bulk matri{18]. Although the early-stage
Once formed, the plugs are highly persistent and their coaresults do not evidently apply to the morphology at long
lescence is slow. This phenomenon is commonly encourtimes, we note that the inter-drop spacing in the late-stage
tered in liquid plugs formed in mercury thermometers and isnorphology is about 10% smaller than,, for the bulk, a
appropriately named the “Jammin effe¢d5]. trend consistent with the early-stage capillary instability

Next, we consider the crossover between the highly contheory.
fined thread breakup process in Figéa)5and %b) and the A further morphological transition in the thread breakup
weakly confined thread breakup procéBig). 2a@)]. In Fig. 6,  evolution is apparent at an intermediate stage of the thread
we show the late-stage morphology of the thread breakupreakup formoderateconfinement. Figure 7 shows an earlier
where the tube length is fixgdee Fig. Ba)], but A is varied  stage evolutiof0<t,.q<<58.3 of the image shown in Fig. 6
from 1.80 to 2.54. The thread radius is near constant witfor A=2.09. This thread breakup process is akin to the
small variations coming from the concentration relaxation.Rayleigh-Plateau instability in bulkFig. 2), although the
All the runs correspond to thread lengths well above theanisotropic capsules become unstable in a late-stage of the
Rayleigh-Plateau length. The impulsive perturbation is thanstability and form a regular array of plugs, as in the highly
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confined caséFigs. 5a) and %b)]. The aspect ratio of the observation and are estimated by extrapolating the thread
plugs diminishes with increasing, up to the plug-droplet breakup observations to vanishing timeWe find that a
transition rangéA =2+6) where the droplets become nearly change in the magnitude ef,,, for weakly confined threads
spherical. Note that the satellite drops “dissolve” into the[as in Fig. 2a)] over a range of two orders of magnitude has
surrounding fluid matrix at this moderately deep quenchittle impact on asymptotic exponential growth rate of the
depth. thread breakup, apart from a change in the “induction time”
it takes for the growth to approach the exponential regime
[see Eq.(7) and the discussion belgwThe dependence of
the breakup time on the magnitude of the perturbation
accords qualitatively with Kuhn’s mod@d6], i.e., larger am-

It is known that the time of thread breakup depends on thelitude initial perturbationgimpulsive or randomgenerally
magnitude of the initial perturbations to which the threadsshorten the breakup time.
are subjected, although there has been limited systematic Figure &a) shows the influence of random perturbations
study of this phenomenon. Kuh@6] estimated the depen- in the case of a highly confined threach=1.9;(e)=5
dence of the thread breakup time on the amplitude of randonx 107%). In this case, we observe that randomness in the
perturbations associated withermal fluctuationsHis esti-  jnitial impulsive perturbation leads to a change in the early
mates have not been found to agree quantitatively with meastage of thread breakup. We find that the uniform capillary
suremenfpresumably uncontrolled localized impulsive per- undulations at short times persist to a longer tifrandom-
turbations are one reason for this discrepaniyt they have ness seems to stabilize the capillary instabjliand the cap-
been of value in rationalizing the existence of initial threadillary undulations thus grow to a larger scale than in the
deformations when the data is extrapolated=0 [3,18]. “tapped” casdFig. 5a)]. However, the end-pinch instability

The delicate interplay between thread breakup by capilultimately intercedes to rupture the thread. Notably, the
lary wavesall along the threadand drops pinching off suc- wavelength of the capillary undulations before rupture is
cessively from the ends of capsul@nd-pinch instability,  larger than the bulk case by about 20%, rather than smaller,
described in Sec. lll B, raises questions about how the threagls found in the case of the “tapped” thread. The rupture of
perturbations act in connection with finite size effects. Canthe thread is followed by an end-pinch instability that causes
the qualitative nature of the thread breakup process depenghe formation of “peanut shaped” capsules that relax into
on the character of the perturbatiéag., discrete impulsive plugs with “collars”(rings of trapped fluid within the plugs;
versus random perturbations along the thy@akb check for  see Fig. 1. Over time, the collars of the plugs drift to one or
this possibility, we subjected the thread to small amplitudethe other side of the plug axial face under capillary action,
perturbations to model perturbations arising from the effecteaving uniformly spaced cylindrical plugs after these tran-
of thermal fluctuations and the thread preparation in the measient features disappear. Small plugs sometimes alternatively
surements. We find that the nature of the fluid perturbatiortjisappeared through a dissolution process similar to the sat-
can indeed have a strong influence on the thread breakugliite droplets described above. We also observe that the
process in the confined regime. propagatingend-pinch instability by which the thread rup-

A small spatially random forcing was applied at a singletures into capsules is more rapid in the random perturbation
time step throughout the entire volume of fluid in such a waycase.
that no net momentum change occurs. The perturbation at The prevalence of thread breakup by capillary instability
each point was a vector of randomly determined directionor end-pinch instability in highly confined threads is evi-
having a magnitude randomly chosen from a uniform distri-dently sensitive to the character of the perturbations to which
bution in the rangg0,107°]. In addition, we ensure that the threads are subjected. Further evidence of this “noise
there is no total momentum change by pairing up latticesensitivity” in confined threads is found by increasing the
points of identical composition and applying a randomly confinement to\ =1.8 for the case of a random initial thread
generated perturbation to one member of the pair and thgerturbation((e)=5x 107%). The breakup evolution for this
reverse of that perturbation to the other member of that paicase is shown in Fig.(B) where we find that the early-stage
Notably, the amplitude of these random impulses is muchrayleigh-Plateau instability, pronounced in the1.9 case
smaller than the discrete impulses described in Sec. Il B. [Fig. §a)] is now suppressed in relation to the bulge insta-

We first applied the random perturbations to a thread unbility and the associated end-pinch instability. Strikingly, the
der weak confinemenA >2.5). The maximum value of the wavelength of the Rayleigh-Plateau instability developing at
scale of the impulsive deformation relative to the thread raearly times isdecreasedy about 10%, as in the “tapped”
dius emay is taken to be 0.001 and the ensemble average  case[Fig. 5a)]. This effect ultimately leads to a larger num-
half as large,(e)=5x10* These random perturbations ber of plugs[seven compared to six in the bulk case shown
(“kicks”) were applied after the thread composition had re-in Fig. 2(@)]. The transient capsules, formed after the thread
laxed to its coexisting composition value. For comparisonyuptures, again develop a “peanutlike” shape and then evolve
0.001 is a typical order of magnitude for experimentally es-into plugs with substantial collars. In Fig(l§ we see that
timated values of the initial thread deformatiarit—0%),  the plug collar itself ruptures in the late-stage morphology
relative toRy,eagfor threads not subjected to impulsive per- (t,eq=~579), thus forming a droplet on the tube wall. Notably,
turbations[3] (In measurements, these perturbation magnithe spacing in the plugs and the collared plug morphologies
tudes values are normally too small for direct microscopicare more disordered, reflecting a sensitive dependence of the

C. Confined fluid thread breakup: Random initial
perturbation
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fined to a tube of radius 18 =1.9) and having a
b) tred A=18 <& =5x1 ()'4 Iengt.h 600. Reduced time valuggy are shovyn i.n

the figure.(b) Thread breakup evolution with in-
creased confineme\ =1.8).
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random perturbations at earlier times. Succesive runs with D. Confined fluid thread breakup:

different choices of random numbers describing the random Influence of fluid-wall interaction

thread perturbations led to distinct morphologies with similar  |n the cases discussed so far, there is no preferential in-
characteristics-disorder in the plug spacings, fluctuations ieraction between the fluid components and the capillary
the number of droplets, and odd transient “collars” on theboundary. This interaction is found to have little effect on the
plugs. This variation is illustrated in the last frame in Fig. breakup morphology foA > 2.5, but the liquid-surface inter-
8(a) which corresponds to the morphology obtained in a secaction can be expected to be important in more confined
ond simulation at,.q=578.9. Evidently, many runs should be threads. In contrast to Fig. 7, where there is no energetic
performed to obtain appropriately averaged properties of thpreference of the thread fluid for the tube wall, Fig&) &nd
thread breakup process in these highly confined fluids. Thes#c) show the evolution in the fluid breakug\=2.09 for
morphogical fluctuations do not occur under weak confinethe cases where the fluid thread preferentially wets the tube
ment conditions so that the finite size constraint amplifies thevall and dewets the wall, respectively. Figur@pindicates
sensitivity of thread breakup to noise. the energetically neutral case where neither fluid has a pref-
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tred a) Thread wetting b) Neutral c) Wall fluid wetting

FIG. 9. Influence of surface interaction on
thread breakup of confined threads. As in Fig. 7,
we consider the LB simulation of thread of radius
9.55+0.06(in units of lattice spacingthat is con-
fined to a tube of radius 20 and having length
600. (a) The thread fluid(white) preferentially
wets the tube wall(b) Fluids have the same af-
finity for the capillary wall. (c) The tube wall
preferentially wets the annular fluid. Note that the
rate of thread breakup and plug formation is
slowed relative to the neutral boundary when ei-
ther fluid preferentially wets the wall. These stud-
ies are performed at a fixed quench degttter-
facial widthy and A, and future work must
consider the variation of these parameters to de-
duce the quantitative effect of fluid-surface inter-
action on the rate of thread breakup.

A=21 <¢&>=5x10"%

erential affinity for the tube wall. Specifically, the equilib- sules persist to long times in the simulations shown in Fig.
rium contact angles of the thread fluid on a plane surfac@(c) with this boundary interactior{Notably we found that
having the interaction of the tube boundary are 35°, 90°, anthe capsules became plugs more rapidly in this case if the
145° for Figs. 9a)-9(c);, respectively[29]. These simula- tube was made shorter, i.&.=100. These results indicate
tions are for the case of an impulsive thread perturbationhat fluid surface interactions can have a large influence on
(¢=0.1), although the type of perturbation is less importantthread breakup kinetics in moderately confined geometries.
for this moderate confinement case. The contact angles of thehis important and subtle effect will require systematic com-
plugs directly reflect this variation in the relative energiesputational and experimental investigation.

between the fluids and the substrate. Although thread
breakup occurs regardless of the relative surface energy,
there is a dramatic change in the kinetics of thread breakup
and plug formation arising from the fluid-tube wall interac- ]
tion. First, we notice that the breakup time is greatly in- Hammond[25] explained the slow growth rate of the
creased relative to the neutral wall case whesther the  ‘lobe bulging” instability of the wall fluid in the highly con-
thread or annular fluid has a higher affinity for the wall. In fined fluid regime(no thermodynamic fluid-surface interac-
particular, the time scaletoq for thread rupture in Figs. tions incorporated into the modelings being due to the
g(a)_qc) approximate'y equal to 56, 38, and 50, respec_SIOW rate at which the Iubricating fluid Surrounding the
tively. This corresponds to about 47% and 32% increases ifiread can “drain out” to allow the lobes to grow. A lubrica-
the thread rupture time relative to the “neutral” wall bound-tion theory approximation and linearized hydrodynamic
ary condition for the case where the thread preferentiallyfheory predicts that the rate of instability growth occurs on a
wets the surface and the wall fluid preferentially wets thelime scale scaling  as(Rype?m/ o) (Rube Rinvead / Rubel >
surface, respectively. Unexpectedly, a high affinity of thewhere(RypesRinread/ Riube IS sSmall[see Eq(7)]. In our units
thread fluid for the wall greatlgecelerateshe rate of thread and notation, this corresponds to an instability growth rate of
breakup. We at first hypothesized that segregation of the tub&e confined systerg(A) relative to the bulk rate.. which
fluid to the boundary caused a slowing of the dynamics byscales as|(A)/d..~[(A-1)/A]*,A=1, We see that the rela-
modifying the effective tube radius to a smaller valtieus tive value of the instability growth rateanishesas the thick-
reducing the rate of capillary breakuut the extent of this ness of annular liquid layer vanishes. This qualitatively ex-
segregatior(a couple of a percent enrichment of the threadplains the strong effect of confinement on thread breakup
volume fraction at the wallseems to be too small to account kinetics under high confinement, but this result of the linear-
for the observed effect. Thus, the origin of this effect remaingzed lubrication theory is untrustworthy from a quantitative
obscure. The stabilization of the thread rupture by the wetstandpoint. Hammond further suggested that plug formation
ting of the encapsulating fluid can be more readily rational-should be inhibited forA=1 since at some point there
ized. The formation of plugs is clearly difficult under these should be insufficient fluid for the lobes to grow large
circumstances and supporting this view we see that the cagnough to pinch off to form a plug by simple volume con-

E. Kinetic stabilization of thread breakup and glasslike
phenomenology
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servation. Instead, he suggested the formation of periodifiuid threads subjected fitow in a tube[7]. The existence of
lobe structures along the tube axis or “unduloid surfaces’such stabilization is supported theoretically where the stabi-
that ultimately become separated from each other due to thgzation conditions(range of A for which thread stability
pinch-off of the Wa_ll fluid at points along the tube where the exists depends on flow rate, viscosity ratio, e{@3,48,
layer becomes critically thin. Measuremefi?§,47 have not  suggesting that th&inetic stabilizationobserved in the ab-
indicated the growth of such isolated fluid “collars” distrib- sence of flow can be converted irasolute stabilityunder
uted regularly along stable fluid threads, raising questiongyitaple flow conditiongsee Sec. Iy, The kinetic stabiliza-

about even the qualitative conclusion_s of the lubrication;on effect observed in our simulations apparently occurs
theory of thread breakup beyond early times. Subsequent Ny er 5 comparable confinement range where genuine stabili-
merical work by Gauglitz and RadKd7], based on a lubri- zation under flow oceurs

cation approximation, but with inclusion of nonlinear hydro- Simulation of thread stabilization by the LB method is

dynamic effects relevant to describing the surface evomtiorgifficult for highly confined thread$§A <1.5) using the cur-

at later times, indicated that thread rupture occurs beyond rent method because the interfacial width between the coex-

“critical value of confinement,A" (A" =~1.12 for “inviscid” =
threads, i.e., bubblgsFor A less than this “critical” value, isting phases starts to become comparable to the scale of

the fluid thread continuity is preserved, while for greater val-confinementdistance between tube wall and thread surface
ues rupture ensues in this treatment. Measurements of tHe'e LB method becomes strictiyapplicablewhen the con-
breakup of(air bubblg threads by Gauglitz and Radké7]  finement scale becomes comparable to one lattice spacing,
indicated that plug formation is largely “suppressed” forcorresponding to the physical coarse graining scale of the
A <A’ (expt)=1.09. Moreover, thread breakup was found tomodel.(This scale is approximately the interfacial width in
be a “statistical phenomenon” in the accompanying measurean infinitely deep temperature quench and can be appreciable
ments, becoming more infrequent and occurring at randonn polymer blends and other complex fluids where the par-
along the tube for\ < A" (expt). While thread breakup may ticle dimensions and the associated coarse graining scale
occur after sufficiently long times, as suggested by the workcorrelation length amplitudes,) are large[28].) To obtain
Preziosiet al. [48], “effective stabilization” is obtained from further insight into the thread stabilization effect, we next
a practical standpoint. Numerical studies of Newhouse andonsider how the time scale of thread breakyplepends on
Pozrikidis [24] for viscosity-matchedluids (p=1) indicate A in a confinement regime where we are more confident in
that an arrays of lobes form below=1.2.(This estimate of the method.
the “critical confinement paramete®” is the most relevant Two timescales are evident in our simulations of thread
to the present StUdy since our fluids are likewise ViSCOSitybreakup’ regard|ess of the Changes in the character of the
matched. However, these lobes structures were found to behread breakup process caused by finite size effétshe
unstable to plug formation, which is the first stage of thefime at which the fluid thread breaks, and(2) the “induc-
gnd-plnch mstablllty in our sm_glapons. Thus, the stabiliza-jgy time” 7 at which the boundary deformatiom(t) first
tion of the t_hreaﬂs Isiot ir.‘ eqw!lbrlun; Ehe;]nor:nené)n. fine. OOWS 10 2% ORiyeqgSO that the surface undulations are first

' ?rarily, but it does capture the notion of the onset of the

shown in Fig. 5, where the tube radius was 12 ardl.4. In read break ; White characterizes its end. Fiqur
this case, we observe that the fluid thread remains stable l}lgoea eaKup process, gcharacterizes Is end. Figure
showsrg (solid line) and 7; (dashed lingin reduced time

to a long time,t,.q=800, consistent with the confinement- = ¢ ) A for the simulati h -
induced “stabilization” effect indicated theoretically by UNitS as a function ofA for the simulations shown in Fig.

Hammond[26] and experimentally by Gauglitz and Radke 4(@ (‘tapped” thread;e=0.1). The data show a sharp in-
[47]. Because of limited resolution in the lattice fluid de- Créase ofrg and 7 with decreasing\, but it is not clear if the
scription and the finite interfacial width arising from the rela- divergence of these times occurs for a critical valie> 1.
tively weak fluid immiscibilty, we performed several other The functional dependence of the increasergnand 7 is
simulations to see if lattice effects were influencing the apStrong and, indeed, a power law (A-A") with a negative
parent “stabilization” phenomenon. For example, we considexponent does not seem to fit the data at all. Recognizing
eredA = 1.28 forR,.= 25,50, and 100. It was found that for that this dramatic slowing down of the dynamics is due to the
Rube=25 and 50, the system appeared very “stable” and wéestricted “free volume” accessible for the displacement of
simply stopped the simulations at abdt=100 because it the thread surface due to the confining tube, we then tried a
did not appear to be any significant evolution of these sysfunction with an essential singularity to descrilyg as often
tems, but forR,,.=100 there was a clear indication of the employed to phenomenologically describe the strdnde-
onset of thread breakup after a similar time period. While ithendence of relaxation time data in glass-forming liquids,

is likely that the apparent stability of these highly confined

systems is affected by the lattice discretization, it should also 5= A exgEy/(A-A)?] + 75*, A =0.663,
be noted that the interfacial width becomes increasingly
small relative to the thread radius in this series of simulations E,=2.14, 75* =9.59, 9)

and this could also be a factor in the pinning phenomenon.
The influence of interfacial width on thread stability will be where(A-A")? corresponds to the mean-square particle dis-
the subject of future research. placement in the glass-forming liquid analogy of H)

It seems relevant at this point to note that a critical valug48]. The resulting fit led to a\" value close to the predic-
of A for thread stabilization near 1.2 has been observed fotion of Newhouse and Pozrikidj€4], so we simply fixA" in

056312-13



HAGEDORN, MARTYS, AND DOUGLAS PHYSICAL REVIEW E69, 056312(2004

300 plates, where the confining effect can be expected to be
weaker than in the tube geometry. This geometry is interest-
ing in its own right and arises in experimental studies on
confined polymer blends in phase separating fi[d8 and
immiscible polymer blends subjected to flow in a Couette
apparatus where the initial droplet size is comparable to the
gap spacing of the instrumef0]. Preliminary LB calcula-
tions were performed of thread breakup under parallel plate
confinement to contrast this type of confinement with the
tube case. These computations are briefly compared to mea-
surements for this geometry in a separate paper where the
focus was on aspects of thread breakup that are difficult to
observe experimentallj21]. This subsection considers simu-
? lations for this geometry from the separate perspective of
how tube confinement compares to confinement by parallel
plates.
A The confinement parametey, . for the parallel plate
confinement geometry is naturally defined as the ratio of the
. ; S : plate gap distanced to the thread diameter. FOA e
oo e 0 0 o801 2 1(2R,.101 1.2, we fn that he tread remains Siabe
for a long time(t,.q=200), while for A,=2 the capillary

(10), respectively. The relatively small difference between thes - o
times reflects the long induction times where the thread is “’[hink(-ebreakula is not qualitatively chan_ged_ from the bu_lk case. We
- ; show a stage of thread breakup in Fig. 11 for an intermediate
ing” about breaking up. . 4 .

value of confinementAp,=1.43(e)=5x10"). The side
view in Fig. 11 gives a perspective of the capillary breakup
process, corresponding to looking into the gap between the

plates and in a direction normal to the thread orientation. The

0

1T T T T T T 1T T T 7T
1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60

FIG. 10. Induction timer; and thread breakup timg vs A.

Eq. (9) to this value, i.e.A"=1.2. Similarly, the “dimension-
less induction time’r; data fit this same function reasonably

well, presence of the boundary attenuates the largest amplitude
7 =A; exdE,/(A-A")?] + TI*, A,=0.607, deformations at this stage of thread breakup as lubrication
forces resist the approach of the perturbed thread surface

E,=2.17, Tl* =6.88 (10) towards the tube wall21]. This leads to a “blunting” of the

undulations on the thread into a more square-shaped wave-

where A"=1.2 and the maximum residual is 2.1. The solidform, an effect discussed in some detail by Sxral. [21].
line and dashed lines in Fig. 10 represent the fits to Efs. We also observe that the thread has a nearly elliptical shape
and (10), respectively. The simulation data accord with thenear the maximum amplitude undulations, while the thread
fits to within a maximum residual of 3.2 in reduced time cross-section is nearly circular in the thinned portions of the
units for theA range indicated. These empirical expressionghread which are far from the tube wa[®1]. A view of the
provide only a convenient parametric description that giveshread breakup process from above the plates is shown in the
some sense of the rapid rate at which the dynamics of theop view. This is the usual experimental perspecfe,21.
thread breakup slows down under confinement. Note#hat Large amplitude growth regions in this projection have a
and 7 become fairly constant over the confinement range more circular shape and the amplitude of these deformations
between 2 and 2.5, despite the fact that this is still ih a is largest in regions where the lubrication forces slow the
range where finite size effects have an appreciable effect ogrowth [21]. Finally, a profile view of the distortion in the
q(A) (see Fig. 4 The minimum in the data is probably a real undulating thread is shown in Fig. 11.
effect associated with entering the weak confinement regime. Comparison between the tube and parallel plate simula-
This transition of regimes is also apparent in Fig. 4 where aions indicates similarities in the thread breakup process, al-
substantial “kink” in theq(A) data occurs neak=2.5. These though evidently a greater confinement is required to achieve
expressions forr; and 75 apply to only highly confined comparable finite size effects in the parallel plate geometry.
threads(A <2.5). For Apiae™ 2, the breakup geometry is bulklike, while for

Although there is some quantitative uncertainty in theAyae<1.2 the process is kinetically too slow to be observ-
data regarding the lattice discretization effect describedble on the time scales of our simulations. For intermediate
above, there is no doubt that the breakup timgebecomes confinement(e.g., Ay5=1.5), an unstable distorted droplet
prohibitively long to observe in both simulation and mea-(“capsule’) morphology forms. These findings accord well
surement with high confinement. We refer to this nonequilib-with the measurements of Saet al. for polymer threads

rium condition as “kinetic stabilization”. confined between parallel platg®1] and further results are
) _ _ briefly summarized below after discussing the LB simula-
F. Fluid thread breakup under confinement: Single tions. Here we do not investigate whether a transition to
and multiple threads between parallel plates nucleation thread breakup occurs for high confinement

We now briefly consider the influence of boundary con-(1.2<A, as in the threads in highly confined tube, be-
finement on fluid threads positioned between two paralletause of the time consuming nature of these simulations.
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Top View

Profile View

FIG. 11. Thread breakup between parallel
plates under intermediate confinement conditions.
LB simulation of a fluid thread having a diameter
D=106 (in units of lattice spacing confined be-
tween two parallel plates having a gap width
=232. The thread length is 600 and the width of
the plates in the orthogonal direction is 480,
where the boundary conditions are taken to be
periodic along both these directions. The extent
of confinementH/D is equal to 1.45 and,eq
=78.5. Side view and end-on views at points of
maximum and minimum deformation from initial
cylindrical shape are shown.

Side View

A pa=1.43 €=0.1 treq = 75.8

plate

However, we do anticipate a “kinetic stabilization” of the finite size effects on the rate of capillary instability growth
capillary instability thread breakup process and the emerg(A ) are weaker than for the case of tube confinement,
gence of a new mode of thread breakup at high confinemenfor the same extent of confinement. Specifically, the finite
as in the thread confined to a cylinder. Notably, the parallekjze effects apparently saturate e~ 45 in the plate
plate geometry allows for the novel situation in which geometry, which dactor of2 less than for the tube geometry.

Apae< 1, where the cylinder must be distorted by the bound-gased on these striking observations of thread “stabilization”
ary at the outsetmore of a “ribbon” than a threadSuch

stable under both quiescent and shear flow conditj@0% : L .
. A ) ; stable state whenA is sufficiently small (i.e., A
This stability is natural given that ribbons do not break up by__ 1.3 (Notably thepslzearguments ngglect cénsiderg?itgn of

capillary instability in two dimensiong20,49,5Q. . . . . . )
Next, we highlight some recent measurements on threaﬁu.'d. o mterac_tl_ons, which are Ilkely relevant to deter
ining thread stability under general circumstancdé®e-

breakup in a parallel plate geometry that are relevant to oul ) .
simulations and discussion. Se al. [21] find “stabiliza- gardless of the exactness of this geometrical argument, there

tion” against thread breakup for strongly confined threaddS NO question that confinement leads to effective thread sta-
(Apiate< 1.3 in the case of nylon-6 fluid threads breaking up bilization over very long time scales and that the thread dis-
within a confining polystyrene matrix. This finding is remi- ortion on which their argument is based actually occurs.
niscent of the thread breakup measurements of Gauglitz and !N summary, the “extent of confinementl/A) must be
Radke[47] for confining tubes and the simulations of threadslarger in the parallel plate geometry than for the tube to
confined to tubes. Notably, the highly confined threads ofchieve the same relative effect on the slowing down of the
Sonet al.[21] appeared to be stable over a time scales on thghread breakup kinetics. This trend is natural given that the
order of a day. However, these measurements indicate théiibe involves confinement along tworthogonaj directions,
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<€>=5x10"

while confinement occurs only along one direction in the a)
parallel plate geometry.

We also briefly consider some aspects of thread breakup
in confined geometries that arise when the confining bound-
ary is flexible Our simulations are partly motivated by our
previous LB calculationg28] that showed a tendency of
adjacent threads, formed under phase separation and steady
flow, to undulate out of phasgThis remarkable “string
phase” has been observed experimentfl$—59.) It was
our impression that these collective inter-thread interactions
could be crucial for understanding thre@dtring”) stability
since isolated threads generally disintegrate under steady
shear flow. We were also influenced by observations of
strong inter-thread interactions in measurements modeling
thread breakup in extruded polymer blerj@§—6Q. These
fragmentary observations suggested that a “flexible” confin-
ing boundary can substantially influence thread breakup un-
der confinement, and we thus considered a simple model to
explore this effect.

Following the experiments of Elemassal.[57], we con-
sider a parallearray of threadsconfined between two paral-
lel plates under weak confinemef,=2.49 so that the
interthread interactions are the primary source of confine-
ment The initial spacings between the threads was chosen to
be equal to 1.7 times the thread diameter so that the inter-
thread interactions are moderate. We use five threads in our
simulation system and extend this computational cell peri-
odically into the plane of confinement. Figures(d2and
12(b) show early and late stages of interacting thread
breakup starting from random initial perturbations of the
thread, where the method of applying the random perturba-
tions and their magnitud&e)=5x10"%) is the same as de-
scribed for the tube case described in Sec. Il C. First, we
find that there is a long period of time occurs over which the
growth of perturbations isuppressedby interstring interac-
tions.(Elemanset al. [57] have observed a thread interaction  F|G. 12. Thread breakup for a thread confined between parallel
induction time of this kind experimentallyThis long-lived,  plates and a periodic array of surrounding threads. The ratio of the
transient regime is followed by a relatively rapid threadinter-thread center spacing to the thread diameter at initial time is
breakup process during which the threads undutate of  1.7. The image shows a top view of plates at early stages of the
phasewith each othefFig. 12a)]. Once the instability starts, thread breakup process. Simulation valueg,gf are indicated in
it develops rapidly and collectively, leading to the formationthe figure.
of a fairly regular droplet arrayFig. 12b)]. Measurements
of this multiple thread instability for polymer blend threads

are in progres§60], but for the present we note the similarity yorphologically similar two-dimensional, wavelike instabili-
of Fig. 12 to previous experimental observatidis®]. AN ties are seen in the dewetting of thin fillf&2—67, suggest-

interesting and as yet unexplained problem is the process qu another way to think about these instabilitjes.
which the thread undulatiorhase lockbefore breakup. The

long induction time before thread breakup is apparently re-
lated to this phase I_ocking phenomenon which has also been IV. CONCLUSIONS
reported in the motion of microorganisri&l].

For an inter-thread spacing less than or equal to 1.5 thread Our LB investigation indicates that confinement can sub-
diameters, the threads tended to fuse at apparently randostantially alter the thread breakup process from the bulk.
points and subsequently formed droplets that were substafhese changes include not only changes in the rate of thread
tially larger than those in Fig. 1B). This phenomenon is breakup, but alsgualitative mechanistic changes in thread
reminiscent of the transition to nucleated-rupture for thread$reakup process such as the suppression of satellite droplet
subjected to high tubular confinement. Preliminary result§ormation and even the Rayleigh-Plateau instability itself. In
indicate that once rupture occurs, it tends to propagate ougeneral, the thread breakup becomes a complex admixture of
ward from its source in a wavelike fashion. This is appar-capillary and end-pinch instabilities for “confined threads”
ently atwo-dimensional generalization of the end-pinch in- (A<1.9) so that the nature of the thread perturbation mag-
stability occurring for tubular confinementWe note that nitude and typg€random versus impulsive “tapstan have a
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large influence on the final morphology. We note that thesesubstrate thermodynamitwetting”) interactions can be ex-
changes in the kinetics of capillary breakup, even undepected to have a large influence on the stabilization of both
weak confinement conditiorigube radius less than ten times ribbon and confined thread structures and further measure-
that of thread and greater than 2.5 thread jative practi- ments and simulations are needed to understand the interplay
cal implications for surface tension and other property meabetween geometrical and thermodynamic boundary interac-
surements based on observations of the kinetics of threaibn effects in these structures.
breakup in confined geometries. Flexible boundaries, such as those arising from surround-
A comparison between thread breakup in tube and paralléhg fluid threads, can apparently influence thread breakup. In
plate geometries indicate that confinement has a similar esome cases, we find that this type of constraint leads to en-
fect for both these geometries. Of course, greater confineranced stability, while in other cases stability is diminished.
ment, as measured by A/ was required to achieve the same A wide range of flexible boundary types is evidently possible
relative effect on the slowing down of the thread breakup(e.g., threads in supported and free-standing films) atod
kinetics. This trend is natural given that the tube involvesinvestigation of this type of confinement is needed since
confinement along twgorthogona) directions, while con- many new features apparently arise for this type of confine-
finement occurs only along one direction in the parallel platement.
geometry. Our comparison also reveals samigue charac-
teristics of parallel plate confinement. Specifically, the con-
finement parametek .. can be less than 1 if we allow the ACKNOWLEDGMENTS
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