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We investigate the influence of geometrical confinement on the breakup of long fluid threads in the absence
of imposed flow using a lattice Boltzmann model. Our simulations primarily focus on the case of threads
centered coaxially in a tube filled with another Newtonian fluid and subjected to both impulsive and random
perturbations. We observe a significant slowing down of the rate of thread breakup(“kinetic stabilization”)
over a wide range of the confinement,L=Rtube/Rthreadø10 and find that the relative surface energies of the
liquid components influence this effect. ForL,2.3, there is a transition in the late-stage morphology between
spherical droplets and tube “plugs.” Unstable distorted droplets(“capsules”) form as transient structures for
intermediate confinementsL<2.1–2.5d. Surprisingly, the thread breakup process for more confined threads
sLø1.9d is found to be sensitive to the nature of the intial thread perturbation. Localized impulsive perturba-
tions (“taps”) cause a “bulging” of the fluid at the wall, followed by thread breakup through the propagation of
a wavelike disturbance(“end-pinch instability”) initiating from the thread rupture point. Random impulses
along the thread, modeling thermal fluctuations, lead to a complex breakup process involving a competition
between the Raleigh and end-pinch instabilities. We also briefly compare our tube simulations to threads
confined between parallel plates and to multiple interacting threads under confinement.
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I. INTRODUCTION

The breakup of fluid threads and films by capillary insta-
bility is ubiquitous in engineering, science, and nature. For
example, an understanding of this phenomenon is essential to
the the technologies of ink-jet printing[1], the production of
stable thin coatings(e.g., polymer films, coating optical fi-
bers, and wires) [2], the morphology and stability of ex-
truded polymer blends[3,4], the formation of polymer fibers
from polymer blends[5], the transportation of oil in pipe-
lines [6–9], and tertiary oil recovery[10(a)]. In many of
these technological applications, thread breakup occurs un-
der tubular confinement conditions. Examples include the
phase separation of blends and other fluid mixtures in porous
media or in the presence of large quantities of filter particles
where a near tubular geometry exists locally, oil recovery
from porous rocks[10(a)] and synthetic tubular networks
encountered in multicomponent fluid processing, ranging in
scale from plant pipelines to microfluidic devices
[6–9,10(b)]. Moreover, the consequences of this type of in-
stability are apparent in a multitude of natural phenomena
such as the stability of liquid jets(e.g., kitchen faucets of
garden hoses) [1], the beading of liquids on natural(e.g.,
spider webs) and synthetic fibers[11] and perhaps even in
fundamental biological processes such as morphogenesis
[12(a)]. Tubular confinement of multiphase fluids is known
to have important consequences for respiration and pulmo-
nary disease[12(b)] and for transport processes occurring in
a host of biological structures in animals ranging in scale
from the arteries, veins, and capillaries of the circulatory
system to microtubules and other structures within animal
cells. Hierarchically organized vascular structures with tubu-

lar structures containing multicomponent fluids are also char-
acteristic structural features of plants, influencing the fluid
distribution within these structures[12(a)] and transport pro-
cesses vital for life.

The study of capillary breakup has a long history. Savart
[13] gave the first scientific report of the breakup of liquid
threads in 1833, followed by Magnus[14] in 1855. Plateau
[15] and his assistants performed experiments on the breakup
of fluid threads, and Plateau provided the first theoretical
explanation of the occurrence of this instability when the
thread length is greater than its circumference. For threads of
greater length, boundary undulations reduce the surface area
for a fixed volume of fluid. Rayleigh[16] formulated the first
theory of the dynamics of thread breakup in the absence of
viscosity effects in either the thread or the surrounding fluid
medium. He estimated that the wavelength of the undulatory
instability along the thread should be comparable to the sta-
bility length (now known as the Rayleigh-Plateau stability
length) estimated using thermodynamic reasoning by Pla-
teau. Later, Weber generalized the theory to describe the
combined effects of the viscosity of the fluid thread, density
and surface tension[17] and Tomotika[18] included the ef-
fect of the matrix viscosity while excluding density effects.
Lee and Flumerfelt[19] have given a unified treatment of
fluid thread breakup that includes viscosity mismatch, den-
sity and inertial effects. The simpler Tomitika theory is suit-
able for understanding the breakup of viscous fluid threads
having nearly the same density as the surrounding fluid. This
situation often applies well to polymer mixtures, but the non-
Newtonian rheology of high molecular mass polymers is of-
ten a complication in interpreting measurements on this tech-
nologically important class of fluids[3].
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In the present paper, we are concerned about how the
presence of boundaries influences the capillary breakup of
viscous fluid threads and we focus particularly on the nature
of thread breakup within a coaxial tube in the absence of
imposed flow. Figure 1 illustrates a thread subjected to tube
confinement where Fig. 1(a) shows the initial stage in which
the thread has a cylindrical form, while Fig. 1(b) shows in-
cipient thread breakup by the Rayleigh-Plateau instability
[15,16]. Schematic images of the late-stage morphologies
observed after thread breakup, i.e., “plugs,” plugs with “col-
lars” and “capsules” are indicated in Fig. 1(c). The collars on
the plugs are transient features and these structures relax into
plugs at long times. Capsules are sometimes observed to be-
come unstable to plug formation at long times and the plugs
tend to coalesce slowly at still longer times so that the late-
stage evolution of the ruptured thread is characterized by a
succession of long-lived transient states. Geometrical param-
eters that are important in specifying the simulation condi-
tions are also indicated in Fig. 1.

Since fluid threads embedded in films(e.g., spinodal de-
composition in films) and between parallel plates[20,21] are
common in processing applications, we briefly compare our
tube confinement simulations to those for a threads confined
between two parallel plates. We also consider the breakup of

arrays of threads subjected simultaneously to parallel plate
confinement since multiple thread geometry illustrates some
essential aspects of the influence offlexible boundaries on
thread breakup.

In the absence of dispersion interaction effects and other
non-hydrodynamic effects relevant to capillaries having a
sub-micron scale[22], geometrical confinement of an infinite
Newtonian thread surrounded by another liquid in a coaxial
pipe does not provide thermodynamic stability against capil-
lary breakup[9,23]. The rate of breakup and fluid morphol-
ogy is certainly influenced by confinement, however[24,25].
Lubrication theory in a linearized approximation predicts
that the rate of thread breakup relative to the bulk vanishes as
the thread radius approaches the tube radius[23,25] and this
effect has been qualitatively indicated in numerical boundary
integral calculations[24]. These former simulations also in-
dicate that the geometrical form of the thread breakup mor-
phology changes under high confinement[24]. Notably, this
type of “sharp interface” model has difficulty following the
singular thread rupture and coalescence processes so that the
simulations have primarily focused on phenomena occurring
before thread breakup. This method also does not apply to
fluids for which the interfacial width is comparable to the
scale of confinement since this type of model assumes a van-

FIG. 1. Schematic illustration of thread
breakup in a confining tube.(a) Initial configura-
tion of a fluid thread confined to a tube.(b)
Thread undergoing capillary undulations. The im-
age corresponds to the simulation described be-
low. (c) Schematic images of post-rupture
structures–“plug,” plug with “collar,” and
“capsule.”
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ishing interfacial width.(The interfacial width describing the
composition profile or “interface” of two liquids at equilib-
rium can be appreciable in polymer and other complex fluids
and even for “simple” fluids near thier critical point for phase
separation.) We can readily treat the long time evolution of
thread breakup using the lattice Boltzmann(LB) method and
this allows us to obtain a more complete picture of geometric
and kinetic aspects of thread breakup in confined geometries,
although this method also encounters difficulties when the
scale of confinement is comparable to the interfacial width
(see the discussion below). The LB model is advantageous
because it allows for the incorporation of polymer-fluid ther-
modynamic interactions that allow for surface segregation of
the fluid components, a physical affect apparently difficult to
incorporate in finite element and boundary element simula-
tions of thread confinement since these models implicitly
assume that the fluids areperfectly immiscible.

The present work focuses on the geometrical character of
the thread breakup instability due to finite size effects and the
influence of the fluid-surface interaction on kinetic aspects of
this process using the LB model of multiphase fluid dynam-
ics. LB simulations allow for both the treatment of a diffuse
interfacial width between the liquid phases and the thermo-
dynamic interaction between the fluid and confining wall.
These interactions are commonly important in polymeric
blends and other fluid mixtures(e.g., surfactant solutions)
that are only weakly immiscible and the boundary interac-
tions lead to a compositional segregation of the energetically
preferred coexisting phase to the walls, thereby considerably
affecting the rate of thread breakup. This effect is found in
our simulations and, moreover, recent measurements have
demonstrated the crucial role of fluid “wetting” properties on
the stability and form of two-phase flows of immiscible flu-
ids in microchannels[10(b)].

II. BRIEF REVIEW OF THE LATTICE BOLTZMANN
MODEL AND THREAD BREAKUP IN BULK

In the LB model that we employ[27–29], the fluid within
a volume element is described in terms of the particle veloc-
ity distribution function na

i sx,td at each point in space,
na

i sx,td is the number of particles per unit volume at nodex,
time t with velocity, ea, where the subscriptsa=1, . . . ,bd
indicates the velocity direction and superscripti labels the
fluid component. Timet evolves in discrete time steps, and
the fluid particles can collide with each other as they move
under applied forces. For this study, we use the D3Q19(three
dimensional lattice withb=19) lattice [29] where eachea
corresponds to the velocity of particles that stream to nearest
neighbor sitess1øaø6d and next nearest sitess7øaø18d
on a cubic lattice, whilee19=0 corresponds to a rest particle.
The units ofea are the lattice constant divided by the time
step.

Macroscopic quantities such as the number density,
nisx,td, and the fluid velocity,ui, of each fluid component,i,
are obtained by taking suitable moment sums ofna

i sx,td.
Note that while the velocity distribution function is defined
only over a discrete set of velocities, the actual macroscopic
velocity field of the fluid is continuous. The time evolution

of the particle velocity distribution function satisfies the fol-
lowing LB equation:

na
i sx + ea,t + 1d − na

i sx,td = Va
i sx,td, s1ad

where the collision operatorVa
i sx,td describes the rate of

change of the particle distribution due to collisions. This
quantity is simplified by use of the single relaxation time
approximation

Va
i sx,td = −

1

ti
hna

i sx,td − na
iseqdsx,tdj, s1bd

wherena
iseqdsx,td is the equilibrium distribution atsx,td andti

controls the rate of approach to equilibrium. The equilibrium
distribution can be represented in the following forms for
particles of each type:

na
iseqdsxd = tan

isxdF3

2
s1 − dod + 3ea ·u

+
3

2
s3eaea:uu− u2dG, 1 ø a ø 18, s2ad

n19
iseqdsxd = nisxdFdo −

1

2
u2G sa = 19d, s2bd

with ta=1/18 for 1øaø6 andta=1/36 for 7øaø18. The
number densityni and equilibrium velocityu of the fluid
mixture are then defined by the weighted averages

ni = o
a

na
i = ri/mi , s3ad

u =

o
i

s

mio
a

na
i ea/ti

o
i

s

minisxd/ti

, s3bd

where the sum overa ranges from 1 to 19. Similarly,do can
be related to the temperatureT by the following average:

Tsx,td =

o
a

na
iseqdsx,tdsea − ud2

3nisx,td
. s4d

This leads to the relationT=s1−dod /2 (units are chosen such
that Boltzmann’s contant equals 1). The continuum limit[27]
of these LB equations leads to a velocity field that is a solu-
tion of the Navier-Stokes equation wheren is the kinematic
viscosity,

n = Dtc2

o
i

s

sciti − 1/2d

6
,

with Dt the LB time step, and whereci is the volume fraction
of each(“Newtonian”) fluid component.
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Following Shan and Chen[27], we model fluid phase
separation by introducing an interactionfdpi /dtsxdg that ef-
fectively perturbs the equilibrium velocity

risxdu8sxd = riusxd + ti
dpi

dt
sxd s5d

u8 is the new velocity used in Eq.(2). We further take the
interaction to depend on the density of each fluid component:

dpi

dt
sxd = − nisxdo

i8

s

o
a

Gii8
a ni8sx + eadea, s6d

with Gii8
a =2G for ueau=1, Gii8

a =G for ueau=Î2, andGii8
a =0 for

i = i8. G is a “coupling constant” that controls the strength of
thermodynamic interaction between the fluids.(G is the ana-
log of the usual “exchange or van der Waals interaction” in
the usual lattice models of fluid mixtures.) It has been shown
that this interaction leads to phase separation and associated
critical properties(phase boundaries, correlation length, sur-
face tension) of this model fluid mixture have recently been
reported[28]. Phase separation occurs in the model upon
cooling for a fixed value ofG or for a critical valueGc at
fixed T [28]. Comparison to measurement is facilitated by
expressingG in terms of a reduced variabletG that ranges
between 0 and 1 in the two-phase region where the fluids are
immiscible, a larger value oftG implying a larger quench
depth and interfacial tension and a smaller interfacial width
between the coexisting phases[28]. In real fluids,tG should
be taken as directly comparable to the reduced temperature
uT-Tcu /Tc whereTc is the critical temperature for phase sepa-
ration. The LB model is notably a mean field model and does
not account for fluctuation effects that can renormalize criti-
cal properties nearTc [28]. In the simulations below, we take
tG=0.329 which for aTc near room temperatures300 Kd
corresponds to a quench depth of 99 K, a moderately deep
quench. All distances are reported in lattice spacings or as
dimensionless ratios of scales. At this quench depth, the rela-
tive volume fractions in the two coexisting phases for our
model are determined to equal 0.998 and 0.002[28].

A fluid-surface interaction is incorporated by modifying
Eq. (6) in the region surrounding the fluid[28,29]. While
ni8sx+ea,td normally corresponds to a particle number den-
sity, it is assigned a value 1 in Eq.(6) whenx+ea resides in
the solid where the value ofGii8

a , is then set to allow the solid
to attract(wet) or repulse(dewet) the fluid componenti [29].
A no-slip boundary condition is maintained at the wall by
utilizing a second order ‘bounce back’ boundary condition.
Here, Eq.(1a) is replaced byna8

i sx,t+1d−na
i sx,td=Va

i sx,td,
wherea8 is defined such thatea8=−ea.

The simulations were initialized in the following way. De-
noting the two fluid components asA and B, a thread of
radius R with compositioncA=0.98 andcB=0.02 was sur-
rounded with a fluid having compositioncA=0.02 andcB
=0.98. We then allowed the system to equilibrate. As a re-
sult, the thread radius shifted slightly. It should be appreci-
ated that the interface between the thread liquid and the sur-
rounding fluid is diffuse because of the moderate quench

depth into the two-phase region(see Ref.[28]), creating
some uncertainty about the interface position. To make its
location specific, we defined the thread “boundary” as the
location where the local fluid volume fraction is equal to
50%. This criterion normally corresponds to the inflection
point of the composition profile governing the liquid-liquid
interface[28]. We then defined the ratio of the tube radius
Rtube to the thread radius after equilibrationRthread as a di-
mensionless measure of confinement,L;Rtube/Rthread.

In the discussion below, we express time in terms of the
rate of growth of the capillary instability in bulk, as de-
scribed by the theory of Tomotika[18]. According to this
theory, the amplitudeastd of a perturbation of the thread
boundary (infinitely long thread) grows exponentially at
“early” times (see Fig. 1):

astd = as0d expsqtd, t → 0+, q = s Fsl,pd /2hmRthread.

s7d

The growth rateq depends on the interfacial tensions, the
shear viscosityhm of the “matrix” fluid, and the viscosity of
the threadhthr. The “dimensionless capillary wave growth
rate factor”Fsl ,pd is a function of the matrix-thread viscos-
ity ratio sp=hthr /hmd and wavelengthl of the perturbation
and this function is tabulated by Tomotika[18] (see below).
The growth rateq is maximal for the wavelength,lmax
=2pRthread/d, in bulk fluids (i.e., threads not subjected to
confinement) where the “dimensionless wave number”d also
depends onp [18,30]. This scale grows to predominate at
long times and is thus “selected” in the late stages of thread
breakup. Simulation times are expressed in the reduced time,
tred = q`t, whereq`sRtube = `d is the bulk capillary instabil-
ity growth at the sclae,lmax. Confinement alters the rate of
growth of the capillary instabilityq [or equivalentlyFsl ,pd]
and the wavelengthlmax of the disintegrating thread and the-
oretical and LB simulation results relating to these finite size
effects are discussed below.

Our treatment of finite size effects on the rate of thread
breakup is restricted to the case in which the fluid and matrix
viscosities are equalsp=1d. In this case, the Tomitika theory
predicts thatd=0.56 andFslmax,p=1d=0.0714[18,19]. We
note for comparison thatd=0.69 for the case where the vis-
cosity of both the fluid thread and matrix are neglected(“in-
viscid” fluids) and thatd approaches 0 for a viscous fluid in
an inviscid medium(i.e., the instability wavelength relative
to the initial thread radius diverges) [16].

Our restriction to simulations of viscosity-matched fluids
is made because of the large parameter space that must be
investigated. Moreover, previous work on thread breakup has
indicated that this assumption leads to results that are “typi-
cal” for the case where the viscosity mismatch is not large
sp<1d [24,25] and evidence for this insensitivity is de-
scribed in Sec. III A.

Although no qualitative changes in the nature of the
thread breakup should occur for modest values of viscosity
mismatch, the growth rateq is affected byp and its variation
is often of practical interest. Some insight into the magnitude
of this effect can be obtained from tabulated values of
Fslmax,pd in the bulk limit [18]. While no concise analytic
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expression exists forFslmax,pd, even in bulk fluids, we note
that Fslmax,pd is reasonably well described by the Padé ap-
proximant[31]

Fslmax,pd < sa + bpd/s1 + cp+ dp2d, s8d

with a=0.963,b=456.5,c=806.2, andd=12 199. This rela-
tion agrees with the exact results of Tomotika[18] to within
a maximum deviation of 0.03 forp in the broad range be-
tween 10−5 to 105 where Fslmax,pd varies monotonically
over a corresponding range between 1 and 0. From this ex-
pression we see that thread breakup generally occurs more
slowly when the thread is less viscous than the matrix fluid.
Simulation of thread breakup with a “large” viscosity mis-
match( pø0.1 or pù5 requires an alternate formulation of
the present LB method[32]. We defer this more general in-
vestigation to the future.

III. SIMULATION RESULTS

A. Fluid thread breakup by capillary instability
under weak confinement

As a reference case and a further check of our LB mixture
model of Newtonian fluid mixtures[28], we briefly consider
capillary breakup of a fluid thread where finite size effects
have a weak effect on the morphology of thread breakup. In
Fig. 2(a), we show a progression of images of thread breakup
as a function oftred. The tube radius is 24(lattice spacings)
and the length of the tube(and thread) in the simulation is
600. Periodic boundary conditions are applied along the axial
direction. The initial thread radius equalsRthread=9.9, so that
the tube length-thread aspect ratio(the length of tubeL di-
vided byRthread) is approximately 60. This is about an order
of magnitude larger than the Rayleigh-Plateau length
s2pRthreadd for thread breakup in bulk so that we can consider

the threads as “long.” In Fig. 2(a) we show only a section of
the simulation(about two wavelengths) that is comparable to
the measurement image for a polymer thread in a polymeric
matrix shown in Fig. 2(b) (experimental conditions are sum-
marized below). The thread was perturbed by introducing
random impulsive perturbation throughout the thread, as de-
scribed in Sec. III C.

The rupture of the fluid thread in Fig. 2(a) occurs through
the growth of collective sinusoidal undulations about the
original circular cylindrical thread, as in the schematic image
shown in Fig. 1(b). At a late stage of this instability, the large
amplitude regions of positive deformation(i.e., “bulges”) are
separated by thin, nearly circular filaments that break up by a
secondary capillary instability, leading to the formation of
satellite droplets[1,33–36]. A whole hierarchy of droplet
sizes can be created by thread breakup through a recursive
occurrence of capillary instabilities to ever-finer scales
[33,35]. Treatment of these higher generations of the droplet
breakup and the fine structure of the singular thread breakup
morphology requires a finer discretization of the lattice
model calculations. In our simulations, we observe only the
leading order satellite droplets shown in Fig. 2(a). This is
also often the case in measurements where various physical
effects(surface tension, viscosity, non-Newtonian fluid char-
acteristics, impurities) cut off this hierarchical instability. For
example, the breakup of a polymer thread under weak con-
finement conditions shown in Fig. 2(b) exhibits only one
well-formed “generation” of satellite droplets.(These mea-
surements are actually performed for fluid threads under con-
finement between parallel plates, but the scale of confine-
ment is so large that confinement effects are small.) We
discuss these measurements further below, after further sum-
marizing our results for the LB simulations underweak con-
finement.

We next quantify the growth rate of the capillary instabil-
ity. In Fig. 3, we show a semi-log plot of the growth rate of

FIG. 2. Simulated and experimental fluid thread breakup under weak confinement.(a) LB simulation of a thread of radius 9.79(in units
of lattice spacing) confined to a tube of radius 24sL=2.45d and a length of 600. This length corresponds to about ten Rayleigh-Plateau
lengths, but the image only shows a section corresponding to a couple of instability wavelengths. The time units of the simulation are given
in the reduced units of thread breakup in the bulk,tred (see the text). The walls of the tubes are omitted for visual clarity and to facilitate a
comparison with the measurements in the accompanying figure.(b) Representative experiment of the thread breakup of a polymer thread in
a polymer matrix(see the text). The timet is given in units of seconds. This measurement is for a thread confined between parallel plates
and having gap to thread diameter ratio of 10.6[21]. Confinement effects are weak in this measurement, so that these can be considered
“bulk limit” observations.
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the thread undulation logastredd. The nonlinear increase of
log astredd at long times is associated with the thread rupture
process and the data terminates at the time of rupture. The
solid curve is a fitted “steady state” growth rate of the cap-
illary instability and the dotted curve represents the simula-
tion data for all times, including early and late stages where
the instability growth is non-exponential. Although the size
of the confining tube is sufficiently large that confinement
effects do not have an appreciable influence on thegeometry
of the thread breakup process, the confinement is sufficient
to influence therate of thread breakup(see below). This
situation is evidently similar to measuring fluid viscosity by
studying the sedimentation of a sphere in a capillary[37] or
the Brownian motion of a sphere in a capillary where finite
size effects act over appreciable distances to affect particle
mobility [38]. A typical rule of thumb is that the tube diam-
eter should be at least an order of magnitude larger than that
of the sphere diameter in order to avoid significant finite size
effects[39].

The simulations described below indicate that finite size
effects can substantially influence the rate of thread breakup
over a large range of tube confinement and that the rule of
thumb, just mentioned, describes these confinement effects
reasonably well. Notably, these corrections are relevant to an
accurate estimate of surface tension by observations of the
dynamics of capillary breakup. Despite the potential impor-
tance of these corrections, there has been little discussion of
them in the experimental literature, apart from recent work of
Sonet al. [21]. Indeed, the thread confinement scales are not
normally reported[40]. Such corrections are quantified be-

FIG. 3. Growth of capillary undulations under weak confine-
ment conditions.a is the amplitude of the thread surface undula-
tions and is defined as12 the difference between the maximum and
minimum distances from the original cylindrical thread surface.
Data are taken from the run shown in Fig. 2(a) and terminate at the
point of thread rupture. The solid curve indicates the data range
where we have fitted to the exponential growth law predicted by
linearized stability theory[18], and dashed lines indicate the early
“induction regime” and late stage “rupture regime” where the
growth dynamics exhibits a more complicated behavior. Note the
accelerationof the breakup process near the point of thread rupture
in this example of confined thread breakup.

FIG. 4. Growth of capillary undulations as function of confine-
ment,L. (a) The growth rate data shown in Fig. 3 is extended to the
range ofL indicated in the figure. The solid curve indicates the data
range where we have fitted to the exponential growth law predicted
by linearized stability theory[18], and dashed lines indicate the
early “induction regime” and late stage “rupture regime” where the
growth dynamics exhibits a more complicated behavior.(b) Capil-
lary instability growth ratesqsLd obtained from a fit to linear por-
tions of curves shown in(a). Growth rate data have been reduced by
the bulk growth rate,qsL→`d = q`. (c) Theoretical prediction of
the influence of confinementsLd on the wavelengthlmaxsLd of the
maximum growth rate. Wavelength data have been reduced by the
bulk value,lmaxsL→ ` d=l`. The curves are calculated from the
linearized stability theory of Mikami and Mason[41].
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low for the tube geometry in the case where the matrix and
thread fluids have the same viscosities and where the tube
boundary does not have an energetic preference for either
fluid component(see Sec. III D). Our results should be suit-
able for comparison with the breakup of real fluids, provided
the viscosity mismatch is not too large. Equation(8) provides
an estimate of the uncertainties caused by this approximation
in the bulk case and we expect this expression to provide a
rough estimate for the viscosity mismatch effect for the
breakup of confined threads. This approximation remains to
be tested, however, and should not be adopted uncritically.

In our next test of the LB model, we consider the wave-
length of the most rapidly growing undulatory instability in
our simulations in comparison with the analytic theory of
Tomotika [18]. The dimensionless wave numberd for the
data in Fig. 2(a) is equal tod<0.58±0.03, where the confi-
dence interval reflects the uncertainty in determining the
lmax and a due to the lattice discretization of the thread
boundary. This value accords within experimental uncer-
tainty with the theoretical value 0.56 for thread breakup in
bulk (see Sec. II).

In order to quantify the role of finite size effects on the
kinetics of thread breakup in the limit of “weakly confined”
threads, we simulated the thread breakup for a range ofL
values between 2 and 8. The resulting growth rate data are
shown in Fig. 4(a). The data from Fig. 3sL=2.45d are in-
cluded for comparison in this figure. Growth ratesqsLd for
confined threads, obtained from the linear(solid curve) por-
tions of these curves are indicated in Fig. 4(b). (Curves have
been shifted horizontally so that they do not overlap one
another.) Dotted portions of curves correspond to early and
late-stage regimes. Each curve in Fig. 4(a) is shifted relative
to the previous curve by an amounttred = 5, from left to
right. For L.2.45, the growth rateqsLd increases mono-
tonically, becoming relatively constant forL,Os5–10d.
This finding accords well with the usual intuition about the
scale where finite size effects tend to “saturate.”

It is interesting to compare the kinetic data for thread
breakup to the generalization of the Tomitika theory to con-
fined threads derived by Mikami and Mason[41]. This
theory is rather algebraically complex and does not lend it-
self to a closed analytic description of the rate of thread
breakup, but we can accurately fit the results of this theory to
analytic approximants that are useful in comparisons to our
simulation data and experiment. Rigorous application of the
“linearized” hydrodynamic theory is limited to “short” times,
but experience has shown that this type of approximation can
be a remarkably good at longer times approaching the thread
rupture time and we next compare our calculations to these
predictions. Figure 4(b) shows estimates of the reduced
breakup rateqsLd /qsL→`d determined numerically from
the analytic results of Mikami and Mason[41] for the cases
where the viscosity of the threadhthr is ten times that of the
matrix fluid (dotted line), equal to that of the matrix fluidhm
(solid line) and a factor of 0.1 timeshm (dot-dashed line). By
utilizing the equation discovery algorithm of Judith Devaney
a NIST [41], we find that theexact numerical values of
qsLd /q` determined from the Mikami-Mason theory can be
described by a simple exponential function ofL over a broad

confinement ranges2.3,L,`d, i.e., qsL ,p=1d /q`<
1−Q expf−yLg where q`;qsL→`d, y = 0.637, andQ
=2.67. The magnitude of the deviation between this approx-
imant and the exact numerical data is generally less than
0.005 so that we do not discriminate between the approxi-
mant and the exact numerical data in Fig. 4(b). We also
observe that this simple analytic expression agrees well with
our LB data forqsL ,p=1d /q`, indicated by the filled circles
in this figure. Notably, the value of the “bulk” capillary
growth ratesq`d derived from this fit is used to define the
time scales of our simulations below.

We also observe from Fig. 4(b) that order of magnitude
changes in the ratio of the thread to matrix fluid viscosityp
have a relatively small effect on the calculatedqsLd /q`

when p is small. The deviation becomes substantial, how-
ever, for largep and the upper(dotted) curve shows this
effect for the representative case,p=10. This relative insen-
sitivity of qsLd /q` to p does not extend to other properties,
such as the “wavelength of the instability,”lmaxsLd. This
point is illustrated in Fig. 4(c) which shows the analytic pre-
diction of Mikami and Mason[41] for lmaxsLd, relative to its
bulk value l` and for representativep values between 0.1
and 10. It is apparent thatlmaxsLd /l` depends strongly onp
and the finite size dependence of this ratio becomes increas-
ingly large asp becomes larger.

The apparent increase inqsLd for L<2.1 and the mini-
mum nearL<2.54 in Fig. 4(b) deserves comment. Appar-
ently, the onset of strong confinement can actually lead to an
enhancementof the early-stage rate of capillary breakup. It
must be noted, however, that the geometrical character of the
thread breakup process becomes substantially modified in
this confinement regime(see the detailed discussion below)
so that the thread breakup process is not directly comparable
to the weak confinement datasL.2.54d. For more confined
systemssL,2d, we find below that thread breakup no
longer occurs by a capillary instability process like that of
the bulk fluid. Thus, it is not generally sensible to speak of
the Rayleigh-Plateau instability under high confinement con-
ditions. Nonetheless, we useqsLd to define the dimension-
less time of our simulations since the bulk measurements still
provide a natural reference point for describing the relative
rate thread breakup in confined threads, regardless of the
mode of thread breakup. Direct comparison to measurement
can be made in the same reduced time units.

We now return to the representative experimental data
[21] in Fig. 2(b) for the breakup of a polymer fluid thread
and compare these results to the LB simulations above. The
scales of the images in Fig. 2 have been adjusted so that the
initial thread sizes are comparablesRthread=127mmd. The
fluid thread is a polyamide-6(nylon) polymer and the matrix
is polystyrene where the molecular masses of the polymers
are relatively low to avoid significant “entanglement” effects
and the temperature is rather highsT=503 Kd to avoid non-
Newtonian effects arising from the glass transition. We also
note the viscosities of the nylon and polystyrene are 300 and
1200 Pa s, respectively, so that the viscosities are not exactly
matched, as they are in the simulations. Confinement effects
are weak in these measurements since the thread is confined
between two parallel plates where the ratio of the gap width
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between the plates and the thread diameter equals 10.6.
(Measurement details are given by Sonet al. [21] and similar
observations for non-polymeric fluids are described by Ma-
son and co-workers[30].) It is apparent from Fig. 2 that the
LB simulation captures the geometrical form of the “bulk”
thread breakup process rather well, including the process of
satellite formation.

B. Confined fluid thread breakup:
Localized impulsive perturbations

In the preparation of fluid threads for observation of their
breakup, it is common to subject the threads to intentional
local perturbations that can influence subsequent thread
breakup[30]. These perturbations are distinct from perturba-
tions of the thread arising from equilibrium interface fluctua-
tions associated with the thermal energy of the fluid and can
have a very large impact on the time scale of the thread
breakup. Alternatively, there are instances under processing
conditions where we wish to stimulate thread breakup
through the application of some localized external perturba-
tion such as an acoustic or other(electric, magnetic depend-
ing on the nature and responsiveness of the fluid) field, me-
chanical force or laser pulse to a particular part of the fluid
thread. We thus consider the influence of finite size effects on
thread breakup in the case where the thread has been sub-
jected to a localized impulsive perturbation(“tap”). Specifi-
cally, a localized impulse is directed towards the center of
the thread for the duration of ten LB time steps was applied
over five consecutive lattice spaces along the thread surface
and parallel to the thread orientation. The magnitude of the
impulse was quantified by«, the extent of thread deforma-
tion induced at the time of its application relative toRthread.
Figure 5(a) illustrates the progressive breakup of a liquid
thread having an initial radius of 9.47(lattice units) and con-
fined within a tube of radius 19 so thatL=Rtube/Rthread is
equal to 1.9. The length of the tube is 600, again as in Fig.
2(a), but in this case we show the entire tube. The arrow in
figure indicates the position where the localized impulsive
perturbation was applied and the magnitude of the impulsive
perturbation equals,«=0.1, which is a typical value for mea-
surements on threads subjected to large and localized “taps”
(e.g., « in the range 0.05–0.6 are investigated in[3]). This
figure indicates the full progression of the thread breakup
process and new features evidently arise because of confine-
ment. The response of the thread to “tapping” is nearly sinu-
soidal and rotationally symmetric about the fluid thread with
a wavelengthd<0.57±0.03(uncertainty estimate same as
described above). This is again in close accord with bulk
thread breakup[11] (see Sec. II). At these later times, we
observe the growth of fluid “bulges” where the wall fluid
thickens at the expense of the fluid thread. At intermittent
points, this thickening becomes large enough to rupture the
thread to form “plugs.”(This phenomenon has been ob-
served in liquid thread breakup in highly confined fluid
threads of water in an oil matrix[10].) The thread pinch-off
appears to be a nucleationlike process, corresponding to es-
sentially random points along the thread where the thread
happens to grow to a scale sufficient to lead to rupture[43].

There is a correlation, however, with the rupture point and
the tapping position when the tapping amplitude is suffi-
ciently large(see. Fig. 5). The relation between thelmax of
the early-stage thread undulations to the spacing between the
plugs is unclear, however. The somewhat larger distance be-
tween the plugs, relative to the initial wavelength of the in-
stability, might give the impression of an effectively longer
“instability wavelength,” but this conclusion is questionable.
Once the thread ruptures, we see a propagating(“end pinch”)
instability that grows from the ruptured thread ends towards
the capsule center. A near periodic array of plugs forms as
the capsule shortens through progressive fission of droplets
from the capsule ends.(Propagating instabilities of this kind
have also been observed in the breakup of the confined liquid
capsules[10], and highly extended droplets and vesicles un-
der flow conditions[44(a),44(b)].) Notably, satellite forma-
tion is suppressed in confined thread breakup, relative to the
weak confinement case shown in Fig. 2(a). This is apparently
due to the “flattening” of the thread undulation bulges of the
thread due to confinement. This flattening(see Fig. 11 below
where this effect is clearly illustrated for parallel plate con-

FIG. 5. Thread breakup of a strongly confined fluid threads sub-
jected to a tapping perturbation.(a) LB simulation of a thread of
radius 9.47(in units of lattice spacing) confined to a tube of radius
18sL=1.9d and having a length 600. The arrow indicates the posi-
tion along thread where impulsive force was applied.(b) Thread
breakup evolution for a tapped thread with increased confinement
sL=1.9d. Satellite droplets disappear by “dissolving” into the sur-
rounding fluid. The arrow indicates the position along the thread
where impulsive force was applied.
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finement) leads to a more gradual tapering of the connecting
threads between the thread bulges, which then do not so
readily break up into satellite droplets by capillary instability.
We also find that the spacing of the plugs becomes regular in
the late-stage of the capillary breakup, leading to a pattern
wavelength comparable to the bulk thread breakup process.
Figure 5(b) shows the case ofL=1.8 where the confinement
effect is enhanced further. It is evident that this apparently
slight increase in confinement leads to a strong slowing
down of the rate of thread breakup and an increase in the
number of plugs.

From these observations, we conclude that morphological
evolution of highly confined thread breakup is qualitatively
different from unconfined or weakly confined threadssL
ù2.5d. With increasing confinement, thread breakup is pre-
dominated by non-periodic and sparse thread rupturing
events. Extensive collective motion develops from these rup-
ture points through apropagating wavedeveloping along the
thread which ultimately leads to a string of plugs in the tube.
Once formed, the plugs are highly persistent and their coa-
lescence is slow. This phenomenon is commonly encoun-
tered in liquid plugs formed in mercury thermometers and is
appropriately named the “Jammin effect”[45].

Next, we consider the crossover between the highly con-
fined thread breakup process in Figs. 5(a) and 5(b) and the
weakly confined thread breakup process[Fig. 2(a)]. In Fig. 6,
we show the late-stage morphology of the thread breakup
where the tube length is fixed[see Fig. 5(a)], but L is varied
from 1.80 to 2.54. The thread radius is near constant with
small variations coming from the concentration relaxation.
All the runs correspond to thread lengths well above the
Rayleigh-Plateau length. The impulsive perturbation is the

same as in Fig. 2(a) s«=0.1d. We observe a transition from
plugs to droplets occurs forL<2+u, whereu is on the order
of the interfacial widthw relative to the tube radius,w/Rtube
where w<3-4 lattice spacings in the present calculations.
(Further measurements over a range of quench depths will be
required to verify the generality of this finding.) At this scale
of relative confinement, the droplets resulting from the
thread breakup are just small enough to form without appre-
ciable distortion from a spherical shape in the enclosing tube.
We can appreciate the physical origin of this crossover scale
by a simple geometrical argument. Assuming that the volume
of the droplets formed from the ruptured thread equals the
volume of a section of the thread having lengthlmax, implies
that the radius of the droplets is equal toRdroplet
=s3p /dd1/3Rthread. For viscosity-matched fluidssp=1d, this
implies,Rdroplet/Rthread<2.03, which is close to the observed
plug-droplet transition in Fig. 5. We also observe that the
interdrop and interplug length scale of the late-stage pattern
is not strongly sensitive toL. The maximum growth rate
wavelengthlmax of the capillary instability atearly stages
for highly confined threadssL<1d is predicted to equal,
lmax<23/2pRthreadsd =2−1/2=0.707d [11]. This corresponds
to a 26%decreaseof the instability wavelength relative to
breakup in the bulk matrix[18]. Although the early-stage
results do not evidently apply to the morphology at long
times, we note that the inter-drop spacing in the late-stage
morphology is about 10% smaller thanlmax for the bulk, a
trend consistent with the early-stage capillary instability
theory.

A further morphological transition in the thread breakup
evolution is apparent at an intermediate stage of the thread
breakup formoderateconfinement. Figure 7 shows an earlier
stage evolutions0, tred,58.3d of the image shown in Fig. 6
for L=2.09. This thread breakup process is akin to the
Rayleigh-Plateau instability in bulk(Fig. 2), although the
anisotropic capsules become unstable in a late-stage of the
instability and form a regular array of plugs, as in the highly

FIG. 6. Influence of tube confinement on late-stage thread
breakup morphology. Image shows a cross sectional view of tube
where the white fluid initially forms a cylinder at the center of tube.
The initial thread radii vary from 9.44 to(in units of lattice spac-
ing), while the tube radius varies from 17 to 25, so thatL varies
from 1.8 to 2.54.

FIG. 7. Rayleigh-Plateau instability distorted by finite size ef-
fects. LB simulation of thread of initial radius 9.58(in units of
lattice spacing) confined to a tube of radius 20sL=2.09d and having
length 600. The corresponding late-stage morphology is indicated in
Fig. 5.
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confined case[Figs. 5(a) and 5(b)]. The aspect ratio of the
plugs diminishes with increasingL, up to the plug-droplet
transition rangesL=2+ud where the droplets become nearly
spherical. Note that the satellite drops “dissolve” into the
surrounding fluid matrix at this moderately deep quench
depth.

C. Confined fluid thread breakup: Random initial
perturbation

It is known that the time of thread breakup depends on the
magnitude of the initial perturbations to which the threads
are subjected, although there has been limited systematic
study of this phenomenon. Kuhn[46] estimated the depen-
dence of the thread breakup time on the amplitude of random
perturbations associated withthermal fluctuations. His esti-
mates have not been found to agree quantitatively with mea-
surement(presumably uncontrolled localized impulsive per-
turbations are one reason for this discrepancy), but they have
been of value in rationalizing the existence of initial thread
deformations when the data is extrapolated tot=0 [3,18].

The delicate interplay between thread breakup by capil-
lary wavesall along the threadand drops pinching off suc-
cessively from the ends of capsules(end-pinch instability),
described in Sec. III B, raises questions about how the thread
perturbations act in connection with finite size effects. Can
the qualitative nature of the thread breakup process depend
on the character of the perturbation(e.g., discrete impulsive
versus random perturbations along the thread)? To check for
this possibility, we subjected the thread to small amplitude
perturbations to model perturbations arising from the effect
of thermal fluctuations and the thread preparation in the mea-
surements. We find that the nature of the fluid perturbation
can indeed have a strong influence on the thread breakup
process in the confined regime.

A small spatially random forcing was applied at a single
time step throughout the entire volume of fluid in such a way
that no net momentum change occurs. The perturbation at
each point was a vector of randomly determined direction,
having a magnitude randomly chosen from a uniform distri-
bution in the rangef0,10−5g. In addition, we ensure that
there is no total momentum change by pairing up lattice
points of identical composition and applying a randomly
generated perturbation to one member of the pair and the
reverse of that perturbation to the other member of that pair.
Notably, the amplitude of these random impulses is much
smaller than the discrete impulses described in Sec. III B.

We first applied the random perturbations to a thread un-
der weak confinementsL.2.5d. The maximum value of the
scale of the impulsive deformation relative to the thread ra-
dius «max is taken to be 0.001 and the ensemble average« is
half as large,k«l=5310−4. These random perturbations
(“kicks” ) were applied after the thread composition had re-
laxed to its coexisting composition value. For comparison,
0.001 is a typical order of magnitude for experimentally es-
timated values of the initial thread deformationast→0+d,
relative toRthread for threads not subjected to impulsive per-
turbations[3] (In measurements, these perturbation magni-
tudes values are normally too small for direct microscopic

observation and are estimated by extrapolating the thread
breakup observations to vanishing time.). We find that a
change in the magnitude of«max for weakly confined threads
[as in Fig. 2(a)] over a range of two orders of magnitude has
little impact on asymptotic exponential growth rate of the
thread breakup, apart from a change in the “induction time”
it takes for the growth to approach the exponential regime
[see Eq.(7) and the discussion below]. The dependence of
the breakup time on the magnitude of the perturbations«d
accords qualitatively with Kuhn’s model[46], i.e., larger am-
plitude initial perturbations(impulsive or random) generally
shorten the breakup time.

Figure 8(a) shows the influence of random perturbations
in the case of a highly confined threadsL=1.9;k«l=5
310−4d. In this case, we observe that randomness in the
initial impulsive perturbation leads to a change in the early
stage of thread breakup. We find that the uniform capillary
undulations at short times persist to a longer time(random-
ness seems to stabilize the capillary instability) and the cap-
illary undulations thus grow to a larger scale than in the
“tapped” case[Fig. 5(a)]. However, the end-pinch instability
ultimately intercedes to rupture the thread. Notably, the
wavelength of the capillary undulations before rupture is
larger than the bulk case by about 20%, rather than smaller,
as found in the case of the “tapped” thread. The rupture of
the thread is followed by an end-pinch instability that causes
the formation of “peanut shaped” capsules that relax into
plugs with “collars”(rings of trapped fluid within the plugs;
see Fig. 1). Over time, the collars of the plugs drift to one or
the other side of the plug axial face under capillary action,
leaving uniformly spaced cylindrical plugs after these tran-
sient features disappear. Small plugs sometimes alternatively
disappeared through a dissolution process similar to the sat-
ellite droplets described above. We also observe that the
propagating(end-pinch) instability by which the thread rup-
tures into capsules is more rapid in the random perturbation
case.

The prevalence of thread breakup by capillary instability
or end-pinch instability in highly confined threads is evi-
dently sensitive to the character of the perturbations to which
the threads are subjected. Further evidence of this “noise
sensitivity” in confined threads is found by increasing the
confinement toL=1.8 for the case of a random initial thread
perturbationsk«l=5310−4d. The breakup evolution for this
case is shown in Fig. 8(b) where we find that the early-stage
Rayleigh-Plateau instability, pronounced in theL=1.9 case
[Fig. 8(a)] is now suppressed in relation to the bulge insta-
bility and the associated end-pinch instability. Strikingly, the
wavelength of the Rayleigh-Plateau instability developing at
early times isdecreasedby about 10%, as in the “tapped”
case[Fig. 5(a)]. This effect ultimately leads to a larger num-
ber of plugs[seven compared to six in the bulk case shown
in Fig. 2(a)]. The transient capsules, formed after the thread
ruptures, again develop a “peanutlike” shape and then evolve
into plugs with substantial collars. In Fig. 8(b) we see that
the plug collar itself ruptures in the late-stage morphology
stred<579d, thus forming a droplet on the tube wall. Notably,
the spacing in the plugs and the collared plug morphologies
are more disordered, reflecting a sensitive dependence of the
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random perturbations at earlier times. Succesive runs with
different choices of random numbers describing the random
thread perturbations led to distinct morphologies with similar
characteristics-disorder in the plug spacings, fluctuations in
the number of droplets, and odd transient “collars” on the
plugs. This variation is illustrated in the last frame in Fig.
8(a) which corresponds to the morphology obtained in a sec-
ond simulation attred=578.9. Evidently, many runs should be
performed to obtain appropriately averaged properties of the
thread breakup process in these highly confined fluids. These
morphogical fluctuations do not occur under weak confine-
ment conditions so that the finite size constraint amplifies the
sensitivity of thread breakup to noise.

D. Confined fluid thread breakup:
Influence of fluid-wall interaction

In the cases discussed so far, there is no preferential in-
teraction between the fluid components and the capillary
boundary. This interaction is found to have little effect on the
breakup morphology forL.2.5, but the liquid-surface inter-
action can be expected to be important in more confined
threads. In contrast to Fig. 7, where there is no energetic
preference of the thread fluid for the tube wall, Figs. 9(a) and
9(c) show the evolution in the fluid breakupsL=2.09d for
the cases where the fluid thread preferentially wets the tube
wall and dewets the wall, respectively. Figure 9(b) indicates
the energetically neutral case where neither fluid has a pref-

FIG. 8. Thread breakup of a strongly confined
fluid threads with random perturbations.(a) LB
simulation of a thread of initial radius 9.49 con-
fined to a tube of radius 18sL=1.9d and having a
length 600. Reduced time valuestred are shown in
the figure.(b) Thread breakup evolution with in-
creased confinementsL=1.8d.
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erential affinity for the tube wall. Specifically, the equilib-
rium contact angles of the thread fluid on a plane surface
having the interaction of the tube boundary are 35°, 90°, and
145° for Figs. 9(a)–9(c);, respectively[29]. These simula-
tions are for the case of an impulsive thread perturbation
s«=0.1d, although the type of perturbation is less important
for this moderate confinement case. The contact angles of the
plugs directly reflect this variation in the relative energies
between the fluids and the substrate. Although thread
breakup occurs regardless of the relative surface energy,
there is a dramatic change in the kinetics of thread breakup
and plug formation arising from the fluid-tube wall interac-
tion. First, we notice that the breakup time is greatly in-
creased relative to the neutral wall case wheneither the
thread or annular fluid has a higher affinity for the wall. In
particular, the time scalestred for thread rupture in Figs.
9(a)–9(c) approximately equal to 56, 38, and 50, respec-
tively. This corresponds to about 47% and 32% increases in
the thread rupture time relative to the “neutral” wall bound-
ary condition for the case where the thread preferentially
wets the surface and the wall fluid preferentially wets the
surface, respectively. Unexpectedly, a high affinity of the
thread fluid for the wall greatlydeceleratesthe rate of thread
breakup. We at first hypothesized that segregation of the tube
fluid to the boundary caused a slowing of the dynamics by
modifying the effective tube radius to a smaller value(thus
reducing the rate of capillary breakup), but the extent of this
segregation(a couple of a percent enrichment of the thread
volume fraction at the wall) seems to be too small to account
for the observed effect. Thus, the origin of this effect remains
obscure. The stabilization of the thread rupture by the wet-
ting of the encapsulating fluid can be more readily rational-
ized. The formation of plugs is clearly difficult under these
circumstances and supporting this view we see that the cap-

sules persist to long times in the simulations shown in Fig.
9(c) with this boundary interaction.(Notably we found that
the capsules became plugs more rapidly in this case if the
tube was made shorter, i.e.,L=100). These results indicate
that fluid surface interactions can have a large influence on
thread breakup kinetics in moderately confined geometries.
This important and subtle effect will require systematic com-
putational and experimental investigation.

E. Kinetic stabilization of thread breakup and glasslike
phenomenology

Hammond [25] explained the slow growth rate of the
“lobe bulging” instability of the wall fluid in the highly con-
fined fluid regime(no thermodynamic fluid-surface interac-
tions incorporated into the modeling) as being due to the
slow rate at which the lubricating fluid surrounding the
thread can “drain out” to allow the lobes to grow. A lubrica-
tion theory approximation and linearized hydrodynamic
theory predicts that the rate of instability growth occurs on a
time scale scaling assRtubehm/sdfsRtube-Rthreadd /Rtubeg−3

wheresRtube-Rthreadd /Rtube is small [see Eq.(7)]. In our units
and notation, this corresponds to an instability growth rate of
the confined systemqsLd relative to the bulk rateq` which
scales asqsLd /q`,fsL−1d /Lg3,L<1, We see that the rela-
tive value of the instability growth ratevanishesas the thick-
ness of annular liquid layer vanishes. This qualitatively ex-
plains the strong effect of confinement on thread breakup
kinetics under high confinement, but this result of the linear-
ized lubrication theory is untrustworthy from a quantitative
standpoint. Hammond further suggested that plug formation
should be inhibited forL<1 since at some point there
should be insufficient fluid for the lobes to grow large
enough to pinch off to form a plug by simple volume con-

FIG. 9. Influence of surface interaction on
thread breakup of confined threads. As in Fig. 7,
we consider the LB simulation of thread of radius
9.55±0.06(in units of lattice spacing) that is con-
fined to a tube of radius 20 and having length
600. (a) The thread fluid(white) preferentially
wets the tube wall.(b) Fluids have the same af-
finity for the capillary wall. (c) The tube wall
preferentially wets the annular fluid. Note that the
rate of thread breakup and plug formation is
slowed relative to the neutral boundary when ei-
ther fluid preferentially wets the wall. These stud-
ies are performed at a fixed quench depth(inter-
facial width) and L, and future work must
consider the variation of these parameters to de-
duce the quantitative effect of fluid-surface inter-
action on the rate of thread breakup.
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servation. Instead, he suggested the formation of periodic
lobe structures along the tube axis or “unduloid surfaces”
that ultimately become separated from each other due to the
pinch-off of the wall fluid at points along the tube where the
layer becomes critically thin. Measurements[25,47] have not
indicated the growth of such isolated fluid “collars” distrib-
uted regularly along stable fluid threads, raising questions
about even the qualitative conclusions of the lubrication
theory of thread breakup beyond early times. Subsequent nu-
merical work by Gauglitz and Radke[47], based on a lubri-
cation approximation, but with inclusion of nonlinear hydro-
dynamic effects relevant to describing the surface evolution
at later times, indicated that thread rupture occurs beyond a
“critical value of confinement,”L* (L* <1.12 for “inviscid”
threads, i.e., bubbles). For L less than this “critical” value,
the fluid thread continuity is preserved, while for greater val-
ues rupture ensues in this treatment. Measurements of the
breakup of(air bubble) threads by Gauglitz and Radke[47]
indicated that plug formation is largely “suppressed” for
L,L*sexpt.d=1.09. Moreover, thread breakup was found to
be a “statistical phenomenon” in the accompanying measure-
ments, becoming more infrequent and occurring at random
along the tube forL,L*sexpt.d. While thread breakup may
occur after sufficiently long times, as suggested by the work
Preziosiet al. [48], “effective stabilization” is obtained from
a practical standpoint. Numerical studies of Newhouse and
Pozrikidis [24] for viscosity-matchedfluids sp=1d indicate
that an arrays of lobes form belowL=1.2. (This estimate of
the “critical confinement parameter”L* is the most relevant
to the present study since our fluids are likewise viscosity
matched.) However, these lobes structures were found to be
unstable to plug formation, which is the first stage of the
end-pinch instability in our simulations. Thus, the stabiliza-
tion of the threads isnot an equilibrium phenomenon.

To gain insight into this regime of high thread confine-
ment, we considered an additional simulation for the series
shown in Fig. 5, where the tube radius was 12 andL=1.4. In
this case, we observe that the fluid thread remains stable up
to a long time,tred=800, consistent with the confinement-
induced “stabilization” effect indicated theoretically by
Hammond[26] and experimentally by Gauglitz and Radke
[47]. Because of limited resolution in the lattice fluid de-
scription and the finite interfacial width arising from the rela-
tively weak fluid immiscibilty, we performed several other
simulations to see if lattice effects were influencing the ap-
parent “stabilization” phenomenon. For example, we consid-
eredL<1.28 forRtube=25,50, and 100. It was found that for
Rtube=25 and 50, the system appeared very “stable” and we
simply stopped the simulations at abouttred=100 because it
did not appear to be any significant evolution of these sys-
tems, but forRtube=100 there was a clear indication of the
onset of thread breakup after a similar time period. While it
is likely that the apparent stability of these highly confined
systems is affected by the lattice discretization, it should also
be noted that the interfacial width becomes increasingly
small relative to the thread radius in this series of simulations
and this could also be a factor in the pinning phenomenon.
The influence of interfacial width on thread stability will be
the subject of future research.

It seems relevant at this point to note that a critical value
of L for thread stabilization near 1.2 has been observed for

fluid threads subjected toflow in a tube[7]. The existence of
such stabilization is supported theoretically where the stabi-
lization conditions(range of L for which thread stability
exists depends on flow rate, viscosity ratio, etc.) [23,48],
suggesting that thekinetic stabilizationobserved in the ab-
sence of flow can be converted intoabsolute stabilityunder
suitable flow conditions(see Sec. IV). The kinetic stabiliza-
tion effect observed in our simulations apparently occurs
over a comparable confinement range where genuine stabili-
zation under flow occurs.

Simulation of thread stabilization by the LB method is
difficult for highly confined threadssLø1.5d using the cur-
rent method because the interfacial width between the coex-
isting phases starts to become comparable to the scale of
confinement(distance between tube wall and thread surface).
The LB method becomes strictlyinapplicablewhen the con-
finement scale becomes comparable to one lattice spacing,
corresponding to the physical coarse graining scale of the
model. (This scale is approximately the interfacial width in
an infinitely deep temperature quench and can be appreciable
in polymer blends and other complex fluids where the par-
ticle dimensions and the associated coarse graining scale
(correlation length amplitude,jo) are large[28].) To obtain
further insight into the thread stabilization effect, we next
consider how the time scale of thread breakuptB depends on
L in a confinement regime where we are more confident in
the method.

Two timescales are evident in our simulations of thread
breakup, regardless of the changes in the character of the
thread breakup process caused by finite size effects:(1) the
time at which the fluid thread breakstB, and(2) the “induc-
tion time” tI at which the boundary deformationastd first
grows to 2% ofRthreadso that the surface undulations are first
“appreciable”. This latter time is defined somewhat arbi-
trarily, but it does capture the notion of the onset of the
thread breakup process, whiletB characterizes its end. Figure
10 showstB (solid line) andtI (dashed line) in reduced time
units as a function ofL for the simulations shown in Fig.
4(a) (“tapped” thread;«=0.1). The data show a sharp in-
crease oftB andtI with decreasingL, but it is not clear if the
divergence of these times occurs for a critical value,L* .1.
The functional dependence of the increase intB and tI is
strong and, indeed, a power law insL-L*d with a negative
exponent does not seem to fit the data at all. Recognizing
that this dramatic slowing down of the dynamics is due to the
restricted “free volume” accessible for the displacement of
the thread surface due to the confining tube, we then tried a
function with an essential singularity to describetB, as often
employed to phenomenologically describe the strongT de-
pendence of relaxation time data in glass-forming liquids,

tB = A1 expfE1/sL-L*d2g + tB * , A1 = 0.663,

E1 = 2.14, tB * = 9.59, s9d

wheresL-L*d2 corresponds to the mean-square particle dis-
placement in the glass-forming liquid analogy of Eq.(9)
[48]. The resulting fit led to aL* value close to the predic-
tion of Newhouse and Pozrikidis[24], so we simply fixL* in
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Eq. (9) to this value, i.e.,L* =1.2. Similarly, the “dimension-
less induction time”tI data fit this same function reasonably
well,

tI = A1 expfE2/sL-L*d2g + tI
* , A2 = 0.607,

E2 = 2.17, tI
* = 6.88 s10d

whereL* =1.2 and the maximum residual is 2.1. The solid
line and dashed lines in Fig. 10 represent the fits to Eqs.(9)
and (10), respectively. The simulation data accord with the
fits to within a maximum residual of 3.2 in reduced time
units for theL range indicated. These empirical expressions
provide only a convenient parametric description that gives
some sense of the rapid rate at which the dynamics of the
thread breakup slows down under confinement. Note thattB
andtI become fairly constant over the confinement rangeL
between 2 and 2.5, despite the fact that this is still in aL
range where finite size effects have an appreciable effect on
qsLd (see Fig. 4). The minimum in the data is probably a real
effect associated with entering the weak confinement regime.
This transition of regimes is also apparent in Fig. 4 where a
substantial “kink” in theqsLd data occurs nearL=2.5. These
expressions fortI and tB apply to only highly confined
threadssL,2.5d.

Although there is some quantitative uncertainty in the
data regarding the lattice discretization effect described
above, there is no doubt that the breakup timetB becomes
prohibitively long to observe in both simulation and mea-
surement with high confinement. We refer to this nonequilib-
rium condition as “kinetic stabilization”.

F. Fluid thread breakup under confinement: Single
and multiple threads between parallel plates

We now briefly consider the influence of boundary con-
finement on fluid threads positioned between two parallel

plates, where the confining effect can be expected to be
weaker than in the tube geometry. This geometry is interest-
ing in its own right and arises in experimental studies on
confined polymer blends in phase separating films[49] and
immiscible polymer blends subjected to flow in a Couette
apparatus where the initial droplet size is comparable to the
gap spacing of the instrument[20]. Preliminary LB calcula-
tions were performed of thread breakup under parallel plate
confinement to contrast this type of confinement with the
tube case. These computations are briefly compared to mea-
surements for this geometry in a separate paper where the
focus was on aspects of thread breakup that are difficult to
observe experimentally[21]. This subsection considers simu-
lations for this geometry from the separate perspective of
how tube confinement compares to confinement by parallel
plates.

The confinement parameterLplate for the parallel plate
confinement geometry is naturally defined as the ratio of the
plate gap distanceH to the thread diameter. ForLplate
;H / s2Rthreadd=1.2, we find that the thread remains stable
for a long timestred=200d, while for Lplateù2 the capillary
breakup is not qualitatively changed from the bulk case. We
show a stage of thread breakup in Fig. 11 for an intermediate
value of confinement,Lplate=1.43sk«l=5310−4d. The side
view in Fig. 11 gives a perspective of the capillary breakup
process, corresponding to looking into the gap between the
plates and in a direction normal to the thread orientation. The
presence of the boundary attenuates the largest amplitude
deformations at this stage of thread breakup as lubrication
forces resist the approach of the perturbed thread surface
towards the tube wall[21]. This leads to a “blunting” of the
undulations on the thread into a more square-shaped wave-
form, an effect discussed in some detail by Sonet al. [21].
We also observe that the thread has a nearly elliptical shape
near the maximum amplitude undulations, while the thread
cross-section is nearly circular in the thinned portions of the
thread which are far from the tube walls[21]. A view of the
thread breakup process from above the plates is shown in the
top view. This is the usual experimental perspective[20,21].
Large amplitude growth regions in this projection have a
more circular shape and the amplitude of these deformations
is largest in regions where the lubrication forces slow the
growth [21]. Finally, a profile view of the distortion in the
undulating thread is shown in Fig. 11.

Comparison between the tube and parallel plate simula-
tions indicates similarities in the thread breakup process, al-
though evidently a greater confinement is required to achieve
comparable finite size effects in the parallel plate geometry.
For Lplateù2, the breakup geometry is bulklike, while for
Lplate,1.2 the process is kinetically too slow to be observ-
able on the time scales of our simulations. For intermediate
confinement(e.g., Lplate=1.5), an unstable distorted droplet
(“capsule”) morphology forms. These findings accord well
with the measurements of Sonet al. for polymer threads
confined between parallel plates[21] and further results are
briefly summarized below after discussing the LB simula-
tions. Here we do not investigate whether a transition to
nucleation thread breakup occurs for high confinement
s1.2,Lplated, as in the threads in highly confined tube, be-
cause of the time consuming nature of these simulations.

FIG. 10. Induction timetI and thread breakup timetI vs L.
Lines are fit to Eq.(9) and (10). The solid line and the dotted line
are fits to the breakup and the induction times given by Eqs.(9) and
(10), respectively. The relatively small difference between these
times reflects the long induction times where the thread is “think-
ing” about breaking up.
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However, we do anticipate a “kinetic stabilization” of the
capillary instability thread breakup process and the emer-
gence of a new mode of thread breakup at high confinement,
as in the thread confined to a cylinder. Notably, the parallel
plate geometry allows for the novel situation in which
Lplate,1, where the cylinder must be distorted by the bound-
ary at the outset(more of a “ribbon” than a thread). Such
structures can also be considered as extended fluid plugs.
Recent measurements have shown that these structures are
stable under both quiescent and shear flow conditions[20].
This stability is natural given that ribbons do not break up by
capillary instability in two dimensions[20,49,50].

Next, we highlight some recent measurements on thread
breakup in a parallel plate geometry that are relevant to our
simulations and discussion. Sonet al. [21] find “stabiliza-
tion” against thread breakup for strongly confined threads
sLplate,1.3d in the case of nylon-6 fluid threads breaking up
within a confining polystyrene matrix. This finding is remi-
niscent of the thread breakup measurements of Gauglitz and
Radke[47] for confining tubes and the simulations of threads
confined to tubes. Notably, the highly confined threads of
Sonet al. [21] appeared to be stable over a time scales on the
order of a day. However, these measurements indicate that

finite size effects on the rate of capillary instability growth
qsLplated are weaker than for the case of tube confinement,
for the same extent of confinement. Specifically, the finite
size effects apparently saturate forLplate<4–5 in the plate
geometry, which afactor of2 less than for the tube geometry.
Based on these striking observations of thread “stabilization”
under confinement, Sonet al. [21] present a simple geometri-
cal model of thread deformation between plates indicating
that this kind of confinement leads to athermodynamically
stable state whenLplate is sufficiently small (i.e., Lplate

ø1.3). (Notably, these arguments neglect consideration of
fluid-surface interactions, which are likely relevant to deter-
mining thread stability under general circumstances.) Re-
gardless of the exactness of this geometrical argument, there
is no question that confinement leads to effective thread sta-
bilization over very long time scales and that the thread dis-
tortion on which their argument is based actually occurs.

In summary, the “extent of confinement”s1/Ld must be
larger in the parallel plate geometry than for the tube to
achieve the same relative effect on the slowing down of the
thread breakup kinetics. This trend is natural given that the
tube involves confinement along two(orthogonal) directions,

FIG. 11. Thread breakup between parallel
plates under intermediate confinement conditions.
LB simulation of a fluid thread having a diameter
D=106 (in units of lattice spacing), confined be-
tween two parallel plates having a gap widthH
=232. The thread length is 600 and the width of
the plates in the orthogonal direction is 480,
where the boundary conditions are taken to be
periodic along both these directions. The extent
of confinementH /D is equal to 1.45 andtred

=78.5. Side view and end-on views at points of
maximum and minimum deformation from initial
cylindrical shape are shown.
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while confinement occurs only along one direction in the
parallel plate geometry.

We also briefly consider some aspects of thread breakup
in confined geometries that arise when the confining bound-
ary is flexible. Our simulations are partly motivated by our
previous LB calculations[28] that showed a tendency of
adjacent threads, formed under phase separation and steady
flow, to undulate out of phase.(This remarkable “string
phase” has been observed experimentally[51–55].) It was
our impression that these collective inter-thread interactions
could be crucial for understanding thread(“string”) stability
since isolated threads generally disintegrate under steady
shear flow. We were also influenced by observations of
strong inter-thread interactions in measurements modeling
thread breakup in extruded polymer blends[57–60]. These
fragmentary observations suggested that a “flexible” confin-
ing boundary can substantially influence thread breakup un-
der confinement, and we thus considered a simple model to
explore this effect.

Following the experiments of Elemanset al. [57], we con-
sider a parallelarray of threadsconfined between two paral-
lel plates under weak confinementsLplate=2.49d so that the
interthread interactions are the primary source of confine-
ment. The initial spacings between the threads was chosen to
be equal to 1.7 times the thread diameter so that the inter-
thread interactions are moderate. We use five threads in our
simulation system and extend this computational cell peri-
odically into the plane of confinement. Figures 12(a) and
12(b) show early and late stages of interacting thread
breakup starting from random initial perturbations of the
thread, where the method of applying the random perturba-
tions and their magnitudesk«l=5310−4d is the same as de-
scribed for the tube case described in Sec. III C. First, we
find that there is a long period of time occurs over which the
growth of perturbations issuppressedby interstring interac-
tions.(Elemanset al. [57] have observed a thread interaction
induction time of this kind experimentally.) This long-lived,
transient regime is followed by a relatively rapid thread
breakup process during which the threads undulateout of
phasewith each other[Fig. 12(a)]. Once the instability starts,
it develops rapidly and collectively, leading to the formation
of a fairly regular droplet array[Fig. 12(b)]. Measurements
of this multiple thread instability for polymer blend threads
are in progress[60], but for the present we note the similarity
of Fig. 12 to previous experimental observations[56]. An
interesting and as yet unexplained problem is the process by
which the thread undulationsphase lockbefore breakup. The
long induction time before thread breakup is apparently re-
lated to this phase locking phenomenon which has also been
reported in the motion of microorganisms[61].

For an inter-thread spacing less than or equal to 1.5 thread
diameters, the threads tended to fuse at apparently random
points and subsequently formed droplets that were substan-
tially larger than those in Fig. 12(b). This phenomenon is
reminiscent of the transition to nucleated-rupture for threads
subjected to high tubular confinement. Preliminary results
indicate that once rupture occurs, it tends to propagate out-
ward from its source in a wavelike fashion. This is appar-
ently a two-dimensional generalization of the end-pinch in-
stability occurring for tubular confinement.(We note that

morphologically similar two-dimensional, wavelike instabili-
ties are seen in the dewetting of thin films[62–67], suggest-
ing another way to think about these instabilities.)

IV. CONCLUSIONS

Our LB investigation indicates that confinement can sub-
stantially alter the thread breakup process from the bulk.
These changes include not only changes in the rate of thread
breakup, but alsoqualitative mechanistic changes in thread
breakup process such as the suppression of satellite droplet
formation and even the Rayleigh-Plateau instability itself. In
general, the thread breakup becomes a complex admixture of
capillary and end-pinch instabilities for “confined threads”
sLø1.9d so that the nature of the thread perturbation mag-
nitude and type(random versus impulsive “taps”) can have a

FIG. 12. Thread breakup for a thread confined between parallel
plates and a periodic array of surrounding threads. The ratio of the
inter-thread center spacing to the thread diameter at initial time is
1.7. The image shows a top view of plates at early stages of the
thread breakup process. Simulation values oftred are indicated in
the figure.
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large influence on the final morphology. We note that these
changes in the kinetics of capillary breakup, even under
weak confinement conditions(tube radius less than ten times
that of thread and greater than 2.5 thread radii), have practi-
cal implications for surface tension and other property mea-
surements based on observations of the kinetics of thread
breakup in confined geometries.

A comparison between thread breakup in tube and parallel
plate geometries indicate that confinement has a similar ef-
fect for both these geometries. Of course, greater confine-
ment, as measured by 1/L, was required to achieve the same
relative effect on the slowing down of the thread breakup
kinetics. This trend is natural given that the tube involves
confinement along two(orthogonal) directions, while con-
finement occurs only along one direction in the parallel plate
geometry. Our comparison also reveals someunique charac-
teristics of parallel plate confinement. Specifically, the con-
finement parameterLplate can be less than 1 if we allow the
“threads” to deform under confinement to form fluid strips.
These “ribbons” are effectively extended tubular plugs in a
direction orthogonal to the plane substrate, while in the in-
plane direction the boundary fluid ribbon remains free to
undulate as an unconfined fluid thread. Since the Rayleigh-
Plateau instability does not exist in two-dimensional systems
[50], it is not surprising that these plug-like and ribbon-like
aspects combine to createhighly persistent extended struc-
tures. Such structures have been observed in the processing-
relevant contexts of immiscible polymer blends subjected to
a Couette flow[20] and in thin phase separating blend films
[49]. Of course, this is a completely different kind of “stabi-
lization” phenomenon than the slowing down of thread
breakup due to hydrodynamic lubrication forces. Fluid-

substrate thermodynamic(“wetting”) interactions can be ex-
pected to have a large influence on the stabilization of both
ribbon and confined thread structures and further measure-
ments and simulations are needed to understand the interplay
between geometrical and thermodynamic boundary interac-
tion effects in these structures.

Flexible boundaries, such as those arising from surround-
ing fluid threads, can apparently influence thread breakup. In
some cases, we find that this type of constraint leads to en-
hanced stability, while in other cases stability is diminished.
A wide range of flexible boundary types is evidently possible
(e.g., threads in supported and free-standing films, etc.) and
investigation of this type of confinement is needed since
many new features apparently arise for this type of confine-
ment.
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