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Numerical path integration technique for the calculation of transport properties of proteins
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We present a new technique for the computation of both the translational diffusivity and the intrinsic
viscosity of macromolecules, and apply it here to proteins. Traditional techniques employ finite element
representations of the surface of the macromolecule, taking the surface to be a union of spheres or of polygons,
and have computation times that areO(m3) wherem is the number of finite elements. The new technique, a
numerical path integration method, has computation times that are onlyO(m). We have applied the technique
to approximately 1000 different protein structures. The computed translational diffusivities and intrinsic vis-
cosities are, to lowest order, proportional respectively toNR

21/3 andNR
0, whereNR is the number of amino acid

residues in the protein. Our calculations also show some correlation with the shape of the molecule, as
represented by the ratiom2 /m3 , wherem2 andm3 are, respectively, the middle and the smallest of the three
principal moments of inertia. Comparisons with a number of experimental results are also performed, with
results generally consistent to within experimental error.

DOI: 10.1103/PhysRevE.69.031918 PACS number~s!: 87.15.Aa, 87.15.Vv
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INTRODUCTION

The transport properties of proteins are important both
understanding biological processes and in molecular cha
terization. Therefore, methods for estimating or comput
such properties from the native structure have been an
portant area of study. The most common computational
proach represents the x-ray crystal or NMR solution struct
of the molecule as a union of spheres~hydrodynamic
‘‘beads’’! that interact via some form of the Oseen hydrod
namic interaction@1–28#. A related approach consists of co
structing a molecular boundary surface and solving the
propriate integral equation with finite elements distribut
over the surface@29–31#. Some authors have also employ
size or mass correlations@32–36#, brute-force molecular dy-
namics simulations@37#, or predictions based on effectiv
spheres or ellipsoids@20,21,35#.

A new technique for the computation of the translation
diffusion coefficient and of the intrinsic viscosity is no
available. The main advantage is that it is generally fas
than the older techniques. The older techniques have com
tation times that areO(m3), wherem is either the number o
hydrodynamic beads or the number of finite elements use
represent the surface of the molecule. As we will show
low, the new technique isO(m). It takes advantage of a
three-fold analogy between different physical problems. B
cause of analogies between hydrodynamics and electro
ics, the translational diffusivity and the intrinsic viscosity
a molecule are analogous, respectively, to the capacity an
the polarizability tensor that would be possessed by a per
conductor of precisely the same shape as the molecule@38–
43#. A particular angular averaging of the hydrodynam
forces converts the problem to a boundary value problem
electrostatics.~The Oseen tensor, averaged over orientatio
becomes the Green’s function of a point charge.! The anal-
ogy is only approximate, but has been demonstrated to
1063-651X/2004/69~3!/031918~11!/$22.50 69 0319
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accurate to about 2% and 5%, respectively, for the diffusiv
and the intrinsic viscosity of a large number of objec
@38,40#. These electrostatics problems can, in turn, be sol
by numerical path integration techniques that involve su
ming over random walk trajectories in the space outside
object @38,39,41,44–47#. As a result, we can, in a singl
simulation of random walk trajectories, obtain estimates
the translational diffusivity, the intrinsic viscosity, the ele
trostatic capacity, and the electrical polarizability tensor,
though these last two properties are not those of the mole
itself, but those that would be possessed by a perfect con
tor of the same shape as the molecule@46#.

A powerful algorithm for performing the numerical pat
integrations is presented in the following section. The jus
fication for the algorithm is already given in the literatur
and so will not be repeated here@38,39,42–44,46,47#. In Sec.
III we report its application to the calculation of the transl
tional diffusivity and the intrinsic viscosity of over 1000 pro
tein structures downloaded from the Protein Data Bank@48#.
We find that the translational diffusivity is correlated with th
size of the protein, varying approximately as the21/3 power
of the residue number. Weaker correlations of both the
fusivity and the intrinsic viscosity with the shape of the pr
tein as manifested through ratios of the principal moments
inertia are also found: Elongated structures tend to h
smaller diffusivities and larger intrinsic viscosities tha
spherical ones. Experimental diffusivities and intrinsic v
cosities are available for a number of proteins; for these
find generally good agreement with our estimates.

ZENO ALGORITHM

The necessary calculation can be formulated as a bou
ary value problem on the surface of the molecule. We letV
represent the surface. The algorithm employs a sphere, ra
R, called the launch sphere, which enclosesV. The surface
©2004 The American Physical Society18-1
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FIG. 1. Flow chart of the Zeno algorithm used to calculate translational diffusion coefficients and intrinsic viscosities. Note the ‘
the road,’’ encountered on the NO path leaving box 5. One path or the other is chosen at random, one with probabilityR/b, the other with
probability 12R/b.
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of the launch sphere is designatedL . Any arbitrary sphere
that completely enclosesV can serve as the launch sphe
and there is no need forL and V to be concentric. Never
theless, the best statistics are obtained if we use the sma
possible launch sphere. Cartesian coordinates are de
relative to the center ofL , unless otherwise noted. We ref
to the technique as the Zeno algorithm, and summarize
algorithm in the following paragraphs and in a flow chart
Fig. 1.

A large number,N, of random walkers are initiated from
arbitrary points on the launch sphere. These begin walk
and a certain fraction of them eventually adsorb ontoV. The
remainder never findV, even at infinite time, and are said
have wandered off to infinity. The statistics of the trajector
of these random walks give us the properties of interest.
following registers are used to accumulate statistics, and
initialized to zero at the outset:

Kx
15Ky

15Kz
15Kx

25Ky
25Kz

250, initially, ~1a!
03191
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Vxx
1 5Vxy

1 5Vxz
1 5Vyx

1 5¯5Vxx
2 5Vxy

2 5Vxz
2 5Vyx

2 5¯50,

initially. ~1b!

We let (x0 ,y0 ,z0)PL represent the initial point of the tra
jectory of one of the random walkers. Three ‘‘charges
cx ,cy ,cz , each equal to61, and termed the ‘‘x charge,’’ the
‘‘ y charge,’’ and the ‘‘z charge,’’ respectively, are assigned
each random walker@46#. The three charges are stochas
variables depending on (x0 ,y0 ,z0). For cx we have

cx511 with probability
1

2
1

x0

2R
,

cx521 otherwise, ~2!

with analogous definitions forcy andcz .
The algorithm requires calculation of the distance fun

tion r, representing the minimum distance from a po
~x,y,z! outsideV to V. If the random walker is currently
found on or insideL and outsideV, it is displaced to an
8-2
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arbitrary point a distancer away from its current position
guaranteeing that it will still lie outsideV, and then the
process is repeated. Since the displacement is never
enough to bring the random walker in contact with the s
face, it never actually hitsV. However, it comes arbitrarily
close as we find ourselves displacing the walker through p
gressively smaller and smallerr distances. This explains th
name of the algorithm: The process suggests Zeno’s para
in which Achilles runs to overtake a tortoise, but can ne
quite catch up because we continually examine smaller
smaller time steps. Of course, Achilles and our compu
both have better things to do than get caught in this infin
spiral, and so we declare that the random walker has m
contact withV wheneverr falls below some preset ‘‘skin
thickness,’’«.

Whenever the random walker hitsV at a point~x,y,z! we
accumulate statistics on the event by updating the regis
according to the following prescription:

If cx511, then Kx
1←Kx

111

and ~Vxx
1 ,Vyx

1 ,Vzx
1 !←~Vxx

1 ,Vyx
1 ,Vzx

1 !1~x,y,z!. ~3a!

If cx521, then Kx
2←Kx

211

and ~Vxx
2 ,Vyx

2 ,Vzx
2 !←~Vxx

2 ,Vyx
2 ,Vzx

2 !1~x,y,z!. ~3b!

If cy511, then Ky
1←Ky

111

and ~Vxy
1 ,Vyy

1 ,Vzy
1 !←~Vxy

1 ,Vyy
1 ,Vzy

1 !1~x,y,z!. ~3c!

If cy521, then Ky
2←Ky

211

and ~Vxy
2 ,Vyy

2 ,Vzy
2 !←~Vxy

2 ,Vyy
2 ,Vzy

2 !1~x,y,z!. ~3d!

If cz511, then Kz
1←Kz

111

and ~Vxz
1 ,Vyz

1 ,Vzz
1!←~Vxz

1 ,Vyz
1 ,Vzz

1!1~x,y,z!. ~3e!

If cz521, then Kz
2←Kz

211

and ~Vxz
2 ,Vyz

2 ,Vzz
2!←~Vxz

2 ,Vyz
2 ,Vzz

2!1~x,y,z!. ~3f!

In other words,Kx
1 counts the number of random walke

with positive x charge that hit the surface, whil
(Vxx

1 ,Vyx
1 ,Vzx

1 ) is the vector sum of the points of contact
all random walkers with positivex charge, and similarly for
all the other registers.

Whenever the random walker is found outsideL , there
exists a finite probability that it may never return toL , let
alone hitV. This explains the ‘‘fork in the road’’ on the NO
branch out of box 5 in Fig. 1. That construction means t
control follows one path with probabilityR/b, and the other
with probability 12R/b, whereb is the distance between th
current position of the random walker and the center of
launch sphere. Therefore, with probability 12R/b the ran-
dom walker is assumed to have escaped to infinity, wh
with probability R/b the random walker is returned to th
surface ofL , to a site determined as follows: We perform
03191
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coordinate rotationR that temporarily places the random
walker on the positivez axis; we select two floating poin
random numbers,r 1 and r 2 , each distributed randomly on
the interval~0, 1!; new spherical-polar coordinates (r ,u,f)
for the point are assigned using Eq.~4!; and finally we back-
transform with the rotationR21 @41#. The net result is to
place the walker at an appropriate site on the surface ofL :

r 5R, ~4a!

u5cos21H ~2X!21F11X22S ~12X!~11X!

11~2r 121!XD 2G J , X5R/b,

~4b!

f52pr 2 . ~4c!

Equation~4b! is derived from the familiar formula for the
charge distribution on a conducting sphere induced by
external point charge, which also represents the distribu
of the sites of first passage of random walkers from an
ternal point to the surface of a sphere.

The computation continues until a total ofN random walk
trajectories have been generated. Once this occurs, co
shifts to box 13, and results are computed according to
following equations. Let

t5
K j

11K j
2

N
~ independent ofj !, ~5a!

uj5
K j

12K j
2

N
, ~5b!

v i j 5
Vi j

11Vi j
2

N
, ~5c!

wi j 5
Vi j

12Vi j
2

N
. ~5d!

The electrostatic capacity and all nine components of
electrostatic polarizability tensor are given by

C5tR ~capacity!, ~6a!

a i j 512pR2~wi j 2ujv i j /t ! ~polarizability tensor!,
~6b!

^a&5S 1

3D ~axx1ayy1azz! ~mean polarizability!.

~6c!

In a large number of calculations on diverse bodies~either
exact or by finite elements!, the ratiosRh /C andM @h#/^a&
prove respectively to be within about 2% of 1 and 5%
0.79, whereRh is the hydrodynamic radius,@h# is the intrin-
sic viscosity, andM is the mass of the body@38,40#. There-
fore, we can apply the following approximations to dete
mine hydrodynamic properties:

Rh>C ~hydrodynamic radius!, ~7a!
8-3
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KANG, MANSFIELD, AND DOUGLAS PHYSICAL REVIEW E69, 031918 ~2004!
D>kT/~6phC! ~ translational diffusion coefficient!,
~7b!

@h#>
0.79̂ a&

M
~ intrinsic viscosity!, ~7c!

whereh is the solvent viscosity. Finally, if we defineRh to
be the radius of the sphere that has the same intrinsic vis
ity as the macromolecule, then we obtain

Rh>0.42̂ a&1/3. ~7d!

The calculation of the electrostatic properties is rigoro
in the limits N→` and«→0, while finite N and nonzero«
are expected to generate relative errors of magnitudeN21/2

and «/C, respectively. We have found that values ofN
around 106 guarantee accuracies of about 4 significant fi
ures in the capacity and 3 figures in the polarizability, a
that values of 1027,«/R,1025 still permit the algorithm to
perform in reasonable times@46#.

The only aspect of the algorithm that depends explic
on V is the calculation of the distance functionr in box 6 of
Fig. 1. Therefore, the algorithm is very versatile: We use t
different plug-in procedures, one for initialization~e.g., set-
ting up an array of beads or finite elements that representV!,
and the other for calculation ofr. All V-specific features are
assigned to these two procedures, and we can switch e
from oneV to another by plugging in the appropriate pr
cedures. The algorithm is also fast: Traditional approache
these boundary value problems are either to divide the
face up into finite elements consisting of small polygon
regions or else to represent the object as a union of sph
Solution then typically requires the inversion of an orderm
matrix where m is the number of finite elements or o
spheres, so computation time isO(m3). The bottleneck of
the Zeno algorithm for complex shapes is computation of
distance functionr. But treating the surface as a collection
m finite elements or the body as the union ofm spheres leads
to computation times that areO(m), since we obtain the
minimum distance to the surface by computing the minim
distance to each one of the elements and taking the sma
of all these. Another drawback of the traditional approa
occurs when the molecule is represented as a union
spheres interacting via the Oseen hydrodynamic interact
The traditional approach is problematical if the spheres ov
lap @9#, but not the approach described here.

COMPUTATIONS

X-ray crystal or NMR solution structures from the Prote
Data Bank~PDB! were used in our calculations@48#. The
initial download consisted of all files in the February 20
PDB-Select subset, of which there are about 1200@49,50#. A
single structure was extracted from each file. In those
stances for which a single file contains more than one st
ture, e.g., a PDB submission containing multiple NMR mo
els, we selected the last model of the record. The protei
represented as a union of spheres, each of radius 5 Å,
centered on theCa atom of each amino acid residue, and w
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let NR represent the number of residues. Figure 2 displ
graphical images of several of these representations, an
cludes a catalase, PDB code 1 cf9,NR'2900 @Fig. 2~a!#; a
myoglobin, PDB code 1a6m,NR'150 @Fig. 2~b!#; a histone,
PDB code 1aoi,NR'800 @Fig. 2~c!#; and ab2-glycoprotein,
PDB code 1qub,NR'320 @Fig. 2~d!#. Since successiveCa’s
are never more than 10 Å apart, the spheres for succes
residues obviously overlap, and there is also substantial o
lap between the spheres representing neighboring nonbo
residues. However, it has been suggested that the 5 Å radius
is appropriate to model the hydration shell around the pro
@19#. The problem of computingr for such a model reduce
to computation of the distance to the surface of each sph
and taking the minimum over all spheres.

Protein conformations consisting of more than one cha
i.e., proteins with quaternary structure, are treated as a u
this is equivalent to assuming that the chains are associ
in that conformation while in solution. However, in a sma
number of cases~ca. 30! the union of theCa spheres forms a
disconnected set. For example, the PDB includes nuc
acid-protein complexes with a single double helix bound
several proteins. Our procedure selects only theCa coordi-
nates, and once the nucleic acids are discarded, the rem
ing protein molecules occasionally are not in contact.
could obviously apply this technique to such complexes
including the nucleic acid, but in this study we chose agai
this. Therefore any PDB structure that yields a disconnec
set of spheres is discarded from the sample set.

The algorithm was applied to all the remaining structur
using a skin thickness,«, of 0.001 Å and launching a total o
N5106 random walks at each protein structure. The com
tation time is approximately linear in bothN and NR . This
study was carried out on several Pentium III machines w
clock speeds of 800 Mhz, and the CPU time necessary
each calculation is approximately (2.331028 min)NNR .
~For example, a million random walks launched at a prot
of 100 residues requires about 2 min of CPU time.!

As shown in Eq.~7c!, accurate computations of@h# re-
quire accurate molecular weights, which can introduce d
crepancies: For example, we can expect that the apo and
forms of most proteins have very nearly the same value
^a&, since this depends only on the space filled by the m
ecule. However,@h# could vary somewhat depending on th
mass of the guest moieties present in the halo form. Ra
than concern ourselves with this issue, we have chose
consider the productM @h#[Vh , the ‘‘hydrodynamic vol-
ume,’’ which is, as shown in Eq.~7c!, directly proportional to
^a&, and can be computed without knowledge of the mole
lar mass.

We find that the capacity and the mean polarizability c
relate strongly with the cube root and the first power ofNR ,
respectively; see Fig. 3. These correlations are expected
globular proteins since capacity and polarizability are co
parable, respectively, to the size and volume. Equati
~7a!–~7d! then imply that the translational diffusivity and th
intrinsic viscosity vary approximately asNR

21/3 and NR
0, re-

spectively.
Of particular interest is the way that each individual pr
8-4
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FIG. 2. Each protein is modeled as a union of spheres of radius 5 Å, one sphere per amino acid residue, centered on theCa atom of the
residue.~a! A catalase, PDB code 1cf9;~b! a myoglobin, PDB code 1a6m;~c! histone, PDB code 1aoi; and~d! a b2-glycoprotein, PDB code
1qub.
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tein fluctuates about this averageNR behavior. We study this
by considering the quantities

G5C/NR
1/3 ~8!

and

H5^a&/NR . ~9!

For most proteins in the sample set,G lies between 3.7 and
5.0 Å, whileH lies between about 650 Å3 and 1500 Å3. The
averages ofG andH over all molecules in the sample set a
^G&54.10 Å and̂ H&5910 Å3, respectively, which leads to
the following low-order approximations:

Rh'~4.10 Å!NR
1/3, ~10!

M @h#'~719 Å3!NR . ~11!
03191
The values ofG and H relative to their means carry a
further information about the shape of the protein. For e
ample, Table I displays theG andH values of the four pro-
teins shown in Fig. 2, and underscores the progression iG
or H as we proceed from globular to elongated proteins.
characterize the shape of the protein by calculating the p
ciple moments of inertia,m1 , m2 , and m3 , with m1.m2
.m3 . For spheroidal shapes we havem1'm2'm3 , while
for prolate shapes we havem1.m2'm3 , and for oblate
m1'm2.m3 . Highly prolate shapes are rare among the n
tive proteins. Consequently,m1 /m2 is reasonably close to 1
for all members of the sample set. However, correlatio
between eitherG or H and m2 /m3 are observed. Figure 4
shows how the distribution ofG varies with m2 /m3 . The
following formula adequately represents the drift in avera
G as a function ofm2 /m3 :

G'@3.8410.116~m2 /m3!# Å. ~12!
8-5
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Figure 5 shows similar data forH, with the following corre-
lation:

H'@6761104~m2 /m3!# Å 3. ~13!

COMPARISONS WITH EXPERIMENT

In addition to the above calculations, we have perform
comparisons with experimental results. Experimental val
of either D, Rh , or @h# for a number of different proteins
were collected from the literature. We also download
structural data for the same or highly homologous prote
from the PDB and computed bothC and^a& by the technique
described above. Translational diffusivities depend stron
on temperature, not so much through the temperature app
ing in the numerator of the Stokes-Einstein equation
through the temperature dependence of the solvent visco
appearing in the denominator; which of course also produ
solvent dependence. On the other hand, unless the pr
denatures, the hydrodynamic radius is more or less invar

FIG. 3. Log-log plot of the capacitance,C, and the mean polar
izability, ^a&, as a function ofNR , the number of residues, for a
proteins in the sample set. The best-fit lines have slopes 0.331
0.992, respectively.

TABLE I. Calculated properties of several proteins. Note t
progression inG or H values as we proceed from globular to elo
gated proteins. Brackets indicate powers of ten.

PDB code NR C ~Å! ^a& ~Å3! G ~Å! H ~Å!

1cf9 2908 54.5 2.07@16# 3.8 710
1a6m 151 20.7 1.14@15# 3.9 750
1aoi 805 43.4 1.09@16# 4.7 1350
1qub 319 36.9 8.06@15# 5.4 2500
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with respect to changes in temperature or solvent. Theref
in this section we draw comparisons between predicted
measured hydrodynamic radii rather than between tran
tional diffusivities. Table II displays our results for a numb
of different proteins. The agreement is generally good; u
ally within experimental error. The results are also display
in Fig. 6.

Comparisons of predicted and computed values ofVh

5M @h# are displayed in Table II and Fig. 7. In these com
parisons, only literature citations giving bothM and@h# have
been used, so thatVh could be calculated directly from th
experiments. Agreement with experiment is again reason
in most cases.

In some of the experiments summarized in Tables II a
III, the diffusing particle is identified as the monomer
polypeptide, while in the crystal the same or a near hom
logue displays quaternary structure. In such cases, the m
mer was modeled by manually extracting the coordinates
a single chain from the PDB. All such cases are identified
Tables II and III.

Tables II and III also show results for the tobacco mos
virus. This was modeled as a single cylinder of length 30
Å and diameter 180 Å. The skin thickness was set at 0.0
and 2 million random walks were employed in the calcu
tion.

nd

FIG. 4. The quantityG is directly related to the diffusion coef
ficient of the protein; see Eqs.~7! and ~8!. This displays the distri-
bution of G over proteins in the sample set as a function of t
shape parameterm2 /m3 . The symbols~d! and their best-fit line are
traced out on thex-y plane of this diagram and show howG is
correlated with protein shape. The equation for the best-fit line
given as Eq.~12!.
8-6
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In addition to the examples listed in Tables II and III, th
literature contains several empirical or semiempirical cor
lations that permit the estimation of eitherD or @h# from
other properties. As a further confirmation of our techniq
we now attempt to predict these correlations directly fro
the results given above.

Motivated by the Stokes-Einstein equation and anticip
ing an approximate proportionality betweenM1/3 and Rh ,
Young, Carroad, and Bell@61# proposed the following ex-
pression, in which the coefficient is determined empirica

D5F8.3431028S cm2

secD S cP

K D S g

molD
1/3G T

hMm
1/3. ~14!

Here Mm is the molar mass. To obtain a similar express
from our results requires the proportionality constant
tweenMm andNR , which is obviously just the average ma
of one residue. Averaging over our data set, we obtain

FIG. 5. The quantityH is related to the intrinsic viscosity; se
Eqs. ~7! and ~8!. This displays its distribution over proteins of th
sample set. It is correlated with the shape parameterm2 /m3 . The
best-fit line traced out on thex-y plane of this diagram also appea
in the text as Eq.~13!.
03191
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FIG. 6. Comparison of experimental and computed hydro
namic radii. These data also appear in Table II.

FIG. 7. Comparison of experimental and computed hydro
namic volumes. These data also appear in Table III.
8-7
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TABLE II. Comparison between calculated and experimental values of the hydrodynamic rad
proteins. The code of the PDB entry used in the calculation is shown. Experimental uncertainties a
played whenever supplied in the experimental reference.

Protein PDB code Rh ~calc! ~Å! Rh ~expt! ~Å!

434 repressor~1–63! @51# 2r63 15.3 17.860.5
bovine pancreatic trypsin inhibitor@37# 4pti 15.3 16
lysozyme@52–55# 6lyz 19.5 18.061.0

19
20.460.2
18.661.0

a lactalbumin@36# 1a4v 19.7 20.2
ribonucleaseA @36# 1a5q 19.8 18.3

21
myoglobin @36# 101m 20.9 18.9
gD crystallin ~monomer!a @56# 1e1p 21.3 24.9
gB crystallin @57# 4gcr 21.4 23.960.3
chymotrypsinogenA @36# 1chg 23.0 22.5
green fluorescent protein@58# 1emb 23.4 1560.5
triose phosphate isomerase~probable
monomer!a,b @59#

8tim 23.9 23.5

b lactoglobulin@52# 1beb 27.0 27.562.0
ovalbumin@36# 1ova 28.7 27.6

29
30

phosphoglycerate kinase@36# 1fw8 29.5 33.5
gD crystallin ~dimer!c @56# 1e1p 29.8 30
IgG Fab8 B72.3 @8# 1bbj 30.0 3061
triose phosphate isomerase~dimer! @59# 8tim 30.9 29.660.25
hemoglobin@36# 1a3n 31.7 31

34
35.5

flagellin @36# 1io1 34.8 40
Hexokinasea @36# 1bg3 42.0 36
catalase@36# 4b1c 48.2 48

52
nitrogenase MoFe@22# 3min 48.7 5463
ferritin @60# 1mfr 64 64
tobacco mosaic virusd @30# 482 490650

aOne chain was extracted manually from the PDB file to model the monomer.
bA species detected in the experiment was tentatively assigned as the monomer.
cThe experiment included a synthetic crosslinker~bismaleimidohexane! to stabilize the dimer; this crosslinke
was not directly modeled in the calculation.
dTobacco mosaic virus was modeled as a cylinder of diameter 180 Å, length 3000 Å, and skin thickne
Å.
2 1/3

cy
Mm5F110.0S g

molD GNR . ~15!

Combining Eqs.~7a!, ~7b!, ~10!, and~15!:

D5F8.5631028S cm2

secD S cP

K D S g

molD
1/3G T

hMm
1/3. ~16!

By also using the shape dependence of Eq.~12!, we obtain
the following:
03191
D5F9.1431028S cm

secD S cP

K D S g

molD G
3F110.0302S m2

m3
D G21 T

hMm
1/3. ~17!

The discrepancy between Eqs.~14! and~16! is less than 3%,
and as Eq.~17! shows, at least some of this discrepan
might be attributed to differences in the shape ratiom2 /m3
8-8
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TABLE III. Comparisons between predicted and measured hydrodynamic volumes,Vh5M @h#, for M the
molecular mass and@h# the intrinsic viscosity. In many instances, the displayed experimental valu
averaged over several experimental results.

Protein PDB code~s! Vh (calc)/105 Å 3 Vh (expt)/105 Å 3

neurophysin monomera @21# 115c,115d 5.7 9.1
lysozyme@21# 6lyz 7.5 6.7
a-lactalbumin@36# 1av4 7.7 7.6
ribonucleaseA @21# 1a5q 7.9 7.8
myoglobina @21,36# 101m, 1azi 9.3 9.1
neurophysin dimer@21# 1npo 10.9 14.4
chymotrypsinogenA @21,36# 1chg 12 12
b-lactoglobulin@21# 1beb 20 17
Ovalabumin@21# 1ova 24 27
hemoglobina @21,36# 1aoo,1a3n 32 39
transferrina @21# 1aiv,1ovt 49 47
hexokinaseb @36# 1bg3 81 72
catalase@21,36# 4b1c 112 162
tobacco mosaic virusc @21# 21900 19000

aThe computed value represents an average over two different PDB files.
bOne chain was extracted manually from the PDB file to model the monomer.
cTobacco mosaic virus was modeled as a cylinder of diameter 180 Å, length 3000 Å, and skin thickn
0.01 Å.
d
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between our sample set and the experimental set use
obtain Eq.~14!.

Again motivated by the Stokes-Einstein formula and a
ticipating a proportionality betweenRh and Rg , Tyn and
Gusek@36# obtained the following empirical relationship b
fitting experimentalD-Rg data:

D5F5.7831028S cm2

secD S cP Å

K D G T

hRg
. ~18!

A comparable equation based on our calculations requir
relationship betweenRg andNR . It is very common, in com-
puting Rg of macromolecules, to represent entire monom
or residues by a single point, but one should remember
this engenders errors comparable to the size of one mono
unit. Such an error is usually negligible for random coils, b
is a significant fraction of the radius of all but the large
globular proteins. Therefore, we calculate the radius of gy
tion of the proteins in our sample set by Monte Carlo in
gration over a continuous volume represented by the un
of 5 Å radius spheres centered on eachCa , obtaining the
results shown in Fig. 8. These results are well summari
by the expression

Rg5~3.42 Å!NR
1/3. ~19!

~We have also computedRg by summing over the discret
set of points corresponding to the center of eachCa . This
yields an artifactual exponent of 0.37, attributable to the f
that the sum over discrete points is a more severe appr
mation for small proteins. Arteca has also reported expon
somewhat larger than 1/3@62#, but this also appears to b
attributable to a summation over discrete points.!

Combining Eqs.~7a!, ~7b!, ~10!, and~19! yields
03191
to

-

a

s
at
er

t
t
-

-
n

d

t
xi-
ts

D5F6.1131028S cm2

secD S cP Å

K D G T

hRg
, ~20!

which agrees with Eq.~18! to better than 6%.
A useful empiricism for the intrinsic viscosity of globula

proteins is that@h# is typically in the range 2.5 to 6.0 cm3/g

FIG. 8. Log-log plot of radius of gyrationRg vs NR for all
proteins in the sample set. The least-squares line~shown! has slope
0.331.
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and independent of molecular weight@21#. If we combine
Eqs.~11! and ~15!, we obtain

@h#53.93 cm3/g ~21!

and including the shape dependence of Eq.~13! gives

@h#5S 3.70
cm3

g D S 110.154
m2

m3
D . ~22!

Figure 9 shows the probability density of@h# as calculated
from our sample set. Note that our estimates almost alw
fall within the empirical 2.5 to 6.0 cm3/g range.

FIG. 9. Probability density of computed intrinsic viscosities
all proteins in the sample set.
-

-

:

C

03191
ys

DISCUSSION AND CONCLUSIONS

We have presented a very efficient algorithm for the c
culation of the translational diffusivity and the intrinsic vis
cosity of molecules, and applied it to a large number of p
tein structures. Comparisons with experiment are usu
quite good. The technique, a numerical path integration
asymptotically rigorous for certain boundary value proble
in electrostatics. It is only approximate for the analogo
hydrodynamic boundary value problems; however, it h
been shown to give high accuracy in all situations in which
has been tested@38,40#.

The approach presents several advantages over tradit
techniques. First, computation time isO(m), rather than
O(m3), wherem is the number of finite elements or bea
employed to represent the boundary. Second, models
structed from hydrodynamic beads interacting via the Os
tensor are fraught with problems when the beads overlap@9#;
no such problems are encountered with this technique. Th
although not done here, we can construct models from be
of various sizes and shapes. Again, this is not possible w
traditional hydrodynamic treatments.

We obtain the general result that the hydrodynamic rad
the hydrodynamic volume, and the radius of gyration vary
average asNR

1/3, NR , andNR
1/3, respectively, consistent with

a model of globular proteins as compact, space-filling o
jects. ~See Figs. 3 and 8.!. These results are consistent wi
the well-known empiricisms that diffusivities of proteins a
inversely proportional either to the cube root of the molec
lar mass or to the radius of gyration@see Eqs.~16! and~20!#
and that intrinsic viscosities are independent of molecu
mass. And although the calculation confirms these emp
cisms, it also demonstrates departures from these laws w
the proteins are elongated.

Arteca has reported subtle departures from theNR
1/3 law

for the radius of gyration@62#. He reports that effective ex
ponents change somewhat at aboutNR'300 and attributes
this to statistical changes in thea-helix andb-strand content
asNR increases. We find similar trends in both the hydrod
namic radius and volume, and plan a full report at so
future date.
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