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Numerical path integration technique for the calculation of transport properties of proteins
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We present a new technique for the computation of both the translational diffusivity and the intrinsic
viscosity of macromolecules, and apply it here to proteins. Traditional techniques employ finite element
representations of the surface of the macromolecule, taking the surface to be a union of spheres or of polygons,
and have computation times that @¢m°®) wherem is the number of finite elements. The new technique, a
numerical path integration method, has computation times that areGqmhy. We have applied the technique
to approximately 1000 different protein structures. The computed translational diffusivities and intrinsic vis-
cosities are, to lowest order, proportional respectivel_l)<|§6’3 andN%, whereNg is the number of amino acid
residues in the protein. Our calculations also show some correlation with the shape of the molecule, as
represented by the ratim, /m5;, wherem, andmj; are, respectively, the middle and the smallest of the three
principal moments of inertia. Comparisons with a number of experimental results are also performed, with
results generally consistent to within experimental error.
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INTRODUCTION accurate to about 2% and 5%, respectively, for the diffusivity
and the intrinsic viscosity of a large number of objects
The transport properties of proteins are important both ir38,40. These electrostatics problems can, in turn, be solved
understanding biological processes and in molecular chara®y numerical path integration techniques that involve sum-
terization. Therefore, methods for estimating or computingning over random walk trajectories in the space outside the
such properties from the native structure have been an inbject[38,39,41,44—4F As a result, we can, in a single
portant area of Study_ The most common Computationa| aps|mulat|0n Of I’andom Walk tl’ajeCtOI‘IeS, Obta|n estimates Of
proach represents the X_ray Crysta| or N MR So|uti0n Structuréhe tl’anslationa| dlfoSIVIty, the intl’inSiC ViSCOSity, the eleC'
of the molecule as a union of spherésydrodynamic trostatic capacity, and the electrical polarizability tensor, al-
“peads”) that interact via some form of the Oseen hydrody-thOUgh these last two properties are not those of the molecule
namic interactioi1—28]. A related approach consists of con- itself, but those that would be possessed by a perfect conduc-
structing a molecular boundary surface and solving the aptor of the same shape as the moled46). _
propriate integral equation with finite elements distributed A powerful algorithm for performing the numerical path
over the surfac§29—-31. Some authors have also employed integrations is presented in the following section. The justi-
size or mass Corre'atiorﬁgz_sq, brute-force molecular dy_ fication for the algorithm is already giVen in the literature,
namics simulation§37], or predictions based on effective and so will not be repeated hei&8,39,42—44,46,47In Sec.
spheres or ellipsoidg20,21,34. Il we report its application to the calculation of the transla-
A new technique for the computation of the translationaltional diffusivity and the intrinsic viscosity of over 1000 pro-
diffusion coefficient and of the intrinsic viscosity is now t€in structures downloaded from the Protein Data Ba.
ava”able' The main advantage is that |t is genera”y fastewe f|nd that the translational dlﬁUS|V|ty iS Correlated with the
than the older techniques. The older techniques have compgize of the protein, varying approximately as th&/3 power
tation times that ar®(m?3), wheremis either the number of of the residue number. Weaker correlations of both the dif-
hydrodynamic beads or the number of finite elements used tbisivity and the intrinsic viscosity with the shape of the pro-
represent the surface of the molecule. As we will show pelein as manifested through ratios of the principal moments of
low, the new technique i©(m). It takes advantage of a inertia are als_o_ _found: Elongateq structures ten_d to have
three-fold analogy between different physical problems. BeSmaller diffusivities and larger intrinsic viscosities than
cause of analogies between hydrodynamics and electrosta?tph?.”cm ones. _Experlmental diffusivities a.nd intrinsic vis-
ics, the translational diffusivity and the intrinsic viscosity of Cosities are available for a number of proteins; for these we
a molecule are analogous, respectively, to the capacity and #d generally good agreement with our estimates.
the polarizability tensor that would be possessed by a perfect
conductor of precisely the same shape as the mol¢&8le
43]. A particular angular averaging of the hydrodynamic
forces converts the problem to a boundary value problem in The necessary calculation can be formulated as a bound-
electrostatics(The Oseen tensor, averaged over orientationsary value problem on the surface of the molecule. WeQlet
becomes the Green’s function of a point chargéne anal- represent the surface. The algorithm employs a sphere, radius
ogy is only approximate, but has been demonstrated to bR, called the launch sphere, which enclo$esThe surface

ZENO ALGORITHM
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Ii Initialize registers according to Eq. 1. ]

AF’} 2. Select initial position of next random walk: (x,,y;, zy) on L. I

| 3. Assign charges (c,, c,, ¢;) to random walk according to Eq. 2.

4. Let (x, y, z) be the current position of the random walk; let b be its distance <
from the origin. .
Y N »

| 6. Let p be the distance from (x, y, 2) to Q.—I

11. Move the random walk

N Y —p from (x, y, z) to L using Eq. 4.
l 12. The random walk is declared
never to have found Q even at

L_ 8. Move the random walk to an
arbitrary point on the surface

of the sphere whose radius is

p and whose center is (x, y, z).

infinite time. It makes no
contribution to the registers.

9. The random walk is declared to have struck € at the point (x, y, z).
Update registers according to Eq. 3.

«— Y 10. More walks? >N —4713. Calculate results according to Eqs. 5 - 7. I

FIG. 1. Flow chart of the Zeno algorithm used to calculate translational diffusion coefficients and intrinsic viscosities. Note the “fork in

the road,” encountered on the NO path leaving box 5. One path or the other is chosen at random, one with pri@fabtligy other with
probability 1-R/b.

of the launch sphere is designated Any arbitrary sphere vy v =y =V =...2V .=V . =V_ .=V .=---=0
XX Xy Xz yX XX Xy Xz yX ’

that completely enclose® can serve as the launch sphere, o

and there is no need fdr and Q to be concentric. Never- initially. (1b)

theless, the best statistics are obtained if we use the smalle\ﬁ o .
; : . . We let (Xq,Y0,20) €L represent the initial point of the tra-
possible launch sphere. Cartesian coordinates are defined " Y
: : jectory of one of the random walkers. Three “charges,
relative to the center df, unless otherwise noted. We refer N
. . . c,,Cy,C,, €each equal ta-1, and termed theX charge,” the
to the technique as the Zeno algorithm, and summarize thg*’ ™Y . ; ) .
algorithm in the following paragraphs and in a flow chart in y charge,” and the 2 charge,” respectively, are assigned to
Fig. 1 each random walke46]. The three charges are stochastic
A large numberN, of random walkers are initiated from variables depending on{.yo,Z). Forc, we have
arbitrary points on the launch sphere. These begin walking 1 %
and a certain fraction of them eventually adsorb ditorhe c,=+1 with probabilityz + —,
. ) A . 2 2R
remainder never fin@}, even at infinite time, and are said to
have wandered off to infinity. The statistics of the trajectories
of these random walks give us the properties of interest. The

following registers are used to accumulate statistics, and argiin analo
initialized to zero at the outset:

c,=—1 otherwise, (2

gous definitions far, andc, .

The algorithm requires calculation of the distance func-
tion p, representing the minimum distance from a point
P o (x,y,2 outsideQ to Q. If the random walker is currently
Ky =Ky =K; =K, =Ky =K, =0, initially, (18  found on or insideL and outsideQ, it is displaced to an
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arbitrary point a distance away from its current position, coordinate rotationR that temporarily places the random
guaranteeing that it will still lie outsid€2, and then the walker on the positivez axis; we select two floating point
process is repeated. Since the displacement is never largendom numbers;; andr,, each distributed randomly on
enough to bring the random walker in contact with the surthe interval(0, 1); new spherical-polar coordinates, ¢, ¢)
face, it never actually hit€2. However, it comes arbitrarily for the point are assigned using E4); and finally we back-
close as we find ourselves displacing the walker through protransform with the rotatiorR ™! [41]. The net result is to
gressively smaller and smallprdistances. This explains the place the walker at an appropriate site on the surfade: of
name of the algorithm: The process suggests Zeno'’s paradox

in which Achilles runs to overtake a tortoise, but can never r=R, (4a)
quite catch up because we continually examine smaller and

smaller time steps. Of course, Achilles and our computer, 4 , [(1=X)(1+X)\? B
both have better things to do than get caught in this infinite —cos ((ZX) LHXe= 1+(2r,—1)X » X=Rib,
spiral, and so we declare that the random walker has made (4b)
contact withQ) wheneverp falls below some preset “skin

thickness,"s. d=211,. (40

Whenever the random walker hi€¥ at a point(x,y,2 we

accumulate statistics on the event by updating the registefgduation(b) is derived from the familiar formula for the
according to the following prescription: charge distribution on a conducting sphere induced by an

external point charge, which also represents the distribution

If cy=+1, then K —K;+1 of the sites of first passage of random walkers from an ex-
ternal point to the surface of a sphere.
and (Vi , Vg, Vo) = (Vi Vi V30 +(X,Y,2). (33 The computation continues until a total dfrandom walk
trajectories have been generated. Once this occurs, control
If c,=—1, thenK, —K, +1 shifts to box 13, and results are computed according to the
following equations. Let
and (Vi ,Vyx: Vax) = (Vi Vi V) +(X,Y,2). (3b) KF K-
i i .
t= ——— (independent ofj), 5
If cy=+1, thenKj—Ky+1 N ( P 1 (53
and (Vyy,Vyy V7))« (Vo Vyy Vo) +(x,y,2). (30) KK}
uj ==, (5b)
If c,=—1, thenK, K, +1
S S Vi + Vi
and (Vs ,Vyy, Vo) —(Vyy Ve Vo) +(X,Y,2). (3d) ViTTN (50
— + +
If c,=+1, thenK, —K, +1 ViT_Vi]
+ + + + o\t + ij:T' (Sd)
and (V,;,Vy,;, V) (V. Vy,, V) +(Xy,2). (36

The electrostatic capacity and all nine components of the

If c,=—1, thenK, K, +1 . . - .
Cz - then K, =K, electrostatic polarizability tensor are given by

and (V;Z'V;Z’VZ_Z)H(V;Z'V;Z’VZ_Z)+(X’y’z)' (3f) C=tR (CapaCity, (6a)

In other words K, counts the number of random walkers _ 2 o

with positive x charge that hit the surface, while i~ 127 (Wij—Ujvij/t) (polarizability tensoy‘(Gb)

(Vxx:Vyx:V3y) is the vector sum of the points of contact of

all random walkers with positivé charge, and similarly for 1

all the other registers. (ay= (5) (axxt ayyta,,) (mean polarizability.
Whenever the random walker is found outside there (60)

exists a finite probability that it may never return lio let

alone hitQ. This eXplainS the “fork in the road” on the NO In a |arge number of calculations on diverse bodmﬁ]er

branch out of box 5 in Fig. 1. That construction means thakxact or by finite elementsthe ratiosR,/C andM[ 5]/{ a)

control follows one path with probabilitiR/b, and the other prove respectively to be within about 2% of 1 and 5% of

with probablllty 1- R/b, whereb is the distance between the 0.79, WherdQh is the hydrodynamic radiusn] is the intrin-

current position of the random walker and the center of thesic viscosity, andM is the mass of the bodyd8,40. There-

launch sphere. Therefore, with probability-R/b the ran-  fore, we can apply the following approximations to deter-

dom walker is assumed to have escaped to infinity, whilemine hydrodynamic properties:

with probability R/b the random walker is returned to the

surface ofL, to a site determined as follows: We perform a Ry=C (hydrodynamic radius (79
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D=kT/(6775C) (translational diffusion coefficient let Ng represent the number of residues. Figure 2 displays
(7b) graphical images of several of these representations, and in-

cludes a catalase, PDB code 1 ci®~2900[Fig. 2a)]; a

0.79 a) S _ myoglobin, PDB code 1a6nmNg~ 150[Fig. 2b)]; a histone,

[7]= M (intrinsic viscosity, (70 PDB code 1aoiNg~800[Fig. 2(c)]; and aB2-glycoprotein,

PDB code 1qubNg~320[Fig. 2(d)]. Since successiv€,’s
where 7 is the solvent viscosity. Finally, if we defirie, to  are never more than 10 A apart, the spheres for successive
be the radius of the sphere that has the same intrinsic viscogesidues obviously overlap, and there is also substantial over-

ity as the macromolecule, then we obtain lap between the spheres representing neighboring nonbonded
U3 residues. However, it has been suggested treabtA radius
R,=0.42a)™". (7d) s appropriate to model the hydration shell around the protein

) ) o [19]. The problem of computing for such a model reduces
~ The calculation of the electrostatic properties is rigorousqg computation of the distance to the surface of each sphere,
in the limits N— o ande— 0, while finite N and nonzerc and taking the minimum over all spheres
. . 2 -
are expected to generate relative errors of magnitdé Protein conformations consisting of more than one chain,

and &/C, respectively. We have found that values Nf o "oroteins with quaternary structure, are treated as a unit;

around 16 guarantee accuracies of about 4 significant flg'this is equivalent to assuming that the chains are associated

ures in the capacity and 3 figures in the polarizability, andin that conformation while in solution. However, in a small

that values of 10’ <e/R< 10" still permit the algorithm to number of case&a. 30 the union of theC sphere;s forms a

peqﬁ;molgl;e;s;enczib(lﬁ :%ngég‘lg%rithm that depends explicitlydisconnected set. For example, the PDB includes nucleic
acid-protein complexes with a single double helix bound to

on  is the calculation of the distance functipnn box 6 of . .
Fig. 1. Therefore, the algorithm is very versatile: We use two>€Veral proteins. Our procedure selects only @hecoordi-

different plug-in procedures, one for initializatide.g., set- pates, an'd once the nucleic gcids are discarded, the remain-
ting up an array of beads or finite elements that repre@nt N9 proteln molecules opcasmne_tlly are not in contact. We
and the other for calculation gf All Q-specific features are could obviously apply this technique to such complexes by
assigned to these two procedures, and we can switch easifjcluding the nucleic acid, but in this study we chose against
from oneQ to another by p|ugg|ng in the appropriate pro_t is. Therefore any PDB structure that yields a disconnected
cedures. The algorithm is also fast: Traditional approaches tg€t of spheres is discarded from the sample set.

these boundary value problems are either to divide the sur- The algorithm was applied to all the remaining structures,
face up into finite elements consisting of small polygonalusing a skin thickness, of 0.001 A and launching a total of
regions or else to represent the object as a union of spherdd=10° random walks at each protein structure. The compu-
Solution then typically requires the inversion of an order tation time is approximately linear in bofd andNg. This
matrix wherem is the number of finite elements or of Study was carried out on several Pentium Il machines with
spheres, so computation time (E(m3)_ The bottleneck of clock speeds of 800 Mhz, and the CPU time necessary for
the Zeno algorithm for complex shapes is computation of thetach calculation is approximately (X30 % min)NNg.
distance functiom. But treating the surface as a collection of (For example, a million random walks launched at a protein
m finite elements or the body as the uniomogpheres leads 0f 100 residues requires about 2 min of CPU time.

to computation times that ar®(m), since we obtain the  As shown in Eq.(7¢), accurate computations ¢f] re-
minimum distance to the surface by computing the minimum@uire accurate molecular weights, which can introduce dis-
distance to each one of the elements and taking the smallegtepancies: For example, we can expect that the apo and halo
of all these. Another drawback of the traditional approachforms of most proteins have very nearly the same values of
occurs when the molecule is represented as a union df), since this depends only on the space filled by the mol-
spheres interacting via the Oseen hydrodynamic interactiorgcule. However{ 5] could vary somewhat depending on the

The traditional approach is problematical if the spheres overinass of the guest moieties present in the halo form. Rather
lap [9], but not the approach described here. than concern ourselves with this issue, we have chosen to

consider the producM[ »]=V,, the “hydrodynamic vol-
ume,” which is, as shown in Eq7¢), directly proportional to
{a), and can be computed without knowledge of the molecu-
X-ray crystal or NMR solution structures from the Protein lar mass.
Data Bank(PDB) were used in our calculatior{gl8]. The We find that the capacity and the mean polarizability cor-
initial download consisted of all files in the February 2000relate strongly with the cube root and the first poweNaf,
PDB-Select subset, of which there are about 14M)50. A  respectively; see Fig. 3. These correlations are expected for
single structure was extracted from each file. In those inglobular proteins since capacity and polarizability are com-
stances for which a single file contains more than one strugarable, respectively, to the size and volume. Equations
ture, e.g., a PDB submission containing multiple NMR mod-(7a—(7d) then imply that the translational diffusivity and the
els, we selected the last model of the record. The protein imtrinsic viscosity vary approximately as® and NS, re-
represented as a union of spheres, each of radius 5 A, arghectively.
centered on th€ , atom of each amino acid residue, and we  Of particular interest is the way that each individual pro-

COMPUTATIONS
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FIG. 2. Each protein is modeled as a union of spheres of radius 5 A, one sphere per amino acid residue, cente@datarthef the
residue(a) A catalase, PDB code 1cffh) a myoglobin, PDB code 1a6n() histone, PDB code laoi; arid) a 82-glycoprotein, PDB code
1lqub.

tein fluctuates about this averalyg behavior. We study this The values ofG andH relative to their means carry all
by considering the quantities further information about the shape of the protein. For ex-
ample, Table | displays th& andH values of the four pro-
G=C/N§’3 (8) teins shown in Fig. 2, and underscores the progressid@a in
or H as we proceed from globular to elongated proteins. We
and characterize the shape of the protein by calculating the prin-
ciple moments of inertiam;, m,, and mz, with m;>m,
H=(a)/Ng. 9 >m;. For spheroidal shapes we hawvg~m,~m;, while
for prolate shapes we hava;>m,~m;, and for oblate
m,~m,>ms. Highly prolate shapes are rare among the na-
tive proteins. Consequentlyn, /m, is reasonably close to 1
for all members of the sample set. However, correlations
between eithelG or H and m,/m; are observed. Figure 4
shows how the distribution o6 varies withm,/ms. The
following formula adequately represents the drift in average
G as a function ofmn, /mj:

For most proteins in the sample s€&tlies between 3.7 and
5.0 A, whileH lies between about 650%and 1500 A. The
averages oG andH over all molecules in the sample set are
(G)=4.10 A and(H)=910 A3, respectively, which leads to
the following low-order approximations:

Ry~(4.10 ANY3, (10
M[ 7]~(719 A%)Ng. (11 G~[3.84+0.116m,/m3)] A. (12)
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FIG. 3. Log-log plot of the capacitanc€, and the mean polar-
izability, (@), as a function oNg, the number of residues, for all 0.75 1.00 1.25 1.50
proteins in the sample set. The best-fit lines have slopes 0.331 and G/<G>

0.992, respectively.
FIG. 4. The quantityG is directly related to the diffusion coef-

ficient of the protein; see Eq§7) and(8). This displays the distri-
bution of G over proteins in the sample set as a function of the
shape parameten, /m;. The symbol{®) and their best-fit line are
traced out on the-y plane of this diagram and show ho@ is
H~[676+104m,/m3)] A3, (13)  correlated with protein shape. The equation for the best-fit line is
given as Eq(12).

Figure 5 shows similar data fé#, with the following corre-
lation:

COMPARISONS WITH EXPERIMENT with respect to changes in temperature or solvent. Therefore,
In addition to the above calculations, we have performedn this section we draw comparisons between predicted and
comparisons with experimental results. Experimental value§'€asured hydrodynamic radii rather than between transla-
of either D, Ry, or [#] for a number of different proteins tional diffusivities. Table Il displays our results for a number
were collected from the literature. We also downloaded®f different proteins. The agreement is generally good; usu-
structural data for the same or highly homologous proteinglly within experimental error. The results are also displayed
from the PDB and computed botand(a) by the technique in Fig. 6.
described above. Translational diffusivities depend strongly Comparisons of predicted and computed valuesVgf
on temperature, not so much through the temperature appear-M[ 7] are displayed in Table Il and Fig. 7. In these com-
ing in the numerator of the Stokes-Einstein equation agarisons, only literature citations giving bathand[ 7] have
through the temperature dependence of the solvent viscosityeen used, so that, could be calculated directly from the
appearing in the denominator; which of course also producesxperiments. Agreement with experiment is again reasonable
solvent dependence. On the other hand, unless the protejR most cases.
denatures, the hydrodynamic radius is more or less invariant |n some of the experiments summarized in Tables Il and
I, the diffusing particle is identified as the monomeric
TABLE |. Calculated properties of several proteins. Note thepolypeptide, while in the crystal the same or a near homo-
progression ir or H values as we proceed from globular to elon- 5,6 displays quaternary structure. In such cases, the mono-
gated proteins. Brackets indicate powers of ten. mer was modeled by manually extracting the coordinates of
a single chain from the PDB. All such cases are identified in

PDB code Ng c @A) () (A3 GA) HA)

Tables Il and .
1cf9 2908 54.5 2.07+6] 3.8 710 Tables Il and Il also show results for the tobacco mosaic
labm 151 20.7 1.14+5] 3.9 750 virus. This was modeled as a single cylinder of length 3000
1a0i 805 434  1.09+6] 47 1350 A and diameter 180 A. The skin thickness was set at 0.01 A
1qub 319 36.9 8.06+5] 5.4 2500 and 2 million random walks were employed in the calcula-
tion.
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Experimental and Predicted Hydrodynamic Radii
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e
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o
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o 7
2 \ ,\\N \ \ 97 °
. 1\ ’
/ 3 o LZ | ! L ! |
my/mMg3 10 20 30 40 50 60 70
4 R}, (computed, 13.)
SL \:N\k \ \ FIG. 6. Comparison of experimental and computed hydrody-
- namic radii. These data also appear in Table II.
05 1.0 15 2.0 25
H/<H>
FIG. 5. The quantityH is related to the intrinsic viscosity; see
Egs.(7) and (8). This displays its distribution over proteins of the ) .
sample set. It is correlated with the shape paramatgim;. The Expenmental. and Predicted
best-fit line traced out on they plane of this diagram also appears Hydrodynamic Volumes
in the text as Eq(13). § T T T
o]
In addition to the examples listed in Tables Il and lll, the -
literature contains several empirical or semiempirical corre- =T ]
lations that permit the estimation of eith®r or [#] from
other properties. As a further confirmation of our technique, m;
we now attempt to predict these correlations directly from N st 7
the results given above. — d
Motivated by the Stokes-Einstein equation and anticipat- = L7
ing an approximate proportionality betwe&h® and R;,, 5 | e _
Young, Carroad, and Bel[l61] proposed the following ex- E i
pression, in which the coefficient is determined empirically: g .o
g oL . J
o s
=
> ) o
D=|8.34x10 8 onf|(oP [ 91" T 14 = >
=|8.34X — N =] | S 4 7]
sec/| K/ mol] |[yMm13 a4 9
o
- ; 1 t
0 30 60 90 120
Here M, is the molar mass. To obtain a similar expression V,, (computed, 105A3)

from our results requires the proportionality constant be-

tweenM ., andNg, which is obviously just the average mass  FIG. 7. Comparison of experimental and computed hydrody-
of one residue. Averaging over our data set, we obtain namic volumes. These data also appear in Table III.
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TABLE Il. Comparison between calculated and experimental values of the hydrodynamic radius of
proteins. The code of the PDB entry used in the calculation is shown. Experimental uncertainties are dis-
played whenever supplied in the experimental reference.

Protein PDB code Ry, (calg (A) Ry, (expd (A)
434 repressofl-63 [51] 2r63 15.3 17.80.5
bovine pancreatic trypsin inhibitdB7] Apti 15.3 16
lysozyme[52-55 6lyz 19.5 18.6:1.0
19
20.4+0.2
18.6£1.0
« lactalbumin[36] ladv 19.7 20.2
ribonucleaseA [36] labq 19.8 18.3
21
myoglobin[36] 101m 20.9 18.9
vp crystallin (monome)® [56] lelp 21.3 24.9
vg crystallin[57] 4gcr 214 23.90.3
chymotrypsinogerA [36] 1chg 23.0 22.5
green fluorescent prote[i58] lemb 23.4 150.5
triose phosphate isomerageobable 8tim 23.9 235
monomey®P [59]
B lactoglobulin[52] 1lbeb 27.0 2752.0
ovalbumin[36] lova 28.7 27.6
29
30
phosphoglycerate kinag&6] 1fw8 29.5 335
vp crystallin (dimen® [56] lelp 29.8 30
IgG Fab B72.3[8] 1bbj 30.0 31
triose phosphate isomera&iimer) [59] 8tim 30.9 29.6:0.25
hemoglobin[36] 1la3n 31.7 31
34
355
flagellin [36] liol 34.8 40
Hexokinas&[36] 1bg3 42.0 36
catalasg 36| 4blc 48.2 48
52
nitrogenase MoF§g22] 3min 48.7 54r 3
ferritin [60] 1mfr 64 64
tobacco mosaic virdq30] 482 49050

&0ne chain was extracted manually from the PDB file to model the monomer.

PA species detected in the experiment was tentatively assigned as the monomer.

“The experiment included a synthetic crosslink@smaleimidohexaneo stabilize the dimer; this crosslinker

was not directly modeled in the calculation.

4Tobacco mosaic virus was modeled as a cylinder of diameter 180 A, length 3000 A, and skin thickness 0.01

A
-|uod ] ~[saecao | T )]
M= 110. m Ng. (15) D=|9.14x10 Q ? m
Combining Eqgs(7a), (7b), (10), and(15): 14 0_0302{ %z” s a7
B N cmz)(cP( 9)1’3 T m
D=|856x10"°| || || — VRS (16)

The discrepancy between Eq$4) and(16) is less than 3%,
By also using the shape dependence of @Q), we obtain and as Eq.17) shows, at least some of this discrepancy
the following: might be attributed to differences in the shape ratig/mg
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TABLE Ill. Comparisons between predicted and measured hydrodynamic volifged [ »], for M the
molecular mass anfly] the intrinsic viscosity. In many instances, the displayed experimental value is
averaged over several experimental results.

Protein PDB code) V,, (calc)/10 A3 V,, (expt)/16 A3
neurophysin monom&f21] 115¢,115d 5.7 9.1
lysozyme[21] 6lyz 7.5 6.7
a-lactalbumin[36] lav4 7.7 7.6
ribonucleaseA [21] la5q 7.9 7.8
myoglobirf [21,36] 101m, lazi 9.3 9.1
neurophysin dimef21] 1lnpo 10.9 14.4
chymotrypsinogerA [21,36] 1chg 12 12
B-lactoglobulin[21] 1lbeb 20 17
Ovalabumin[21] lova 24 27
hemoglobift [21,36 laoo,1a3n 32 39
transferriff [21] laiv,1ovt 49 47
hexokinasB[36] 1bg3 81 72
catalasg21,36 4blc 112 162
tobacco mosaic virlig21] 21900 19000

&The computed value represents an average over two different PDB files.
®One chain was extracted manually from the PDB file to model the monomer.
“Tobacco mosaic virus was modeled as a cylinder of diameter 180 A, length 3000 A, and skin thickness of

0.01 A.
( cP A) T
w 77_Rg' (20

between our sample set and the experimental set used to cmé

obtain Eq.(14). D= [6-11>< 10‘8(5C
Again motivated by the Stokes-Einstein formula and an-

ticipating a proportionality betweeR, and Ry, Tyn and

Gusek[36] obtained the following empirical relationship by which agrees with Eq(18) to better than 6%.

fitting experimentaD-R, data: A useful empiricism for the intrinsic viscosity of globular

cmz)(cP A) - proteins is thaf ] is typically in the range 2.5 to 6.0 iy

sec/| K ||7Ry’

D=|5.78<10° 8 (18)

102|1|1|||| T T T TTTI] T T T TTITT]
A comparable equation based on our calculations requires i
relationship betweeRy andNg. It is very common, in com-

puting R, of macromolecules, to represent entire monomers

or residues by a single point, but one should remember tha
this engenders errors comparable to the size of one monome
unit. Such an error is usually negligible for random caoils, but

is a significant fraction of the radius of all but the largest
globular proteins. Therefore, we calculate the radius of gyra—°$
tion of the proteins in our sample set by Monte Carlo inte-
gration over a continuous volume represented by the unior &
of 5 A radius spheres centered on eatf, obtaining the
results shown in Fig. 8. These results are well summarizec

by the expression

Ry=(3.42 ANR°. (19 10'

(We have also compute®l; by summing over the discrete
set of points corresponding to the center of e@ch This L1l — Lol T Lol 7
yields an artifactual exponent of 0.37, attributable to the fact 10 10 10
that the sum over discrete points is a more severe approxi N
mation for small proteins. Arteca has also reported exponents R
somewhat larger than 1/%2], but this also appears to be FIG. 8. Log-log plot of radius of gyratioR, vs Ng for all
attributable to a summation over discrete points. proteins in the sample set. The least-squares(éhewn has slope

Combining Eqgs(7a), (7b), (10), and(19) yields 0.331.
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FIG. 9. Probability density of computed intrinsic viscosities of
all proteins in the sample set.

and independent of molecular weigfl]. If we combine
Egs.(11) and(15), we obtain

[7]=3.93 cnil/g (21)
and including the shape dependence of @) gives
cnt m,
[#]=|3.70—]| 1+ 0.154—|. (22
g ms

Figure 9 shows the probability density pf] as calculated

PHYSICAL REVIEW E69, 031918 (2004

DISCUSSION AND CONCLUSIONS

We have presented a very efficient algorithm for the cal-
culation of the translational diffusivity and the intrinsic vis-
cosity of molecules, and applied it to a large number of pro-
tein structures. Comparisons with experiment are usually
quite good. The technique, a numerical path integration, is
asymptotically rigorous for certain boundary value problems
in electrostatics. It is only approximate for the analogous
hydrodynamic boundary value problems; however, it has
been shown to give high accuracy in all situations in which it
has been testel88,40.

The approach presents several advantages over traditional
techniques. First, computation time @(m), rather than
O(m®), wherem is the number of finite elements or beads
employed to represent the boundary. Second, models con-
structed from hydrodynamic beads interacting via the Oseen
tensor are fraught with problems when the beads ové8gp
no such problems are encountered with this technique. Third,
although not done here, we can construct models from beads
of various sizes and shapes. Again, this is not possible with
traditional hydrodynamic treatments.

We obtain the general result that the hydrodynamic radius,
the hydrodynamic volume, and the radius of gyration vary on
average ad>, Nr, andNY3, respectively, consistent with
a model of globular proteins as compact, space-filling ob-
jects. (See Figs. 3 and B.These results are consistent with
the well-known empiricisms that diffusivities of proteins are
inversely proportional either to the cube root of the molecu-
lar mass or to the radius of gyratipsee Eqs(16) and(20)]
and that intrinsic viscosities are independent of molecular
mass. And although the calculation confirms these empiri-
cisms, it also demonstrates departures from these laws when
the proteins are elongated.

Arteca has reported subtle departures from Nﬂ‘@ law
for the radius of gyratioi62]. He reports that effective ex-
ponents change somewhat at abbig~300 and attributes
this to statistical changes in thehelix andg-strand content
asNg increases. We find similar trends in both the hydrody-

from our sample set. Note that our estimates almost alwaysamic radius and volume, and plan a full report at some

fall within the empirical 2.5 to 6.0 ciflg range.

future date.
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