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We have performed experiments on model emulsions of polyisobutylene (PIB) and poly(dimethylsiloxane)
(PDMS) to quantify the effect of confinement on deformation and stability under flow of droplets and
strings (threads). It is known from earlier work from our group that, under confinement, droplets in
concentrated emulsions can coalesce with each other and elongate in the flow direction to form stable
strings. In the present context, strings can be simply viewed as droplets having a large aspect ratio whereas,
in the bulk case, there are two known states of a droplet (stable and unstable), as determined by the droplet
Capillary number (Ca). We find that confinement effects induce three additional states: squashed drops,
stable strings, and unstable strings. For strings, deformation under confinement is a very strong function
of Ca: the aspect ratio of a string scales nearly as Ca3. This scaling relationship is unique to confinement,
and it sets strings apart from transiently stretched droplets in the bulk. Confinement not only promotes
deformation but also allows larger stable droplets to exist under flow than what is predicted by the critical
Ca. Strings are stabilized by a combination of the shear flow field and wall effects arising from confinement.

Introduction

Since the pioneering work of Geoffrey Taylor1,2 on the
formation of emulsions in simple shear and hyperbolic
flow fields, much effort has been directed at the study of
drop deformation and breakup in emulsions in various
different kinds of flow fields. Several excellent reviews
are available which survey this field at different stages
of its development.3-11 When an emulsion is deformed in
a shear flow field, interfacial tension tends to restore the
emulsion droplets to spherical shape (in the presence of
finite size effects, this spherical structure can be distorted),
while shear stress tends to perturb the droplets from the
spherical state. Droplets deform until the interfacial
tension effects can no longer balance the shear stress
induced deformation, at which point they break up. These
competing effects are parametrized by the ratio of viscous
and equilibrium interfacial stresses of a spherical droplet
in the dimensionless Capillary number, Ca.

Here ηm, γ̆, R, and σ denote matrix viscosity, shear rate,
drop radius, and interfacial tension, respectively. Taylor
quantified deformation of a droplet with major and minor

axes a and b, respectively, in terms of the deformation
parameter D.

Following Bentley and Leal,12 we quantify deformation
here in terms of the aspect ratio, D′ ) a/b, which is more
appropriate for highly elongated objects with large aspect
ratios. Of course, D′ and D are easily related to each other.

Note that the object whose deformation is being quantified
in this work can be either a droplet or a string. Taylor’s
single-droplet theory predicts a linear dependence of D on
Ca for small deformation. We emphasize the fact that
Taylor analysis assumes infinitesimal deformation, and
any application to large deformations is inappropriate.

When Ca exceeds a critical value, which depends on the
viscosity ratio p ) ηd/ηm (ηd is the droplet viscosity), the
droplets become unstable, and the corresponding Ca is
known as the critical Capillary number, Cacr, which
effectively sets a limiting size scale for the stability of a
drop. If we denote this largest stable droplet size as R*,
then it follows from eq 1 that

which is trivially rearranged to explicitly write R*.
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From single-droplet experiments, estimates of Cacr(p)
are available for various different flow fields, ranging from
simple shear,13 which contains equal parts of stretching
and solid-body rotation,14 to pure hyperbolic (only stretch-
ing and no rotational component), and other intermediate
flow fields as well.12,15-17 For a system with a fixed value
of p, Cacr is constant, which simply implies that R* ∝ γ̆-1.
The simple implication of this idea is that the limiting
droplet size (we take it to equal the Taylor prediction in
this paper, for simplicity) evolves itself upon changing γ̆,
so as to correspond to criticality. We apply this idea in the
experiments described in this paper to determine how
this length scale compares with droplet size in concen-
trated emulsions under microscopic confinement.

The single-droplet case is the foundation for under-
standing the phenomenology underlying breakup, which
is critical for thecaseofa concentratedemulsion orpolymer
blend.Recentmeasurements ofdroplet breakup insystems
with nonvanishing concentrations18 have revealed, in
agreement with our intuition, that the effective Cacr is
smaller in a concentrated emulsion than that in a single-
drop analogue of the same system, presumably due to
droplet-droplet collisions which promote breakup. We
do, however, also note that there are data in the literature
that suggest that Cacr in a concentrated emulsion is larger
than the single-drop analogue.19 Concentrated emulsions
are, of course, characterized by simultaneous coalescence
and breakup, whose interplay leads to a statistical
distribution of R and consequently for Ca. Computational
work by different groups has exploited numerical simula-
tions to investigate the microstructure and rheology of
concentrated systems,20-26 made possible by strides in
computing capability in the past decade.

A common feature of most studies on emulsion rheology
and morphology under flow is that they have all addressed
the “bulk” regime, where the characteristic droplet size
R is much smaller than the characteristic length scale
between the confining surfaces, that is, the gap between
parallel plates (d). Previous work from our group on
confined poly(dimethylsiloxane) (PDMS)-polyisobutylene
(PIB) emulsions has shown that finite size effects (realized
when 2R ≈ d) can strongly influence droplet microstruc-
ture, causing formation of stable strings (threads)27 and
also resulting in droplet layering in the velocity gradient/
flow plane.28,29 Similarly, Mietus et al.30 have reported

finite-size effects in the Couette flow of water drops in oil
in a horizontal annular cell; the manifestations of finite
size effects include formation of toroidal rings and water
sheaths. A very important difference between their oil-
water experimental system and our system is that the
Bond number Bo ) ∆FgR2/σ (∆F is the difference between
component densities, and g is the acceleration due to
gravity), which quantifies the ratio of hydrostatic pressure
to interfacial tension effects, is approximately 7.5 for their
system, while in our PDMS-PIB system Bo = 10-4. This
signifies that buoyancy dominates over interfacial tension
effects in their system, while the reverse holds true in our
system. We focus on our system with small Bo (,1).

For now, we offer an operational definition of a string:
its width in the vorticity direction (b) is smaller than d,
and it has an appreciably large aspect ratio (a/b g 4).
Later in this paper, we will make this definition more
comprehensive and quantitative. We must carefully
distinguish between a string and a “ribbon”, even though
they can have comparable aspect ratios; for ribbons, b >
d (which means that they are squashed by the platens),
while, for strings, b < d.

In this work we address droplet/string deformation in
confined concentrated emulsions in order to answer the
following questions. How does confinement affect droplet
deformation? What length scales are relevant in deter-
mining the microstructure under confinement? If we think
of a string as an extension of a droplet, then we can also
determine the size of the largest stable droplet that can
survive during flow. We perform carefully designed
experiments to answer these questions and show that
droplet/string deformation behavior in microconfined
emulsions reveals new regimes of deformation hitherto
not seen in emulsions in the bulk.

As discussed above, in a concentrated emulsion, there
is a statistical distribution of droplet sizes due to simul-
taneous breakup and coalescence. In the experiments and
analysis below, we measure the aspect ratio of the droplets
in this distribution as a function of droplet size. Thus, in
one experiment, we can probe many droplet sizes at the
sametime.Thedeformation (aspect ratio) ofagivendroplet
is unaffected by proximity to a neighboring droplet as
long as the droplets are separated by a distance greater
than their characteristic size. The emphasis of this work
is thus on steady-state structures, and so we can use this
experimental protocol to extract the single-droplet de-
formation behavior as a function of droplet size.

Experimental Section

PIB (mass average molecular mass, Mw ) 800; PolySciences)55

and PDMS (Mw ) 62 700; Gelest) samples used here have zero
shear viscosities η0 ) 10 Pa‚s at 25 °C,28 yielding p ) 1. The pure
components, which have no measurable elasticity, behave as well-
defined Newtonian liquids under these conditions. The density
difference between PIB and PDMS is small, rendering gravi-
tational effects negligible (FPIB ) 890 kg/m3 at 20 °C and FPDMS
) 970 kg/m3 at 20 °C;31 droplet to matrix density ratio, κ ) 1.08).
The value of σ for the PDMS/PIB system is 2.5 mN/m.32 An
emulsion containing 9.7% mass fraction PDMS in the PDMS/
PIB mixture was prepared and used in this study.
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All flow visualization experiments were performed in a Linkam
CSS-450 commercial shear cell with parallel quartz platens (see
ref 28 for a detailed description). The gap between the parallel
plates was set to 36 ( 3 µm. The estimate of the standard
uncertainty in the gap was made optically, as we verified the gap
width between the plates by measuring the translation of the
microscope stage between focusing on a scratch on the top plate
and a scratch on the bottom plate. When air is present between
the plates, this translation gives the gap width, while when the
emulsion is present between the plates, this translation must be
multiplied by an average refractive index for the emulsion (taken
to be 1.5) to determine the actual gap width. The shear cell
(interfaced with a PC to control gap width, shear rate, and
temperature) is placed on the stage of an optical microscope (Carl
Zeiss). Objectives of 3.5×, 10×, 20×, and 40× magnification were
used at each shear rate (except at the shear rate γ̆ ) 3.0 s-1,
where only 3.5× magnification was used, to concentrate on the
string and squashed droplet morphology). Images were acquired
with an analog video camera (Pulnix TM-9701), and frames were
grabbed by means of a Labview IMAQ PCI/PXI-1409 image
acquisition board. Lengths were quantified on National Instru-
ments IMAQ Vision Builder Software (v. 5.0).

Experiments were performed at 25 ( 1 °C. The Reynolds
number Re ) Fγ̆R2/ηm ∼ O(10-8) involved in these experiments
is small, signifying Stokes flow (F denotes fluid density). The
experimental procedure involved placing the emulsion sample
between the plates (after gentle stirring) and then setting the
gap (which was verified with the sample present between the
plates). The system was first presheared (at the beginning of the
experiment only) at γ̆ ) 10 s-1 for 20 min to generate a tight
droplet size distribution with a small polydispersity. At 10 s-1,
fine droplets are produced, from which subsequent microstruc-
tures are generated by the interplay of breakup and coalescence.
The experiment was then started by shearing the mixture at γ̆
) 0.75 s-1 for 3 h, and then data were acquired by grabbing
frames. Video data of the emulsion under flow were also saved
on S-VHS videotape. After that, the shear rate was increased to
γ̆ ) 1.75 s-1, and data were acquired at this shear rate as described
earlier. The system was taken directly from one shear rate to the
next higher shear rate. In this way, data were also acquired at
γ̆ ) 2.5, 3.0, 4.0, 5.25, 6.5, 7.5, 8.5, and 10 s-1. For the sake of
brevity, we only discuss detailed results at some particular shear
rates (see next section), which are representative of all the
microstructural states sampled in these experiments.

Analysis of the collected data involved the determination of
the aspect ratio D′ and Ca of the droplets and strings. To cast
the dependence of D′ in terms of Ca, it was necessary to determine
the radius, R0, of the equivalent spherical droplet. As we observe
in the flow-vorticity plane, we must compute the shape and
thickness of the droplets in the flow-gradient direction. R0 was
easily determined for strings (D′ g 4) by equating the volume of
the cylindrical string (πab2/4) to that of the equivalent sphere
(4πR0

3/3) and ignoring the negligibly small contribution from
the string ends. In the “small droplet” case (R0 < d), the relaxed
state of the droplet (seen upon cessation of flow) is a reliable
indicator of its quiescent radius. To determine R0, flow was
stopped temporarily to allow these small droplets to relax back
to spheres. This posed a problem at those shear rates where
droplets and strings coexist (e.g., at γ̆ ) 3.0 s-1), as the strings
start to break up upon cessation of shear. To circumvent this
problem, flow was stopped only at the very end of measurements
at that shear rate, just before stepping up to the next higher
shear rate (e.g., stepping from γ̆ ) 3.0 s-1 to γ̆ ) 4.0 s-1). However,
when R0 > d, finite-size effects deform the droplet, and its
observed radius R′ is certainly larger than R0. In this case, an
assumption is needed about the three-dimensional shape of
deformed droplets; it is assumed that, under flow, a squashed
droplet is an ellipsoid whose height (c) in the gradient direction
spans the entire gap width d, and therefore its volume under
flow equals 4/3π(a/2)(b/2)(d/2). Upon equating this volume of the
flowing ellipsoid to 4πR0

3/3, R0 can be estimated for squashed
droplets.

Experimental Results and Discussions
We first discuss representative data on the emulsion at

γ̆ ) 0.75 s-1 in Figures 1 and 2. In this work, we make the

shear rate dimensionless by γ̆d, which is the Taylor
estimate of the shear rate at which the droplet size is
O(d), defined by (ηmγ̆dd/σ) ) 1. Using d ) 36 µm, ηm ) 10
Pa‚s, and σ ) 2.5 × 10-3 N/m, we get γ̆d ) 6.94 s-1. Thus,
at γ̆ ) 0.75 s-1, we have γ̆/γ̆d ) 0.108. The measured values
of a/d and b/d at this shear rate are plotted as a function
of 2R0/d in Figure 1. At this shear rate, droplets with size
smaller and larger than the gap width are found (see
Figure 2) and a/b values for the small and squashed
droplets are rather small, O(1), as Ca is ∼ 0.1, even for
the larger drops. At this shear rate, a and b scale with R0
with an exponent nearly equal to 1.

We shall soon see that the scaling exponents in the
dependence of a and b on R0 are appreciably different for
the string morphology. At this shear rate 2R*/d ) 7.38 is
significantly greater than 1.

Upon increasing γ̆ to 1.75 s-1 (γ̆/γ̆d ) 0.252), we see
coexistence of three distinct morphological objects: drops,
squashed droplets, and strings (see Figures 3 and 4). The
appearance of strings in addition to droplets and squashed
drops adds a branch to the a/b versus Ca curve. While
there is definitely a distribution of string/ribbon widths,
there is no dependence of the width on the total string/
ribbon mass. For strings, the 2R0/d considerably exceeds
2R*/d, pointing to the fact that strings form when the
diameter of the equivalent sphere grows (through the
equilibrium between statistical coalescence and breakup)
large enough to allow the flow field to stretch the drop in

Figure 1. Droplet end-to-end length and dimension in the
vorticity direction versus equivalent droplet diameter (all length
scales have been rendered dimensionless by the gap width
between parallel plates) at γ̆ ) 0.75 s-1.

Figure 2. Optical micrograph of morphology at γ̆ ) 0.75 s-1.

(a/d) ∝ (R0/d)1.07(0.04 (7)

(b/d) ∝ (R0/d)0.95(0.02 (8)
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the flow direction. The equivalent sphere for strings is
supercritical, as their Ca > Cacr. Note that, at this shear
rate, 2R*/d ()3.16) has moved closer to 1, which means
that the droplets have to attain a smaller size at γ̆ ) 1.75
s-1 (compared to γ̆ ) 0.75 s-1) in order to form strings.
Squashed droplets are wider in the vorticity direction than
strings, and this difference in b/d for them is reflected in
both Figure 3 (notice the reduction in b/d in the transition
from squashed droplets to strings) and also in Figure 4,
where the squashed droplet is visibly wider than the string.
The continuous curve in Figure 3b is the D′ prediction of
the Taylor theory, eq 4. The deviation between experi-
mental data and the theoretical prediction becomes
obvious in the squashed droplet region. The prediction
curve is not extended into the string region, as bulk isolated
droplets are not stable for Ca > Cacr.

At γ̆ ) 3.0 s-1 (γ̆/γ̆d ) 0.432) the system also displays
coexistence among droplets, squashed drops, and strings
(see Figures 5 and 6). We focus our attention on strings
in the discussion of Figures 5 and 6 due to their unique
behavior, as we have already discussed the behavior of
drops and squashed drops (cf. Figures 1-4). In Figure 5,
where we plot a/d and b/d versus 2R0/d, we again see that
the diameter of the strings has a narrow distribution (also
evident in the micrograph in Figure 6) and is statistically
independent of 2R0/d. A trivial consequence of the fact
that b/d is almost independent of 2R0/d is that the length
of the strings in the flow direction becomes a very strong
function of Ca.

We had previously reported the formation of strings in
confined emulsions,27 and we can now identify another
characteristic of a string by invoking the scaling of D′
with Ca. A string is characterized by the scaling relation-
ship shown in eq 10. Taylor droplets certainly do not satisfy
this scaling, while squashed droplets show a weaker
dependence of a/b on Ca, and so this strong dependence
of a/b on Ca is unique to strings in confined emulsions.
Isolated droplets (whose viscosities are matched with the
matrix) when deformed so that Ca approaches 1 (or for
whom D′ is O(100), as seen in Figure 5) can only be
transients in emulsions in bulk flows. The stabilization
provided by a combination of wall effects and the flow

Figure 3. (a) Droplet end-to-end length and dimension in the
vorticity direction versus equivalent droplet diameter (all length
scales have been rendered dimensionless by the gap width
between parallel plates) at γ̆ ) 1.75 s-1. (b) Aspect ratio versus
Capillary number at γ̆ ) 1.75 s-1. The Taylor theory prediction
for deformation is also shown as the smooth curve.

Figure 4. Optical micrograph of the morphology at γ̆ ) 1.75
s-1.

Figure 5. Droplet end-to-end length and dimension in the
vorticity direction versus equivalent droplet diameter (all length
scales have been rendered dimensionless by the gap width
between parallel plates) at γ̆ ) 3.0 s-1, for the string morphology
only.

Figure 6. Optical micrograph of the morphology at γ̆ ) 3.0 s-1.

(a/d) ∝ (R0/d)2.93(0.2; (b/d) ∝ (R0/d)0.03(0.02 (9)

D′ ∝ Ca2.93(0.2 (10)
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field29 enables confined droplets to achieve extraordinarily
large values of D′. We have thus quantitatively demon-
strated a critical difference between droplet deformation
in the bulk and under confinement.

The effect of increasing shear on the strings is to elongate
them while decreasing their radius. This is indeed
observed as the shear rate is progressively increased from
γ̆ ) 3.0 s-1. The strings persist only until their diameter
is at least half the gap width.29,33 We have already reported
preliminary results on stability-related experiments (done
with nearly the same experimental protocol as that for
this study), and we consolidate those results here. Once
the strings are sufficiently thin so that they no longer feel
the stabilizing effect of the walls, they break up. In this
state (and at all higher shear rates), droplets are recovered
and are the only morphology observed in the system.
Certainly, droplet/string breakup phenomena predomi-
nate under these conditions. This situation is depicted in
Figure 7, where a micrograph at γ̆ ) 6.5 s-1 (γ̆/γ̆d ) 0.936)
is shown. These droplets are fairly small, certainly smaller
than the gap width. At this shear rate, the limiting 2R*/d
()0.85) is less than 1, which means that the droplets reach
critical conditions and then break up, without ever being
able to grow to the size of the gap width. Consequently,
strings will not form at this shear rate (and higher shear
rates), and only droplets will be observed.

In Figure 8, deformation data at a few different shear
rates are plotted as a function of Ca on the same plot. This
plot reiterates the fact that analysis of droplet deformation
must be done in the framework of Ca (and not γ̆). The
curve suggests that if a confined drop attained a size
corresponding to Ca ) 1.0 at γ̆ ) 0.75 s-1, its deformation
would be O(100). The single-drop Cacr and the Taylor

theory prediction of a/b (vide eq 4) are also shown on the
plot. For Ca e 0.1 (small droplets), Taylor theory does
provide a reasonable estimate of a/b, in accord with our
expectation. Taylor theory underpredicts the deformation
associated with squashed droplets, whose deformation is
enhanced by confinement. At larger Ca (Ca > 0.1), the a/b
for the confined emulsion increases dramatically. We have
already pointed out that this branch of the experimental
deformation curve is unique to conditions of confinement.
Any analytical theory for droplet deformation under
confinement (no such theory exists to the best of our
knowledge) would certainly have to predict this strong
rise in deformation at supercritical Ca. Emulsions in shear
flows in the bulk will certainly never show stretched
nontransient droplets with a/b O(100).

Why do strings disappear upon increase in shear rate,
and what stabilizes them? To answer this question, we
now discuss the data from a similar experiment29 where
the droplets were sheared at γ̆ ) 3 s-1 for 10 h to form
strings. The shear rate was then increased in small steps.
We kept increasing the shear rate after the strings were
formed, and at each shear rate we observed the response
of the strings/droplets for 3 h, before increasing the shear
rate to the next higher value. During the step up, the
average string/droplet velocity 〈v〉 (determined by veloci-
metry) increases, as expected (see Figure 9). When the
string velocity is divided by the velocity vmax ()γ̆d) of the
rotating plate, we find that v/vmax equals 0.5 within
experimental error, at each new shear rate, suggesting
that the strings/droplets are centered on the center line
between the parallel plates. In the starting state (γ̆ ) 3
s-1), strings are most likely already centered between the
plates because wall migration9,22,34-43 overcomes droplet
collisions in the one layer state28 prior to string formation.
Droplet collisions are essentially arrested in the one layer
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Figure 7. Optical micrograph of the morphology at γ̆ ) 6.5 s-1.

Figure 8. Droplet/string aspect ratio at different shear rates,
plotted as a function of Capillary number. All points denote
experimental data, while the Taylor theory prediction of the
aspect ratio (continuous curve) and the single-droplet Cacr are
also shown on the plot.

Figure 9. Average string velocity (dimensional form on left
ordinate and dimensionless form on right ordinate) upon
increase in shear. Bars on data points denote standard
uncertainties equal to the standard deviation of the data.
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state,28 which the droplets first form at γ̆ ) 3 s-1, followed
by pearl necklace like arrangement of droplets and
ultimately by coalescence to form strings.

Due to the increase in shear rate, the strings are
elongated in the flowdirection,accompaniedbycontraction
in the velocity gradient and vorticity directions, to satisfy
volume conservation constraints. We measured the droplet/
string diameter in the vorticity direction (b) at various
different shear rates (see Figure 10a). For the purpose
of this discussion, it is assumed that the strings/droplets
are axisymmetric, implying that the diameters in the
velocity gradient and vorticity directions are equal. This
assumption is legitimate in the direction of increasing
shear, as the strengthening flow field progressively thins
the strings/droplets, and the hydrodynamic interactions
with the walls become weaker. Of course, this assumption
fails when the walls squash the strings/droplets. The data
in Figure 10a very clearly show that the string diameter
is a function of shear rate, with strings becoming thinner
upon increasing shear. Since it has been shown that
droplet diameter does not control the string thickness (cf.
Figure 5), what controls the string diameter? From
dimensional analysis arguments, we infer that b/d is most
likely a function of γ̆/γ̆d. This result is suggested by these
data (at a fixed gap width of 36 µm) but can only be verified
upon measurements of b for various different values of d.

Wall-induced stabilization is necessary but not sufficient
for string stability. Even when the strings are wall-
stabilized, flow is also necessary to keep them intact. When
flow is turned off completely, well-known interfacial
tension driven instabilities such as Rayleigh-Taylor-

Tomotika44-48 and end-pinching16,17 instabilities eventu-
ally break up the strings into droplets.29 Simultaneous
observation of morphology and measurement of string
dimensions in the shear flow field offer insight into the
physics behind string stability in the shear flow field.
Strings persist with increasing shear until the diameter
in the vorticity direction decreases to about half the gap
width (note that some isolated droplets, which show little
proclivity toward coalescence, are certainly present in the
string regime, and they are ignored). When the shear rate
is increased further, the strings become thinner, start to
lose the stabilizing effects from the walls, and then break
up. The breakup process is facilitated by string-drop and
string-string interactions. At γ̆ ) 6.0 s-1, the average
diameter b ) 15 µm, and breakup of strings becomes
evident at this shear rate. As the shear rate is increased
further, all the strings eventually break up into droplets.
A plot of the string Capillary number,49 Castring ) ηm(b/
2)γ̆/σ, as a function of γ̆/γ̆d is shown in Figure 10b. We see
that Castring first increases with increasing γ̆/γ̆d (in the
strongly confined regime) and then decreases weakly with
γ̆/γ̆d, until a critical value of Cacr,string ) 0.184 is reached
at γ̆ ) 5.25 s-1 (b ) 17.5 µm). Stable strings with a smaller
value of Castring than 0.184 are not observed upon further
increase in γ̆ (for γ̆ > 5.25 s-1).

Frischknecht49 theoretically considered the stabilizing
effect of shear on infinitely long strings in the bulk (no
confinement effects) by performing a linear stability
analysis on the coupled solutions to the Stokes and Cahn-
Hilliard equations. She predicted that in order for a string
to remain stable in a shear-flow field, Castring must exceed
a certain critical value, Cacr,string. In other words, a weakly
stretched string (larger diameter) is more stable than a
strongly stretched string (smaller diameter). Note that
this condition is opposite to that for the stability of a
droplet, where stability is seen at subcritical Ca. She
determined that, for p ) 1, Cacr,string ) 0.18, which is close
to the value we determine for Cacr,string. At γ̆ ) 6.0 s-1,
where b ) 15 µm, the stabilizing effects of the walls become
weaker and the situation is somewhat closer to the bulk
case (b/d ) 0.416). Our finding that strings are unstable
under these conditions is qualitatively consistent with
the theoretical prediction of Frischknecht, who has noted
that that if a “long cylindrical drop” were considered
instead of an infinite cylinder, small Brownian distur-
bances would indeed be suppressed by the flow, but as the
drop thinned out to a critical radius, the disturbances
would grow in amplitude, leading to its ultimate breakup.
However, this finding should not be interpreted as a
rigorous validation of the model, as the experiments
involve finite-length strings that are indeed rather
confined, signifying experimental conditions quite dif-
ferent from the assumptions built into the model.

Previously,27 string stability was found for some (but
not all) strings in a more concentrated mixture (28%
PDMS/PIB) upon step-up in shear from low to high shear
rates. We argue that it is likely that some of those strings
were stable because they were sufficiently long to close off
into closed rings, whose diameter obviously does not
decrease with an increase in shear rate. ThenCastring would
increase with increasing shear, leading to enhanced
stability, an effect predicted by the Frischknecht model.

(44) Lord Rayleigh. Philos. Mag. 1892, 34, 145-154.
(45) Lord Rayleigh. Proc. London Math. Soc. 1878, 10, 4-13.
(46) Chandrasekhar, S. Hydrodynamic and Hydromagnetic Instabil-

ity; Clarendon Press: Oxford, 1961.
(47) Tomotika, S. Proc. R. Soc. London, A 1935, 150, 322-337.
(48) Tomotika, S. Proc. R. Soc. London, A 1936, 153, 302-318.
(49) Frischknecht, A. Phys. Rev. E 1998, 58, 3495-3514.

Figure10. (a) Average string diameter in the vorticity direction
(dimensional form on left ordinate and dimensionless form on
right ordinate) upon increase in shear. Bars on data points
denote standard uncertainties equal to the standard deviation
of the data. (b) String Capillary number versus dimensionless
shear rate.
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There is clearly a need for an analytical theory for thread
breakup in the regime of finite-size effects. Newtonian
thread breakup in a confined geometry (thread centered
coaxially in a tube filled with another Newtonian fluid)
has been treated by lattice-Boltzmann (LB) simulations.50

We are in the process of extending the LB treatment along
with complementary experimental measurements to
multiple interacting threads confined between parallel
platens.51

What morphology is associated with the greatest mass
of the suspended phase at different shear rates? To answer
this question and summarize our findings, we discuss the
regimes of string/droplet behavior in the parameter space
of dimensionless shear rate and dimensionless size. We
describe the behavior of the volume average droplet
diameter, Dv, determined by the coalescence and breakup
behavior of the emulsion. We calculated Dv ) ∑inidi

4/∑inidi
3

on the basis of the determined D0 ()2R0) values. The
calculated nondimensional droplet sizes (normalized by
d) are plotted versus dimensionless shear rate as the
experimental data points in Figure 11. Also drawn on this
plot are the Taylor prediction of 2R*/d (vide eq 6) and the
line where Dv ) d.

We can divide this Dv versus γ̆ parameter space into
five regimes. Regime 1 corresponds to the case where the
droplet Capillary number exceeds its critical value and
the droplet diameter is less than the gap width. This
corresponds to the familiar bulk case where the droplets
are unstable; they elongate and break up. These two
conditions are concisely expressed as follows.

Naturally, we do not observe droplets in this “forbidden”
regime, since they are unstable.

Regime 2 corresponds to the simple case of stable bulk
droplets. This regime corresponds to subcritical droplet
Capillary numbers (as usual), but an added constraint
requires that the gap width exceed the droplet diameter.
Combining these two constraints yields the following
inequality.

Even with small gaps on the order of tens of microns, the
bulk behavior of emulsion droplets can indeed be recov-
ered. This regime is seen at the low Capillary numbers
in Figures 1 and 3.

Regime 3 corresponds to subcritical droplet Capillary
numbers, but the droplet diameter exceeds the gap width.
The observed morphology is the squashed droplet, as seen
in Figures 3 and 4. It is defined by the following
simultaneous inequalities.

The data show that the string regime (regime 4)
corresponds to the case where the droplet Capillary
number (defined in terms of the unperturbed equivalent
droplet radius) is supercritical, while the equivalent
droplet diameter exceeds the gap width. However, as the
shear rate is increased beyond a critical value (cf. Figure
10), the strings become unstable and break up. This sets
a third condition for the stability of the strings.

The inequalities in eq 14 may be added to the “definition”
of a string expressed earlier in this paper (cf. eq 10), along
with the geometrical conditions that a . d and 0.5d < b
<d for a string.

The final regime (regime 5) corresponds to unstable
strings, as seen in Figure 11, when the diameter of the
string is less than a critical value. This regime is defined
by the following conditions.

Regimes 1 and 5 correspond to unstable droplets and
strings, respectively. While we have used the line Dv ) d
to demarcate the boundary between these regimes, the
actual boundary between them is not completely clear at
this point.

It is also interesting to observe the overall kinetics of
coalescence and breakup as an emulsion is taken over a
particular deformation history. In our experiments, we
presheared at a high shear rate, γ̆/γ̆d ) 1.44, dropped the
shear to the value of γ̆/γ̆d ) 0.108, and then used small
increments in shear rate. The starting point of the
deformation protocol, at γ̆/γ̆d ) 0.108, corresponds to
droplets whose diameter is much smaller than the gap
width. At the end of 3 h, coalescence had occurred, the
corresponding Dv exceeded d, and squashed droplets were
observed. Nevertheless, the system is frustrated by slow
coalescence at this low shear rate, to allow the largest
droplets to form strings. Therefore, the experimental data
point at γ̆/γ̆d ) 0.108 lies in regime 3 and not in regime
4. As the shear rate is increased further, the increase in
flow-driven coalescence causes droplets to become large
enough to form strings. This explains why we have the
unusual result that the droplet size increases with an
increase in shear rate, due to very slow coalescence at

(50) Hagedorn, J. G.; Martys, N. S.; Douglas, J. F. Phys. Rev. E,
submitted.

(51) Pathak, J. A.; Douglas, J. F.; Martys, N. S.; Hagedorn, J. G.;
Migler, K. B. Phys. Fluids, to be submitted.

Figure 11. Regimes of string/droplet deformation in the
parameter space of dimensionless size and dimensionless shear
rate (for a system with a viscosity ratio of unity). Data points
denote the experimentally determined volume average droplet
diameter plotted versus dimensionless shear rate. The dimen-
sionless gap width (constant) and dimensionless critical Taylor
drop size are also shown on the plot as the dashed and
continuous lines, respectively.
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these low shear rates, making the time taken by the
volume average diameter to attain its true steady-state
value much longer than the time scale of the experiment.
This phenomenon has been interpreted as a “hysteresis”52

between the breakup and coalescence curves in emulsions
in bulk conditions. This “hysteresis” has been shown to
be caused by the slow kinetics of coalescence and can be
eliminated by shearing the mixture for longer times.53 In
the bulk, coalescence is likely slow, probably because of
sufficiently large drop sizes that prevent film-drainage.
However, under confinement the collision rate is smaller
than that for the bulk,28 leading to slower coalescence.54

Conclusions
In summary, we have experimentally investigated the

effect of microscopic confinement on droplet deformation
in a system with a viscosity ratio of unity. We had shown
earlier that confinement leads to formation of strings with
remarkably large aspect ratios in these microconfined
emulsions. Under conditions of flow, these string entities
are very stable so long as they are not stretched too much

by the flow and continue to feel the stabilizing influence
of the walls around them. Certainly, bulk deformation of
droplets in an emulsion will never yield stable droplets
with aspect ratios as large as those seen in this studys
those droplets would undoubtedly be transients. This is
a striking difference between droplet deformation in bulk
and confined emulsions. We have therefore argued that
confinement leads to enhanced droplet deformation and
suppresses droplet breakup. Confinement also allows a
larger stable “droplet” to exist, than what is predicted by
the critical Capillary number. On the basis of the scaling
for the dependence of the end-to-end length of a string on
the equivalent drop radius, we have proposed a metric to
“define” a string. This scaling also helps distinguish a
string from morphologies such as small (weakly deformed)
droplets and squashed droplets. We have identified the
relevant length scales that are determinants of droplet
deformation and microstructure and have divided the
experimental droplet size versus shear rate parameter
space into five regimes. In addition to the usual two bulk
regimes (stable droplets and unstable droplets), we find
three more regimes: two that correspond to confinement
and one that corresponds to unstable strings.

Acknowledgment. We thank Prof. Alex Jamieson
(Case Western Reserve University) for a loan of the shear
cell. We also thank Steve Hudson and Jack Douglas (NIST)
for helpful discussions, and we gratefully acknowledge
numerous helpful comments by the reviewer.

LA0346907

(52) Minale, M.; Mewis, J.; Moldenaers, P. AIChE J. 1998, 44, 943-
950.

(53) Ramic, A. J.; Hudson, S. D.; Jamieson, A. M.; Manas-Zloczower,
I. Polymer 2000, 41, 6263-6270.

(54) Loewenberg, M.; Hinch, E. J. J. Fluid Mech. 1997, 338, 299-
315.

(55) Certain commercial materials and equipment are identified in
this paper in order to adequately specify the experimental procedure.
In no case does such identification imply recommendation or endorse-
ment by the National Institute of Standards and Technology, nor does
it imply that these are necessarily the best available for the purpose.

8674 Langmuir, Vol. 19, No. 21, 2003 Pathak and Migler


