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Relaxation in supercooled liquids above their glass transition and below the onset temperature of
“slow” dynamics involves the correlated motion of neighboring particles. This correlated motion
results in the appearance of spatially heterogeneous dynamics or “dynamical heterogeneity.”
Traditional two-point time-dependent density correlation functions, while providing information
about the transient “caging” of particles on cooling, are unable to provide sufficiently detailed
information about correlated motion and dynamical heterogeneity. Here, we study a four-point,
time-dependent density correlation functigg(r,t) and corresponding “structure facto$,(q,t)

which measure the spatial correlations between the local liquid density at two points in space, each
at two different times, and so are sensitive to dynamical heterogeneity. We gf@dy) and

S,(q,t) via molecular dynamics simulations of a binary Lennard-Jones mixture approaching the
mode coupling temperature from above. We find that the correlations between particles measured by
04(r,t) and S4(q,t) become increasingly pronounced on cooling. The corresponding dynamical
correlation lengthé,(t) extracted from the smati-behavior 0fS,(q,t) provides an estimate of the
range of correlated particle motion. We find tlgaft) has a maximum as a function of tinheand

that the value of the maximum @f,(t) increases steadily from less than one particle diameter to a
value exceeding nine particle diameters in the temperature range approaching the mode coupling
temperature from above. At the maximuéy(t) and thea relaxation timer, are related by a power

law. We also examine the individual contributionsgg(r,t), S,(q,t), and &,(t), as well as the
corresponding order paramet@(t) and generalized susceptibiligy(t), arising from the self and
distinct contributions tdQ(t). These contributions elucidate key differences between domains of
localized and delocalized particles. 2003 American Institute of Physics.

[DOI: 10.1063/1.1605094

I. INTRODUCTION Goldsteir® Stillinger? and others? Increased computational

Understanding the underlying principles of the glasspower has aided the identification of cooperative motion in

. . ~-17 . .
transition is a long-standing problem in condensed mattelgupercooled liquids™"and tests of configurational entropy

; 8-20 j ; 1-17 R -36
Some have argued that the glass transition is a purely kineti@eor'esl' Simulations and experiments™ have

phenomenon? while others propose that the experimentallydemonStrated,th_e cooperfative anq spatially heterggeneous
observed transition is a “ghost” of an underlying thermody- Nature of the liquid dynamicgor reviews of the experimen-
namic transitior?:* Many ideas relating the glass transition to (@l €vidence for spatially heterogeneous dynamics, see, e.g.,
thermodynamics date back to Kauzmanmho envisioned a Refs. 37-3% Experimental efforts have been made to mea-
relation between the glass transition temperatdfg) (and ~ Sure the length scale of cooperative motion in supercooled
the entropy difference between the supercooled liquid andiuids using a variety of techniquésee, e.g., Refs. 29, 35,
stable crystal. Adam, Gibbs, and DiMarzio later expanded or@nd 40. However, a clear, definitive measure of this length,
these idea$; proposing that relaxation of the liquid occurs and its temperature dependence on approaching the glass
via “cooperatively-rearranging regions,” and related dy- transition, has been elusive. The presence of a growing cor-
namical properties to a configurational entropy, later interrelation length approaching the glass transition might help to
preted as a measure of the number of mechanically stabl@otivate using the theoretical framework of conventional
configurations accessible to the liquid as described byritical phenomena, suitably adapted to this problem, to un-
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derstand the glass transition. Indeed, the mode-couplingrow asT decreases. Below,, Parisi also found an increas-
theory (MCT) (Ref. 41 already incorporates many ideas of ing correlation length corresponding to cooperative motion.
critical phenomena, without explicit inclusion of a growing Recently, a new theoretical approach to the problem of co-
length—either static or dynamic—and has been widely usedperativity demonstrated how spatially heterogeneous dy-
to describe the slowing down of the dynamics on weak sunamics(SHD) can arise in simple systems with cooperative
percooling. This regime corresponds to theange of our  dynamics®® This theory predicts a growing correlation
simulations, over which the diffusion constant decreases b}éngth on decreasirf.> In Refs. 17, 43—47, and 56, several
4-6 orders of masgnitude from a typical high temperatureypproaches—including calculation of a  displacement-
liquid value of 10°° cn/s. displacement correlation function and identification of clus-

Using thi frar;:ework of ﬁogvfennonal c_r|t|cal phenom—lters of mobile particles—predicted that the characteristic
ena, researchers have searched for a growing, static corre I@’ngth scale of dynamically similar regions grows on cool-

tion 'e’?gth that m|_ght be associated with t.h.e slowing of theing, while the static correlation length remains nearly un-
dynamics on cooling near the glass transition. However, N anoed. Manv soecific predictions made possible through
evidence for such a length has been found from static two- ged. y sp b P g

. . ) o . ~such analysis have now been confirmed in experiments on
point density fluctuations and other traditional correlation : iorR2.3357
functions that measure local static structtf& Some suc- colloidal suspensiorts. L B .
cess has been obtained using computer simulations by focus- _The t_emporary Iogahze_ltlon or “caging O_f particles l_)y
ing instead on alynamicalcorrelation length that measures their nelghborg—whlgh is  associated W'th_ dynamlcal
the typical size of dynamically correlated regions, and thud'€terogeneity—is readily observable from probing the time-
essentially characterizes the distance over which particle mgiePendence of density fluctuations via scattering methods.
tion is correlated3-17:43-52 However, direct measurement of a length scale via scattering

For example, Onuki and Yamamd&tealculated dynami- experiments characterizing correlated particle motion in lig-

cal correlation length of clusters formed by particles “con- Uids is more complicated, because this length involves the
nected” by bonds that have a length of the order of a size ofnotion of two or more particles, and hence a four-point func-
a particle. Introducing a concept of a bond breakage timdion containing information about the density at two points,
(time for particle to move greater then one interparticle dis-each at two times, is required. Traditional two-point, time-
tance, and monitoring the bond breakage process, they showependent density correlation functioissich as the interme-
that particles with “broken bonds” form clusters. They state diate scattering functiondepend on at most the density at
that “the heterogeneity structure in the local mobility is very two different locations, but each at only one time.
analogous to the critical fluctuations in Ising spin systems.”  Dasguptaet al>® were the first to propose the use of a
Based on this analogy, they fit the structure factor of thefour-point, time-dependent density correlation function
particles pairs with broken bonds to an Orstein—Zernikeg,(r,t) in simulations of supercooled liquids. However, they
form (Lorentzian, and found a correlation length that grows did not find evidence of an increasing length as the tempera-
asT decreases. Hurley and Harrow/@lestimated the “char- ture is decreased. More recently, this function was revisited
acteristic linear dimension of the kinetic heterogeneities” ofand the theoretical framework expanded by Refs. 59 and 60,
a one-component 2D system of soft disks from the secongho focused on a four-point, time-dependent susceptibility
moment of the mean re_Iagation timfes of subregions. The)given by the volume integral af,(r,t). Using both theoret-
found that the characteristic correlation length of these subyeg| calculation®® and simulatiorf® these authors argued for
regions is increasing function of.den§|ty. Doliwa qnd HeRer the existence of a growing correlation length on cooling
analyzed displacement correlations in both 2D disks and 3R} ced on the increase of the dynamical susceptibility with

hards spheres. They were able to measure the “total redugg, .reasing temperature. Compared with previous studies of
tion of degree of freedom and the spatial extent of correlaz HD, that work provides a rigorous exposition of a theoret-

tions” of particles. They found that the dynamical correlation ical framework within which to relate SHD to the traditional

length b‘.ised.on s'mglle partlples dlsp!acements dyrmg SOM& rrelation functions used to describe the liquid state. The
observation time is increasing function of density, but at

times longer than the relaxation time of the system, the;}cunCtlon g4(r.t) is consequently important within the con-

found that this correlation length is monotonically increasing:eXt.IOftlr:qu'd sthat.e thes)ry,tg nd this is ourtp(rjlmax.motlvatlon
function of time with some limiting value. Mountathcal- or Its thorough investigation, as presented in this paper.

culated a “hydrodynamic length” in MD simulation via a The principal goal of this paper is to further develop the

transverse current correlation function corresponding to th&Prmalism forg,(r.t), calculategy(r,t) via molecular dy-
longest wavelength of propagating shear waves supported BjAMiCS simulations of a model glassforming liquid, and
the liquid, and found to grow with decreasifig In the con-  duantify the temperature dependence of its characteristic
text of glassforming liquids in confined geometry, Scheindler‘engtf1 595"654('5)- Addltlona!ly, we e>'<plore the mqlmdual

et al®? used MD simulations to investigate how boundarycontnbunons to the correlation function from particles that
effects influence the relaxation dynamics and any concomiare either temporarily immobil@ocalized or mobile, and
tant effect on the correlation length. They found that theelucidate the structure of domains of localized particles,
characteristic length scale can be estimated from the “corwhich were shown to dominate the correlation function in
rection” in the intermediate scattering function in the vicinity Ref. 60. A preliminary account of this work appears in Ref.
of the boundary. This characteristic length is also found tc51. We note a key difference between the results we reported
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TABLE I. Average temperaturéT), kinetic and potential energy per parti¢lg,,/N), pressurd P), relaxation
time 7, , equilibration timet., since previous run, and production run timefor each state point simulated.
The density for each state points=1.296.

(T) (Ett/N) (P) Ta teq Cor
0.588+0.001 —5.1900+0.0004 6.479:0.001 3500 100 6.9<10° 7.8x10°
0.598+0.002 —5.1507-0.0004 6.666:0.002 190@ 100 4.6x10° 7.8X10°
0.615+0.001 —5.0790+0.0002 6.976:0.001 880-50 3.4 10° 4.6X10°
0.637+0.001 —4.9922+0.0002 7.358:0.001 376-50 1.1x10° 1.1x10°
0.660+0.001 —4.9008+0.0002 7.755%0.003 240-30 4.6x10 1.1x10°
0.689+0.001 —4.8009+0.0002 8.1780.001 150- 30 2.3x10* 1.1x10°
0.944+0.001 —3.9508+0.0002 11.6030.002 16:5 2.3x10* 1.1x10°
2.004+0.001 —0.8981-0.0002 22.54%0.002 4+1 1.1x 10 1.1x10°

in Ref. 61 and those we report here. In the present paper, Weum values at the new state point. The lengthtgffor each
estimate the correlation length corresponding to a correlatiofemperature is several multiples of the time needed for the
functiong$'(r,t), which is related to the correlation function equilibrium coherent intermediate scattering function,

g (r,t) investigated in Ref. 61, using a wider range of data

and different approach. We now estimate a correlation length ' S .
exceeding nine particle diameters within 5% Tqfcr- F(qo,t)= (Zje exp[.l Yo rJ(O)]qu_' Go-"(H]) (1)
The paper is organized as follows: In Sec. Il we describe (Zjexdido-ri(0)]exdide- rk(0)])

the model and simulation details. In Sec. Ill we review and
extend the theoretical treatment of Refs. 59—61 to rewrite théRef. 67, to decay to zero, whemg,=|qo|~ 7.5 corresponds
four-point density correlation function in a manner suitableto the maximum of the static structure factor. To ensure that
for calculation. In Sec. IV we present numerical results forthe systems are equilibrated prior to data collection, we also
the order parameter, susceptibility, four-point correlationcheck that there is no aging in dynamical quantities such as
function, four-point structure factor and dynamical correla-the mean square displacement, and ensure that all properties
tion length. We conclude with a discussion of our results inof interest are independent of time origin. Once equilibrium
Sec. V. is established, we perform a production run of length
=br,, where 7, is the T-dependent relaxation time of
F(do,t), and wheréo~ 10° for the highesf andb~ 200 for

the lowestT studied. We calculate,, by fitting the second-

We study a 50/50 binary mixture of particle type. ary relaxation of~(qg,t) to a stretched exponential function
and “B” which interact via the Lennard-Jones potential, F(t)=Aexp(—(t/7,)P). We perform the fitting fot>0.6 for
o 12 [ 16 the two highest temperatures ahd 20 for the rest of the

“ﬁ> - <—“ﬁ) ) temperatures. During the production run, we save the particle
r r positions at logarithmically spaced time intervals for later
This system has been studied previously by Wahn$famd ~ analysis. We summarize the equilibrium thermodynamic
SchradeP® Following these authors, we use length param-properties, relaxation time, , equilibration timet,, and
etersopp=1, 0gg=5/6, andoag=(oap+ ogp)/2, and en- production run time,, for all state points studied in Table I.
ergy parameters,,=egg= €ag=1. The masses of the par- The calculation of error bars is explained in Ref. 68.
ticles are chosen to bey=2 and mg=1. We shift the The bulk pair correlation function
potential and truncate it so it vanishesrat2.50 5.

We simulate a system dfi=8000 particles using peri-
odic boundary conditions in a cubic box of length
L=18.344 in units ofoaa, Which yields a density of
p=N/L3=1.296 for all state points. We report time in units

IIl. MODEL AND SIMULATION DETAILS

Vaﬁ(r) :46aﬁ

a(r)

of r=(chr,§A/486AA)%, length in units ofoaa, and tem-
peratureT in units of ep5/k, Wherek is Boltzmann’s con-
stant. The simulations are performed using LAMMPS, a pub-
licly available parallel MD simulation code developed by
Plimpton®* We simulate eight state points at temperatures I
ranging fromT=2.0 to T=0.59, following a constant vol- T2
ume path similar to that followed in Refs. 60, 63, 65, and 66. i
The simulations are performed in the NVE ensemble. Each
state point is generated from an equilibrated state point at
higher temperature. We first perform an equilibration run of
lengtht,g, to allow the kinetic and potential energies to relaxpig. 1. (@) T-dependence of pair correlation functiog(r). (b)
from their values at the previous state point to their equilib-T-dependence of static structure facgfq).
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10% N
A 10 p(rH)=2, 8(r=ri(1). “
V107 A time-dependent order parameter may be defined in terms
of the function,
0.8
iy Qu(t)= [ dradrap(r1,0p(r2 D1, 12)
[T} .

10% 10" 10°

HMZ

o o N
10' 10* 10° 10* 10° =2 2 8(ri(0)—ry(1), 5)
t 1=

FIG. 2. (a) Mean-square displacement for several state points stuthed. \yhich measures the number of “overlapping” particles in

Coherent intermediate scattering functiefqg,t) calculated atjy~7.5 for tw nfiguration rated b time interzalThe fluc-

several state points studied. O.CO _gu a_o S separated by a € intervalthe fluc
tuations in a time-dependent order parametit) may be
defined as

v BY
g(r):—sz 5(r—ri+rj) Xg(t)z N2 [<Q[23(t)>_<Qp(t)>2] (6)
iZi
and its related Fourier transform, the static structure factor Additionally, we may write

1 oo BY
S(Q):N@(Q)P(_Q))y X4(t)EWJ drydrodradryGa(ry,ra,ra,ra,t), (7)

where p(q) == exdfig-r;],°" are shown in Fig. 1. As ob- whereg=(ksT) %, and
served in many other supercooled liquids, these functions
exhibit only a very weakT-dependence. In contrast, the 94(F1:r2:73:r4,t)
mean square displacemént(t)) and coherent intermediate _ _ _
scattering functionF(q0,€t<) at >the peak wave vector are =(p(r,0p(12,0) 811 =r2)p(ra,0)p(rs,H 8(rs=ra))
shown in Fig. 2; they display qualitatively the same —(p(r,00p(r,,t)8(r—r5))
T-dependence as other well-studied glass-forming liquids.
We estimate the mode coupling temperaflyg from a X{p(r3,0p(rs,t)8(rs=ra)), ®

power law fit;"* is a four-point, time-dependent, density correlation function.
7o T)~(T/Tyer—1) "7 (2)  The form of Eq.(7) is analogous to the isothermal compress-

i ibility 1, which is proportional to the volume integral of
of the T-dependence of, and findTycr=0.57+0.01. The e static density correlation functiag(r) — 1.5

value of Tyt obtained from fits of the diffusion constabt Note that(Qp(t)>= NG(0t) whereG(r,t) is the time-

. . . 3 _ . 1 1

is slightly higher? Tuer=0.57+0.01. We estimate the gependent, van Hove two-point density correlation function.

Kauzmann temperaturg, WhICh can be considered a onver Thus (Qu(t)) quickly decays to the long time limit

bolund for the glass transition temperaturg, from a fit lim, ..{Q,(t))=1N due to the vibrational motion of the

using the Vogel—-Fulcher—TammaxwFT) form, particles‘?J’) In this paper, we are interested in probing the
7 (T)~expAl(T/Ty—1)), (3)  correlated motion of particles in liquids approaching the

i L i glass transition. It has been demonstrated in several
whereA is the activation energy. The data and fit are Showrbaper§7'43‘45'69that vibrational motion is only weakly corre-
in Fig. 7; we findT,=0.48+0.02. The error bars are confi- lated at best; strong correlations appear only on longer time

dence intervals obtained as a result of fitting(T) 10 &  go7j65 when particles move a substantial distance and escape

power law and exponential form, respectively. The onset o, thejr cages. To capture this motion using the four-point

supercooled” liquid behavior, as indicated by the appear-..ejation function of Eq(8), Refs. 59, 60, and 70 intro-

ance of a plateau in the mean square displacement, is OG'uced a “coarse-graining” by defining a counterp@it) to

served to occur af~1.0, as reported in Ref. 65. Qp(t) in terms of a parametex, associated with the typical
amplitude of the vibrational motion of the particles. Follow-
ing these authors, we modif@,(t) by an “overlap” func-

lll. THEORY tion w(|r;—r5,|) that is unity for|r;—r,|<a and zero oth-

A. General framework erwise. Equationt5) becomes

We first review the general framework of the four-point,
time-dependent, density correlation function and related
quantities, previously presented in briefer form in Refs. 59— NN
61, and extended here. Consider a liquid\bparticles oc- _ Wlr(0)=r:(t 9
cupying a volumeV, with density izl 121 (Ir(0)=ry®D- ©

Q(t)= f drirop(ry,0)p(ra,t)w(lry—ry|)
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Physically, Q(t) is the overlap between a configuration of BV

the system at a reference tirtie 0 and at a later time; that Xa(t)= sz drydrg>, [(8(r1—ri(0))

is, Q(t) is equal to the number of particles that in a tine I

either remained within a distaneeof their original position, X 8(rg—ri(0)w(|ry—r(H)w(|rz—ri(1)]))

or were replaced by another particle. Note that the long time

limit Q..=lim,_... Q(t) # 1N because of the nonzero random —(8(ry=ri(0)w(|ry=r;()]))

probability of finding overlapping particle®../N is given X{8(r3—r(0)W(|rg—r(t)]))]. (14)

by the probability of a “random overlap,”i.e., the fraction of

the volume occupied by particles at any given time,PEfiNingr asr=rz—r, and integrating overs in Eq. (14)

NV, /V=pV,, whereV,=4/3ra’. we find
ReplacingQ(t) in Eq. (6) yields finally a modified ex- BV
pression for the susceptibility, xa(t)= WZ% U dr(8(r—r(0)+r;(0))w(|r;(0)—r;(t)])
\Y XW([r(0) = (1)) —(w(|ri(0) —r;(t)])
X0 = S5 LQMD Q)21 (10 rOmnOm ol by

x(wilr0) - (0] 19
Expressingy,(t) in terms of the four-point correlation func-
tion G,(ry,r»,r3,r4,t), we obtain Choosing to integrate over different variables would result in

a function that calculates spatial correlations between over-
BV lapping particles at either timeor at a combination of times.
Xa(t)= sz drdrodradr Gy(ry,rp,r3,rg,t), (1) This choice makes little qualitative difference to our results
if a is small, as it is in our calculationsee Appendix
Combining Egs(9), (13), and(15), we obtaing,(r,t),

where
1
Ga(ry,ro,ra,r4,t)={(p(r,00p(ro,tHw(lry—ry|) g4(r,t):N_P<% 5(r_rk(0)+ri(O))W(|ri(0)—rj(t)|)
X p(r3,0)p(rg,)w(lrz—ry4|)) 0 <Q(t)>2 6
(12,0 p(r 5, O, —1) wind )_r'(t)|)>_ W W

X(p(rz,00p(rg,OW(|r3—r4)). (12 We investigate the behavior gf(r,t), which is the ra-
dially averaged function of a single variable Assuming an
Note that Eq(12) collapses to Eq(8) if eachw(|r;—r|) is  SOtropic systemg,(r,t) is a function of only the magnitude
replaced bys(|r;—r ). r=|r|. With the above choice of integration variables,
In the case of both the mean-fielgsspin model and a 94(r,t) describes spatial correlations between overlapping
liquid in the hypernetted chain approximatith/*the time particles separated by a distanceat the initial time(using
dependence of4(t) was calculated numerically from an information at timet to label the overlapping particlesThe
analytic expression in Ref. 59. Reference 59 showed thdt'st termingy(r,t) is a pair correlation function restricted to
xa(t) is maximum at some intermediate tirt*, and both ~ the subset of overlapping particles. We define this pair cor-
the position and the height of this maximum increase as &elation function of overlapping particles @'(r,t). The
power law asT— T, Those calculations provide the first Sécond term represents the probability of any two randomly
analytical prediction of the growth of a generalized dynami- chosen particles overlapping at times 0 @ndVe can thus
cal susceptibility and, by inference, a corresponding dynamid€fineg,(r.t) as
cal correlation lengtlg,(t) in a model glass-forming system. Q(t)\ 2
We will calculate this length later in this chapter. ga(r,t)=g5'(r,t)— <T> : (17
By factoring out the quantityQ(t)/N )2, g4(r,t) can also be

N . . written in the form,
B. Derivation of radially-averaged four-point

correlation function  g,(r,t) aur t)—<Q(t) >2 gq'(r.b)
4\1,L) = 2
We wish to radially average the four-point correlation N Q(t)>
function in Eqg.(12) to obtain a functiorg,(r,t) that depends N
only on the magnitude of the distance between two par- Q1) | 2
ticles at timet=0. We start from the requirement that E<T> gx(r,t). (18

Written this way, the functiog (r,t)=g(r)—1 att=0, and
X“(t):'gf drgy(r.b). (13 g% (r,t)=0 in the absence of correlations. We studied the
behavior ofgj (r,t) in Ref. 61. In this paper we study the
To achieve this, we first integrate over andr, in Eq.(11)  behavior ofgg'(r,t), using a different approach to calculate
and obtain correlation length that provides better estimate than that ob
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tained in Ref. 61. The correlation length of each of theseD. Self and distinct contributions to Q(1), xa(t),

functions must be the same. 94(r,t), and SY(q,t)

The contribution of a given particlieto Q(t) is a result
C. Four-point, time-dependent structure factor of three possible eventsi) particlei remains within a dis-
S4(q, 1) tancea of its original position;(ii) particlei moves and is

replaced(within a distancea) by another particle; ofiii)
particlei moves a distance greater thamnd is not replaced
by another particle. Cagdi) does not count as an overlap,
and thus does not contribute @(t). Casedi) and(ii) count

as overlaps and contribute to the value@ft). However,

>2 the two cases clearly represent two very different physical

The structure factor that corresponds gg(r,t) is its
Fourier transform,

Sy(q.r)= f ga(r,t)exd —iger]dr

= f 9d'(r,tyexy —ig-r]dr— <%

situations. To elucidate the various contributions to the four-
point correlation function, we separa@ into self and dis-
tinct componentsQ(t) =Qg(t) + Qp(t). The self part,

xf exd —ig-r]dr. (19 N
Equation(19) implies that Qs(t)=i21 w(|ri(®) = ri(0)]), 24
lim Sy(q,t)= Xa(t) (20) corresponds to terms with=j in Eq. (9), and measures the
40 a(9.H)= B number of particles that move less than a distamaea time

intervalt; we call these “localized” particles. It is tempting
Since the second term in EQ.9) is proportional to5(q), we g associate localized particles with caged particles, and in
are only interested in the first term of EQ.9). We define a  many instances this association is valid. However, while a
four-point, time-dependent structure factor of overlapping|gcalized particle is always a caged particle, one cannot

particlesSy (q,t) as the Fourier transform afy (r,t), strictly identify caged particles with localized particles, since
| | a caged particle may occasionally oscillate over a distance
S (q,t)ZI g (r,t)exd —ig-ridr larger thara and return to its initial location, and thus would

not be considered localized according to the present defini-

. 1 tion (see Appendix”®
:f dr exp[—lq-r]<N—p% o(r=r(0)+ri(0)) The distinct part ofQ(t),
N N
><W(|ri(0)—r]-(t)|)w(|rk(0)—r|(t)|)> Qo()=2, 2 w(lri(0)=r;(v)), (25)
1 corresponds to terms wiik# j in Eq. (9) and gives the num-
=( =2 exd—ig-(r(0)=r;(0))] ber of particles replaced within a radiasy another particle
N
Pk in time t.
Following the scheme of decomposift), x4(t) can
XW([ri(0)=r;(t))w([r(0) =1 (t)]) be decomposed into selfs{t), distinct ypp(t), and cross

xsp(t) terms: xu(t) = xsdt) + xpo(t) + xsp(t), where
LS exfian(o N XsdD)=(QY(1)) —(Qs(1)% xoo(1)=(Qp(1)) —(Qo(1))?
“Np | & HiaTiOIw(ri(0)=riv]) and yso(t) *(Qs(t)Qp(1)) ~(Qs())(Qo(1)). Thus xsdt)
is the susceptibility arising from fluctuations in the number
. of localized particlesypp(t) is the susceptibility arising
X% eXF[—IQ'TK(O)]W(|TK(0)—f|(t)|)>- @D from fluctuations in the number of particles that are replaced
by a neighboring particle, angsp(t) represents cross fluc-
tuations between the number of localized and replaced par-
ticles.

To write EQ.(21) in a more compact form, we define

p°'(a,t)=2 expig-r;(0)w(|r;(0)—r;(1)]), (22 We also consider “delocalized” particles, that is, par-
! ticles that in a time are more than a distan@efrom their
and obtain original location. As was pointed out in Ref. 60, substituting
1 1—w for w in Eq. (24) gives the delocalized order parameter
SE(a0= (e (@0p(=a.b). (23 QoL()=N-Qg(t), and as a resulyp, (t) = xsdt).

In general,g,(r,t) can be decomposed into more than
Equation(21) is analogous to the static structure facsgq), four terms, depending on the combinations of indicés,|
but “scatters” off of overlapping particles using information one considers. In our analysis, we investiggiér,t) of lo-
on overlapping particles at tinteto label particles at time 0. calized @fs(r,t), i=j andl=Kk), replaced gED(r,t), i #j
In Eq. (21), p=N/V=1.296 is the average density in the andl#Kk), Iocalized-replacedgﬁD(r,t), i=j andl #k), and
system defined in Sec. Il. In the following, we calculate thedelocalized particlesg}"(r,t), substituting - w for w and
angularly averageSZ'(q,t). takingi=]j andl=k) in Eq. (16) respectively. Likewise, we
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FIG. 3. Average time-dependent overlap “order paramet&{t)/N) for
each state point simulated. The solid line corresponds to the random value
Q../N=0.147, as discussed in the previous section.

can decompos8y'(q,t) into localized &' *Yq,t), i=j and
I=k), replaced &}'°P(q,t), i#j and I#k), localized-
replaced &' SP(q,t), i=j and I#k), and delocalized
(S9'PH(q,t), substituting +w for w and takingi =j and|
=Kk) in Eq. (21), respectively.

Following Eq.(16) and Eq.(17), we write in compact
form,

2
gz?S(r,t>=<Q,Sj )> 9> (r.0), (26
t 2
gED<r,t>=<QDN( )> 957 (b, (27)
and
2
apir.0=( 282 g, 29

IV. RESULTS
A. Calculation of Q(t)

We begin by examining th&-dependence of the overlap
parameteQ(t). We choose=0.3; details about this choice
are presented in the Appendix. Figure 3 shows that for all
sufficiently lowT, Q(t) is characterized by a two-step relax-
ation, commonly observed in the intermediate scattering
function®’ as a result of the transient caging of particles. At
short times_, particles oscillate in a region smaller t_ha}n theys 4 Snapshot of overlaps &t=0.60, at(a) early time, t=29.7,
overlap radius, and soQ/N=1. We observe a short, initial (Q/N)=84%; (b intermediate timet = 1878.0,(Q/N)=40%; and(c) late
relaxation ofQ(t), and a longer, secondary relaxation. time, t=88701.1,(Q/N)=16%. The particles in this and subsequent fig-

In FigS. 4a)—4(c) we show at short, intermediate, and ures are shown at 50% of their actual radius.
late timest, snapshots of overlapping particles; that is, par-
ticles that withint are either replaced by another particle or
have not moved. At early, few if any particles have moved, SpeciesA is larger and more massive, and consequently has
and thus the total number of overlaps is closéNtoAt late  a smaller diffusion coefficient, than speciBs Thus QA(t)
times, all particles have moved from their initial positions, and Q8(t) have slightly different time dependences, as
and only random overlaps remain. shown in Fig. 5. The long time motion of the andB par-

We also consider the individual contributio@é\(t) and ticles is identical; consequentlyQ(t)—and thus y,(t),
QB(t) to Q(t) from each of the two species of the liquid. g4(r,t), andS,(qg,t)—do not show a significant difference,
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FIG. 5. Time dependence 6#*(t) andQB(t) for T=0.60. TheA particles F @ t4max 3
are twice as massive and have an interaction radius 1.2 times largeB;than 3 '_ * _'
consequently, there is a slight difference in the short-time behaviQ(of 10 E 3
for the A andB particles. £ ]
2[ |
107¢
for the two particle types at times when there are significant - ]
correlations in the particles motion. 1 -
10°E , (0) 3
B. Calculation of y,(t) 0 1 2 3 4

1(T/T, -1)

We show in Fig. 6 the time and temperature dependence

of xa(t) Obtaine.d f’O’.“ Eq(10) by meas_uring the sample-to- FIG. 7. T dependence of the peak tim§®, compared withr, . (a) Fits
sample fluctuations iQ(t). As found in Refs. 59 and 60, sing MCT in the form of Eq(2). (b) Fits using VFT in the form of Eq(3).
x4(t) is zero at short time, is maximum at some intermediateError bars are shown only for, for clarity. Error bars ony,(t) are com-
time t'®, and decays at long time to zero in the thermody-parable in size, and are shown in later figures.

namic limit. At T=2.0, we see that for all y,(t) is negli-

gible, consistent with our expectation that particle motion is

essentially uncorrelated above the temperature at which cadP a displacement—displacement correlation funcfigit),

ing, two-step re|axation’ and other supercoo]ed ||qu|d behathiCh measures the correlations between displacements of
ior first appears(in this system, afl ~ 10) Thus in subse- particles as a function of time. In these works, SHD was
quent calculations in this paper, we ignore the datsPbserved to be most pronounced in tdaeelaxation regime.
corresponding ta>1.0. We find that the correlations measured ky(t) are also

Insofar asy,(t) measures the correlated motion betweenmost pronounced in the-relaxation regime.
pairs of particles, calculated equivalently from fluctuations in ~ We show theT dependence dfy'® together withr, in
the number of overlaps or from the four-point correlationFig. 7. The two characteristic times have similardepen-
function itself, its behavior demonstrates that correlations aréence, but;**appears to increase slightly more rapidly with
time dependent, with a maximum at a tin#®*. Similar decreasing’. We note that in Ref. 60 where a much smaller
behavior was reported for the same and other model liquid§ystem(500 particles was studiedt;® and 7, was reported
in Refs. 43, 60, and 77 for a generalized susceptibility related@ have(roughly) the sameT dependence, whereas here we
find a small difference betweet]®* and 7, at the lowest
temperatures.

Several functional forms are typically used to fit charac-
teristic times of supercooled liquids; some, such at the VFT
form of Eq. (3), are motivated on primarily empirical
grounds, while others, such as the power law of &. are
predicted by more complicated theoretical constructidns.
We consider both of these forms, and find that we can rea-

TABLE Il. Fitting parameters for the power law and exponential forpn

andty®.
Parameters Ty ™
% 1.86+0.03 2.03:0.01
tmer 7.58+0.54 6.31+0.54
FIG. 6. Time and temperature dependenceygft). As T decreases, the A 1.55+0.05 1.7x0.07
peak inyx,(t) monotonically increases and shifts to longer time. We define tver 3.59+0.61 2.66+0.56

the time at whichy,(t) is maximum ag®.
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FIG. 8. T-dependence of the maximum valuepf(t). Power law fit using 0 2 4 6 8
Eq. (2). We omit the error bar for the lowest temperatlire 0.59 because of r

the possible finite size effect, which would contribute additional error. ) o )
FIG. 9. Time dependence of the four-point, time-dependent density correla-

tion functiong,(r,t) at T=0.60. (a) Correlations growing in timeb) Cor-

. oL . relations decaying in time. The fractions indicate the average fraction of
sonably fit all three characteristic times in the range 0.6Qyerlapping particles present at tirheWe multiply g,(r,t) with 47r2 to

<T<0.94 using either a power law or VFT form. Note that better reveal its long decaying tail.

all fits deviate from power law as we approatlicr, where

the predictions of MCT are known to break down due to the ] o)

onset of so-called activated processes not accounted for Hy Calculation of - g,(r,f) and S;(q,0)

the theory. In our fits, we exclude the lowest temperafure The radial correlation functio,(r,t) calculated from

=0.59. Eq. (16) is plotted versus for severalt in Fig. 9, at our
We performed fitting of the data shown in Fig. 7 using second coldest temperatufe=0.60.

t(T) =tywcr(T/Tucr—1) "7 for the power law andt(T) The positions of the peaks oy(r,t) are identical to the

=tyrr eXp@A/(T/To—1)) for the exponential form. The values positions of the peaks ig(r) (not shown. We confirm that

for Tyer and Tyer are previously determined in Sec. Il. We g,(r,t)=g(r)—1 in the ballistic regime, wheréQ(t)/N)

show the fitting parameters in Table II. =1. In the long time limit,g,(r,t)=(Q../N)2(g(r)—1).
The T-dependence of the peak valyg(ty'™) is shown  Note that in the diffusive regimgS'(r,t) is the pair correla-

in Fig. 8. We observe a monotonic increase in the maximumion function of the random overlaps normalized by

value of x, in the relatively narrow temperature range we (Q(t)/N)? to yield g(r). ga(r,t) deviates fromg(r)—1

study, indicating the increased tendency toward correlatedshen (Q(t)/N) deviates from unity andy,(t) becomes

motion on cooling. nonzero’® The range ofg,(r,t) increases with increasing
Previous studies found that,(t;") (Refs. 59, 60and  until a timetT™. At tT'®, g,(r,tT) [indicated by the solid

related susceptibilitiés*® may be fit with a power law, curve in Figs. @) and 9b)] exhibits a long tail which de-

xa(t3®)<(T/Tycr— 1)~ 7. Analytical prediction of Ref. 59 creases slowly to zero with increasing distance. tFgreater
yields y=1/2. Within numerical accuracy, we may fit

xa(t7®) with the power law, but we do not have a reasonable

fit to the power law usingy=1/2 andT,cr as fitting param- 15 ' ' ' (a')—
eters. We can also fit the data reasonably with a VFT expres- — T
sion, although there is no theory suggestipgt) should = 10 N
follow this form, and thus within the limited accuracy and —o\? ]
temperature range of our simulations, we cannot determine »w 5 N
une(rqnuwocally the functional form of th& dependence of N
Xa(t3™). 15 o]

In Fig. 8 we show the fit of4(t]'®) using the expression . .
Xa(t3®)=C(T/Tz— 1)~ "1 and determined the paramete&ls S 10 .
=1.06+0.02, T;=0.49+0.01, and y,=1.73t0.02. We s .
performed the fitting for 0.58T<0.94. We note thaly; is »n 5 n
within the error bars of the value fdr, obtained fromr,,. 7

We do not imply that these two temperatures are the same, 0
but it is interesting that we obtain the best fit to a power law
of x4(t7®) for this value ofTy;. If we were to choosd;

=Twer, and fit y4(t7®) to a power law, that fit is not ac- FG: 10. Time dependence &'(g,t) at T=0.60. SY'(q,t) is shown at

ceptable, and we do not show it. The error bars are Confit_|mes identical to those shown fop(r,t) in Fig. 9. Note that the height of

. . . the first diffraction peak irSﬁ'(q,t) decreases monotonically as a function
dence intervals obtained as a result of fitting(T) t0 @  of time. This is because it depends on the number of overlapping particles,

power law and exponential form, respectively. which decreases monotonically in tinisee Fig. 3
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FIG. 12. Smallg behavior ofS}'(q,t7). Inset shows a log—log plot of

FIG. 11. Temperature dependencegefr,tj™) at six values off, indicated S5'(a,t§™) vs g. The lines in both figur‘es are fits to _the data using BQ).

in the legend. Inset shows the structure facﬁﬁkq,tg‘a’) for the same  The second lowest temperature 0.60 is difficult to fit because of the large

values ofT. uncertainty inS3'(0t) at times in the vicinity oftT® (see text for further
discussion

thanty®, the amplitude and range gf(r,t) decrease, and
g4(r,t) becomes zero wherny,(t) decays to zero(not
shown. The positions of the peaks gu(r,t) do not appear
to change with decreasing {As a check of our calculation,
we numerically integrategd'(r,t) [recall [drg$'(r,t)
=(VIN)%Q(t)?) from Egs.(10), (13), and(16)] to confirm
that the value ofy,(t) thus obtained is identical to that ob-
tained from Eq(10) for all T.}

The four-point structure factor of overlapping particles
S2'(q,t) calculated from Eq(21) is plotted versus in Fig.
10, at T=0.60. We find that at very early timeavhen

in notation. We find a good fit to the data in thgange from
g=0.34 tog=1.9, shown by the lines in Fig. 12, for eath

and time. This range of data corresponds to the range 3.3
<r<L, in contrast to the range & <7 used in Ref. 61.
The observed narrowing of the peak directly reveals the
growing range ofg,(r,t) with decreasingr.

The inset of Fig. 12 shows}'(q,t7®) plotted logarith-
mically versusg. The two dashed lines are the prediction of
Ref. 54 for fragile (14*°% and strong (%) glassformer.

We see that approachifg,ct, our data more closely aligns

B | - i . with the Garrahan—Chandler prediction for a strong glass-
(Q()/N)=1] S;(q,t)=S(q). We find that whileS(q)  former, even though the LJ mixture we study was shown

shows no change at smajl[see Fig. 1b)], Si(a.) devel-  previously? to be a fragile liquid of intermediate fragility
ops a peak at smaj| which grows[Fig. 10@)] and decays in  (jess fragile than the 80:20 Kob—Anderson sysidm
time_[Fig._l(Ib)], indi_cating the presence of I_ong-range cor- The time and temperature dependencé 4f) obtained
relathns in the locations of overlapping particles. from this fit is plotted for several state points in Fig. 13. We
Figure 11 shown?a)t(hﬁ dependence @,(r,t) atthe peak  goq that the qualitative behavior &f(t) is similar to that of
xa(t): &€4(t) has a maximum in time that coincides with the

characteristic time¢, " when the correlations at eadhare
most pronounced, as measuredyoyt). The insetof Fig. 11 | - iiiim in y4(t), and asT decreases, the amplitude and
time of this maximum increase. The highest valueg t)

shows the four-point structure factf'(q,t7), calculated
- . |
using Eq.(21). We find thatS;'(q,t;") develops a peak at o, T—0 60 exceed half the simulation box size. The fit at

smallq that grows with decreasing. This behavior is remi- 4,40 points depends strongly on the number of points used,

niscent of that observed i8(q) for liquids near a critical jhitia) parameter guesses, and other details and can yield
point, at which two-point density fluctuations becomes long-

ranged. Here, however, two-point density fluctuations remain

small and short rangéd. o —
D. Calculation of £&,(t) 8
Inspired by the Ornstein—Zernike theory OZTwhich
describes, e.g., density fluctuations near a liquid—gas transi- 6
tion, we use the following function: =
vy
D= o 2y "
HYT T+ (0g0)))

2
where S‘j'(O) and &4(t) are fitting parameters. The fitting

was performed using an interior-reflective Newton meffiod ’
in Matlab, and setting the termination tolerance of the func- 10
tion value to 0.1. Note that this correlation lengy{t)), and

all other correlation lengths to be calculated in the remlnde":IG. 13. Time and temperature dependencég f) obtained from the fits

. | .
of this paper, are calculated fro8}'(q,t) [Or Some appropri- o gq.(30). The data shown are smoothed over successive groups of three
ate portion thereof. We drop the subscrijatl " for simplicity points.
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t';r FIG. 15. (a) Self and distinct contributions 1Q(t) and(b) self, distinct, and
= r | self-distinct contributions toy,(t) at T=0.60. We see that>o(t) is nega-
4
— &t =082 (T/TMCT-1)'°-82 tive for most times, demonstrating the tendency for localized and replaced
1 00 - | particles to be anticorrelated. In this figure the valuegBi(t) andxZ°(t)
N 'O 1 : E— are enlarged by a factor of 5 for the purpose of clarity.
TIT,, 1
MCT

FIG. 14. () Log—log plot of 7, vs £,(t7®). (b) Log~log plot ofés(t1®) vs time Ta vers'usgﬁ(tma)ﬁ,.smcera spans nearly three orders of
T/Tyer— 1. Solid lines are power law fits using equations similar to®y. ~ Magnitude in time. Figure 14 demonstrates that, and
&™) are related to each other by a power law;
~ £,(tM)2:34 This result agrees with result results found for
large values(e.g., >40) depending on these details. Sincethe facilitated Ising model, in which the correlation length
these values greatly exceed the range over which we cagnd relaxation time were found to be related by a power law
meaningfully interpret the resulting correlation length, weover six decades in tim€.In Ref. 48, the authors compared
make no attempt to rigorously define the upper error boundghe “bond breakage” relaxation tim@vhich is likely propor-
at these points, but the data is well bounded from below. Thgonal to the relaxation time of the self-intermediate scatter-
fits at all other points and temperatures are well constrainedng function to the correlation length, and they found a
The length scal&,(t) characterizes the typical distance over power law with exponent 2, close to the value(2f34) ob-
which “overlapping” particles are spatially correlated. tained here.

In Ref. 61, we calculated a correlation lenggf™(t) In the model liquid under study,, is known to to follow
from g (r,t) by fitting directly the maxima ofj; (r,t) inthe  a power law, 70~ (T/Tyer—1) 18 (see Table N, for T
range 1.&£r<7 to an exponential envelope functidir) approachingT ycr from above. Combiningr,~ &,(tM®)?-34
=aexd —r/&™(t)] (the “envelope” methodl Because of and r,~(T/Tycr—1) % we obtain &,(t™®)~(T/Tycr
the narrowness of that range relative to the range considered1)~%7% As shown in Fig. 14), a power law fit of¢,(t™®)
in the present worké3™(t) greatly underestimates the extent versusT/Ty,cr—1 gives an exponent 0.820.02, which is
of the correlation between overlapping particles measured byithin numerical error of the value predicted.
£4(1). We see that the qualitative behavior&(t) is similar
to £4(t) obtained from the envelope fit in Ref. 61, but the £ gelf and distinct contributions to ~ Q(¢t), x4(1),
magnitude of the lengths obtained with the present methog,(r,t), and S,(g,t)
are substantially larger due to the fact that the present corre-

lation length captures the long-ranged correlations of over- 10 obtain a clearer physical picture of dynamical hetero-
lapping particles. geneity in our model supercooled liquid, we next examine

the self and distinct contributions @Q(t), xa(t), ga(r,t),
andS,(q,t). Recall that particles that are within a distarece
of their original position at timet—Ilocalized particles—

In a study of dynamical heterogeneity in the Ising spincontribute to the self part of these functions, while particles
glass®® the authors found that the spatial correlation ofthat move and are replaced by another particle contribute to
single-site relaxation times obtained from local spin autocorthe distinct part. We show the self and distinct part€gf)
relation functions, provide a length scale for dynamical hetfor T=0.60 in Fig. 1%a). For t<100, Qp(t)=0 and thus
erogeneity, and that length scale grows with decreasing ten®@(t) = Qg(t); in other words, over this time range, some
perature. The large statistical error §(t™®), combined particles have moved beyond a distarecef their original
with the short range of — Tyct over which the simulations position, but no particle has yet been replaced by another
are performed make determination of the functional formparticle.Qg(t) decays to zero at late times, because all par-
describing the dependence §f(t™®) on T—Tycr problem-  ticles eventually become “delocalizede., move a distance
atic. Instead, we examine the dependence of the relaxatiogreater thara). It is interesting to note that for eadh the

E. Relationship between &,(t7*) and 7,
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FIG. 16. (8 g5Xr.tf™) (solid line) at T=0.62. The dashed line shows
g4(r,t) for comparison.(b) Distinct (dotted ling, and self-distinct(dot-
dashed ling parts ofg,(r,t7®) at T=0.62. We separate the contributions
into two panels due to the large difference in amplitude.

fraction of particles that have not yet moved at a time equal
to the relaxation timer, is roughly 50%. At long times,
Qp(t)/N=pV,, corresponding to the fraction of random
overlaps in the system, as explained in Sec. Ill.

Reference 60 showed thgj(t) is dominated at all times
by x5Jt), and we observe this in Fig. @§. In fact, the
value of x3t7®) is slightly greater thary,(t7®). Thus the
growing fluctuations in the number of overlapping particles
is dominated by increasing fluctuations in the number of lo-
calized particles. In contrasj;(t), which measures the
fluctuations in the number of particles that are replaced in a
timet, is small at all times. These “replaced” particles may
include particles that “follow” other particles in a stringlike
fashion!® As was shown in Ref. 46, the average length OfFIG. 17. (a) Snapshot of localized particles &t} and T=0.60. The
these strings grows slowly with decreasifig’’ Finally,  fraction is (Qs/N)=0.244. (b) Snapshot of localized particles at
x5°(t), which measures the cross-correlation between local=0.037* and T=0.60.(Qs/N)=0.01.
ized and replaced particles, is negative at intermediate times,
demonstrating the tendency for localized and replaced par-
ticles to be anticorrelated.e., spatially separatédas shown tifies correlations of localized domains in glassforming lig-
for the most mobile and immobile particles at intermediateuids. We show a snapshot of localized particles at0.60
times in a similar model liquid in Ref. 44. andty®in Fig. 17.

In Fig. 16 we showgZJr t5®), g2°(r,t7®), and In Fig. 18, we show the correlation leng#f°(t) corre-
g3°(r 17 for T=0.60. As expected from the fact that sponding to replaced particles. We sh@®®(t) only for
X4(t)~)(§5(t), the largest contribution tagy,(r,t) is from  those values of where it can be reasonably estimated. At
localized particles as measured g§r,t). In contrast, a early times only a small fraction of particles are replaced by
much weaker correlatiofcompared ta(r) — 1] is exhibited  other particles, as can be seen in the inset of Fig. 18. This
by gEfD(r,t) [Fig. 16b)]; note difference in values oyraxis  results in a noisy signal iSED(r,t) at early times, and esti-
from those in Fig. 1@). The anticorrelation between local- mation of the correlation length becomes more difficult at
ized and replaced patrticles is evident in the negative valuethose times. We do observe tfﬁ',ﬁD(t) slightly increases at
attained byng(r,t) for nearly allr. intermediate times that are shorter thgit".

We next calculate the correlation length associated with  We show a snapshot of replaced particle$ &t0.60 and
each contribution ta,(r,t) using the OZT method. Since t]® in Fig. 19. We expect that some fraction of these par-
04(r,t), x4(t), andS,(q,t) are dominated by their self parts, ticles exist in group$“strings”), as was shown in Ref. 46, in
it is not surprising that we fing;t) (not shown to be very  which successive particles replace a neighboring particle. In
similar to &,(t), and with a slightly higher amplitudg3St)  a related study of a different glassforming ligéiftstringlike
itself is also a fundamentally important length since it quan-motion was found to be most prominent in the I@early«
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FIG. 18. Time and temperature dependencéBt. We show£7°(t) only FIG. 20. (a) Four-point correlation functions corresponding to localized

for thoset where it can be reasonably estimated. Inset shi@(t)/N) at particles,gSr,t), and delocalized particleg?"(r t), at the peak time for

the times when we can reasonably estimgt8(t). T=0.62. At thist, there are, on average, 41% localized and 59% delocal-
ized particles. We multiplg3r,t) andg}"(r,t) with 4712 to better reveal
their tails. Inset showsg' 5Yq,t7®) andS3' P1(q,tf™). There is no signifi-

relaxation regime, consistent with the present findings. Theant difference between corresponding correlation lengths.

connection between replaced particles and strings will be

discussed elsewhere. bL S — .
Finally, we do not show:$P(t) because the signal from well asébh(t) and£5t), are also identical. Mathematically,

S5°(q,t) is inadequate due to small signal to noise ratio forhowever, they need not be identical. Instead, one would also
smallq values ofoD(q ). intuitively expect that delocalized particles, since they move,

should be spatially distinct from localized particles. To ex-
plore these possibilities, we first compagg“(r,t) and
g;r.t) at the peak time in Fig. 20. The functions are dif-
ferent up to the fourth nearest neighbor distance, and show a

We next consider the four-point correlation functions marked difference in the first and second neighbor peaks.
corresponding to localized particl¢described by the self This means that the short-range spatial correlations of local-
term in Q(t)] and to delocalized particles, defined as theized particles is different from that of delocalized particles.
subset of non-self-overlapping particles. As we discussed iThe split second peak is absenthL(r,t), but pronounced
Sec. |||,)(EL of delocalized particles is mathematically iden- jn gis(r,t)‘ Since a split second peak is often associated
tical to the susceptibilityy;° for localized particles, which with close-packed amorphous structure, this supports the no-
we verified. Since these susceptibilities are the volume intetion that localized particles are “better packed” than delocal-
grals ofg,(r,t), one might expecgy"(r,t) andg3qr,t), as ized particles as observed in Refs. 16 and 44. The long-range
structure of localized and delocalized particles appears to be
the same, i.e., a nearly isotropic liquid.

We next consider the correlation lengtl#&§Yt) and

PL(t), calculated using the OZT method of fitting to

$0'59q,t) and S9'PH(q,t) at smallq values, respectively.

G. Spatial correlations of localized
and delocalized particles

6 — T

At S5t T=0.64
a0, M) T=0.64
4l £,55(t) T=0.69
<< &, (t) T=0.69

0 NAENETERET | vl Lol Co ol P
! 10° t 10° ¢

FIG. 19. Snapshot of replaced particlestgf*. Some fraction of these FIG. 21. Time dependence of dynamical correlation lengthsand &, at
particles are participating in “strings” fof =0.60, (Qp /N)=0.114. T=0.64 andT=0.69.
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1 S A2 T T temporarily localized and delocalized particles, perhaps simi-
0.8 —_(a) lar to that proposed by Stillinger and Hodgedowe know
L from previous simulation studidsee Ref. 4fthat the most
,Z\ 0.6~ mobile particles in any time windova subset of the set of
S o4l delocalized particlasexhibit quasi-one-dimensional motion
- and form highly ramified clusters, and thus the highly mobile
0.2 B 8 regions of our fluid are not compact. A previous sttfdyf
vk sl el o haee- the most immobile particles on the time scale of the Jafte-
-(b) o 2=0.1 1 early- relaxation(a subset of the set of localized partigles
15~ w—ama=02 7 showed these particles to be much more compact than their
= Al :gzg'gg i mobile counterparts, consistent with the relatively compact
=< 10 | «—<a=0.31 ] structure of localized particles seen in the present study.
5l Yva=04 _ Recently, van Zon and Schoefi#idderived multipoint
—> a=0.5 - . . L .
and multitime correlation functions within mode coupling
0 aubdbet i 1800 3 , ‘=f i theory, and compared their results with those obtained with
10 10" 10 10" 100 10 10 standard mode coupling theories in which an assumption of
t Gaussian density fluctuations is mad&hey demonstrated

FIG. 22. () Q(t) as a function of at T=0.59 fora=0.1, a=0.2, 0.29, that non-Gaussian distribution of force fluctuation gives an
0.3,0.31, 0.4, and 0.8b) x,(t) as a function ofv. The position of the peak important contributions to higher-order correlation functions.
in x4(t) for a=0.29,a=0.30, anda=0.31 is the same. The amplitude in In a subsequent pap&rthey applied their mode coupling
xa4(t) is strongest fom=0.3. theory of higher order correlation functions to a hard sphere
system. They showed that their results are in excellent agree-
ment with the simulation, demonstrating the importance of
considering higher-order correlation functions in examining
he microscopic origins of complex relaxation behavior and
dynamical heterogeneities.

Finally, we note that all quantities presented here can be
0f ga(r.1). measured in dense colloidal suspensions using confocal mi-

croscopy studie®33

We find that £7(t) and &;t) have the same time and
T-dependence, as can be seen in Fig. 21, which is not su
prising sinceyx;-(t) and x3Jt) must be identical and both
x4(t) and &,(t) are similarly defined in terms of an integral

V. DISCUSSION

In this paper, we calculated a four-point, time-dependenck NOWLEDGMENTS
density correlation functiog,(r,t) and corresponding time _ _
dependent structure fact®,(q,t), and demonstrated that ~ We thank the National Partnership for Advanced Com-
those functions are sensitive to correlated motion and dyPuting InfrastructuréNPACI) program and the University of

namical heterogeneity in a model glassforming liquid. AsMichigan Center for Advanced Computing for generous
derived in previous work¥~617%his correlation function is @mounts of CPU time on the University of Michigan AMD

related to an order parameta(t) Corresponding to the Athlon cluster. We thank J. P. Garrahan and D. Chandler for

number of “overlapping” particles in a time window, interesting discussions that led to a comparison of our data
where the term “Over|ap" is used to denote a partic'e Wh|chW|th their theoretical pl’ediCtion in F|g 12. We thank J. W.
was either localized or replaced in a tie Palko, Y. Gebremichael, and M. Vogel for useful discussions.

We calculated the correlation lenggh(t), characteriz- This vyork was performed in partial fulfillment of N.L.’s dis-
ing the range ofgS'(r,t), and showed that it depends on Sertation requirements.
time, and attains its maximum value in therelaxation re-
gimg. We_also showed that this maximum grows to nineAPPENDIX: THE CHOICE OF PARAMETER a
particles diameters, surpass a half of the simulation box size,
close toTycr. This length scale characterizes the typical It is natural to ask how the quantities calculated in this
size of dynamically homogeneous domains. While we canngpaper are affected by the choice of the parametend what
reliably predict the behavior of,(t;®) at lowerT, we find  is an optimal choice 0&?
no tendency for slowing down of its growth. These findings  In this paper, we are interested in quantifying correlated
are consistent with calculations of characteristic length scalegarticle motion. If we choosa too small, then the short-
from the displacement—displacement correlation functfon, time, vibrational motion of the particles, which is known to
cluster siz€® and other measures of correlated particle mo-be only weakly correlated, will be included in our analysis.
tion and dynamical heterogeneff®>! One estimate of the amplitude of vibrational motion is the
We showed thatt,(t) is dominated by localized par- plateau value of the mean square displacemieiﬁ):p,ateau
ticles, but is essentially the same as that obtained by considdence we wish to chose larger than(rz),ﬁﬁeaLr For the
ering the delocalized particléthe set of particles that in any state points simulated, we fir(dz);{gteag—vo.ZS with a rela-
time windowt move beyond a distana@ due to the math- tively weak T-dependencéFig. 2(@)]. On the other hand, if
ematical identity betweely, for localized and delocalized we choose a large value af then one particle can unphysi-
particles. This suggests a picture of fluctuating domains otally “overlap” with two or more particles at a later time. In
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this case we count too many overlaps, @) becomes

Lacevic et al.
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greater than the number of particles in the system. This is theS. F. Swallen, P. A. Bonvallet, R. J. McMahon, and M. D. Ediger, Phys.

case, e.g., foa=0.8.

Figure 22 show€Q(t) and x,(t) at the second lowest
temperatureT =0.60 for several values ad. Since Q(t)
=lim,_ o Q(t), the result fora=0.1 is similar to what we
expect for point particles, namel@(t)/N quickly relaxes to
NV,/V, whereV,=4/37a, on a time scale much smaller
than that of thex-relaxation time?® and y,(t) is small. For
intermediate values &, we see thag,(t) gives the greatest
amplitude fora=0.3, as originally suggested in Ref. 59.

Thus we usea=0.3 for our analysis throughout this paper.

We do not expect choosing slightly larger or slightly
smaller would qualitatively alter any of our conclusions.
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