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Abstract. – Incipient micellization in a model self-associating telechelic polymer solution
results in a network with a transient elastic response that decays by a two-step relaxation:
the first is due to a heterogeneous jump-diffusion process involving entrapment of end-groups
within well-defined clusters and this is followed by rapid diffusion to neighboring clusters and
a decay (terminal relaxation) due to cluster disintegration. The viscoelastic response of the
solution manifests characteristics of both a glass transition and an entangled polymer network.

The formation of clusters that associate and dissociate in dynamic equilibrium is a ubiq-
uitous natural phenomenon comparable to phase separation and liquid condensation in its
scope and ramifications. Dynamical clustering occurs in micelle formation, equilibrium poly-
merization, nanoparticle solutions, thermally reversible gelation and a variety of biological
self-organization processes [1]. While there has been much effort to describe thermodynamic
aspects of particle clustering transitions, there is limited understanding of the changes in dy-
namical solution properties that accompany these transitions and how these changes relate
to the molecular motions of associating particle systems. Dudowicz et al. has emphasized the
common nature of the thermodynamic properties of these transitions [1], and some common-
ality in the dynamical properties might be expected.

Molecular simulations have made important contributions to our understanding of poly-
mer self-association. Molecular dynamics (MD) and Monte Carlo (MC) simulation studies
of telechelic (chains with attractive end-groups) polymer solutions [2–4], as well as micelle-
forming monochelic surfactant solutions (e.g., [5, 6]), have been reported in the literature.
These studies focused on the extent of micellization and factors that influence micelle size
and shape distribution. Groot and Agterof [7] used a MC off-lattice simulation model to
study viscoelastic properties of associative polymer networks and found interesting parallels
between their idealized model and entangled polymer solutions. More recently, Kumar and
Douglas [8] utilized lattice MC simulations to study the dynamic properties of self-associating
c© EDP Sciences
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Fig. 1 – The probability of finding an end-group in a cluster of size m for the telechelic polymer
solution over a wide range of temperatures. The inset plot shows the temperature dependence of the
total energy and isochoric heat capacity in the system as a function of temperature. Uncertainties
are smaller than the size of the symbols.

polymers with regularly spaced stickers. They observed the onset of thermoreversible gela-
tion, corresponding to a sticker clustering transition and noted a similarity of the dynamics of
these systems with incipient glass formation in molecular liquids. In spite of these important
studies, molecular simulations have yet to provide a clear mechanistic understanding of the
dramatic changes in dynamic and viscoelastic response of self-associating polymers that occur
as a consequence of dynamic clustering for even simple model systems. Since there are always
questions about the faithfulness of MC simulation to the dynamics of real fluids, we further
investigate this type of problem through MD simulation of a minimal model of an associating
(micelle forming) liquid to determine if dynamical features similar to those found previously
are recovered and to come to a more fundamental molecular understanding of the dramatic
changes in dynamic and viscoelastic response of self-associating polymers that occur as a con-
sequence of dynamic clustering. Specifically, we performed MD simulations on an ensemble of
bead-necklace telechelic polymers consisting of eight beads. All beads experienced excluded-
volume interactions modeled by a shifted and truncated Lennard-Jones potential [9] with an
(unshifted) Lennard-Jones well depth (ε) of 1/9 and the bead diameter σ defines the unit
of length. An additional attractive end-group/end-group interaction of unit magnitude [2–4]
(truncated at 2.5) was employed. MD simulations were performed on an ensemble of 1000
chains at ρ = 0.2 [10] in an NVT ensemble using the simulation package Lucretius [11]. All
properties reported below are expressed in terms of the energy and length scales, ε and σ, re-
spectively [12]. Uncertainties were estimated using 68% confidence standard error analysis [13]
for several statistically independent subsets of the trajectories.

First, we briefly characterize equilibrium aspects of micelle formation in this model
telechelic solution. Figure 1 shows the probability P (m) of finding an end-group in a cluster of
size m, while the inset plot shows the total energy (E) and heat capacity (Cv) of the solution as
a function of temperature (T ). At all T investigated, we found extensive clustering as well as
geometric percolation as a consequence of polymer chains spanning the space between clusters.
(See [8] for similar phenomena in the case of thermally reversible gelation.) For T > 0.221,
P (m) decreases monotonically with increasing cluster size and the clusters are relatively small
and spatially diffuse. Near T = 0.221 we observe the emergence of a shoulder in P (m), which
we take as the onset of micelle formation (Tx). At lower T this shoulder transforms into a
pronounced peak. Compact clusters that increase in size (number of end-groups), but not in
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Fig. 2 – End-group 〈R2〉 as a function of time at various temperatures. Horizontal lines indicate the
mean cluster size (which is roughly independent of T ) determined from the mean end-group cluster
Rg (dotted line) and end-group displacement distribution (solid line). The dashed horizontal line
indicates the length scale associated with end-group hops. Vertical lines correspond to the maximum
in non-Gaussianity associated with the end-group caging time. Inset plot shows the distribution
of end-groups displacements over time intervals corresponding to 〈R2〉 ≈ 12 (maximum in non-
Gaussianity parameter) for various T (the temperature-symbol correspondence is the same as on
the main plot) as well as the Gaussian distribution with the same 〈R2〉 (solid line). Estimated
uncertainties are smaller than the size of the symbols.

spatial extent (defined as radius of gyration of the cluster) with decreasing temperature are
manifested when T < Tx. After the onset of micellization we do not observe additional qual-
itative changes in P (m) with further reduction in temperature. The suggested micellization
mechanism is further supported by strong changes in E for T < Tx and a maximum in Cv.
The T at which Cv has a peak (T ≈ 0.18) is identified with thermodynamic micelle transition
temperature Tm so that Tx/Tm ≈ 1.2.

Next, we consider the changes in dynamical and viscoelastic properties that accompany
micellization. In fig. 2 we show the mean-square displacement (〈R2〉) of end-groups. For
T < 0.221, the 〈R2〉 exhibits an inflection point that for lower temperatures evolves into
three clearly identifiable displacement regimes: ballistic motion at short times, displacement
localization (“caging”) at intermediate times, and diffusive transport at long times. At higher
T caging effects are not observed in the end-group motion. The onset of end-group caging
correlates well with the onset of micellization discussed above. Specifically, the formation
of well-defined clusters at lower T results in caging of the end-groups within the dimensions
(Rg) of the cluster, followed by “hopping” of the end-group to another cluster at longer times.
Since the hopping process is rapid compared to the mean residence time of an end-group
within a cluster (caging time), end-group dynamics on the caging time scale are relatively
heterogeneous. On shorter and longer time scales the end-group dynamics are more homo-
geneous: either all end-groups are restricted to motion within the cluster (caged motion,
short times) or all end-groups have hopped many times (diffusive motion, long times). This
dynamic heterogeneity is reflected in a strongly non-Gaussian character of the end-group dis-
placement distribution, quantified by the second cumulant of the distribution, at the time
scale of caging. The maximum in the non-Gaussianity establishes the caging time scale for
each temperature [14], which is shown in fig. 2. For T < Tx, the caging time scale corresponds
to a 〈R2〉 of around 10. On this scale the distribution of end-group displacements is highly
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Fig. 3 – a) End-to-end vector V (t) and cluster lifetime C(t) relaxation times, caging time, processes
(D) and (C) and viscosity for the telechelic solutions as a function of inverse temperature; b) Vogel-
Fulcher (solid line) and Arrhenius (dashed line) fits of τend and η as a function of T . The inset plot
shows the product of self-diffusion coefficient and viscosity vs. 1/T . Estimated uncertainties are either
smaller than the symbol size or shown explicitly using error bars.

Fig. 4 – a) The mechanical, end-to-end and cluster lifetime dynamic susceptibilities as a function
of angular frequency for the telechelic solution and the solution without end-group attraction for
T = 0.129. b) The shear storage modulus as a function of angular frequency for the telechelic
solution and the solution without end-group attraction at various T .

non-Gaussian with clear peaks at distances corresponding to the Rg of the cluster (Rg ≈ 2)
and the mean distance between clusters (≈ 7) as shown in fig. 2 (inset). These length scales
correspond to the caging length scale and the onset of diffusive motion, as shown in fig. 2.
For T > Tx, the displacement distribution is featureless and nearly Gaussian on this length
scale. This caging phenomenon is similar to recent lattice MC simulations of thermoreversible
gelation in associating polymer solutions, having many sticker groups along the chain [8]. Ku-
mar and Douglas [8] have emphasized the similarity of this caging phenomenon in the particle
displacements to simulations of the dynamics of incipient glass-formation [14]. The present
paper goes beyond this previous study by systematically examining corresponding changes in
viscoelastic properties of a model associating fluid.

We also investigated the chain end-to-end vector autocorrelation function V (t) and cluster
lifetime autocorrelation function C(t). The latter is given as

C(t) =

∑
i�=j Hij(t) · Hij(0)∑
i�=j Hij(0) · Hij(0)

. (1)

Here, the summation is performed over every pair (i, j) of end-groups. The function Hij(t) = 1
if end-groups i and j belong to the same cluster at time t, otherwise Hij(t) = 0. The
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autocorrelation times for these functions, given as their respective time integrals, are shown
in fig. 3a). At the onset of micellization there is a large change in the temperature dependence
of the autocorrelation times with much stronger dependence at lower T . This is consistent with
the observed transition from spatial diffuse clusters containing relatively few end-groups at T >
Tx to more compact clusters containing many end-groups (micelles) at lower T (i.e., T < Tm).

In addition to microscopic structure and dynamics we investigated macroscopic viscoelastic
properties of the self-associating system. We calculated the zero-shear rate viscosity (η) for
the telechelic solutions using the Green-Kubo relationship [12] by integrating the stress tensor
(σxy) autocorrelation function over time domain from zero to infinity. The viscosity for the self-
associating system as well as the analogous system without end-group attraction [15] is shown
in fig. 3a). As with cluster lifetimes and end-to-end vector decorrelation, the temperature
dependence of the viscosity changes significantly at the onset of micellization, while for T > Tx

the viscosity is little influenced by the presence of attractive end-groups.
We also calculated the complex frequency (ω) dependent shear modulus (G∗(ω)) given

as [16]

G∗(ω) = G′(ω) + iG′′(ω) = iω

∫ ∞

0

e−iωtG(t) dt = iω
V

kBT

∫ ∞

0

e−iωt〈σxy(t)σxy(0)〉dt, (2)

where 〈. . .〉 denotes an equilibrium average of the stress-tensor autocorrelation function over
phase space including circular permutations, V is the volume, and kB is Boltzmann’s con-
stant. All values of the G∗(ω) have been normalized by the value of G(∞) for their respective
temperature. The frequency-dependent mechanical susceptibility or loss modulus G′′(ω) and
storage modulus G′(ω) are shown in fig. 4a) and b), respectively. Beginning at high frequency,
we observe a nearly temperature-independent process (A). This process also occurs above Tx

and in systems without end-group attraction and can be associated with vibrational and li-
brational motions of the chains. Process (B) is associated with translational motion of the
end-groups within their clusters: the time scale of this process corresponds to the onset of
caging (compare with fig. 2) and is only seen below Tx. Process (C), manifested only below
Tx, is associated with the onset of end-groups hopping from their clusters, i.e., the caging
time, as can be seen by comparing the time scale of this process with end-group 〈R2〉 in
fig. 2. Finally, process (D) corresponds to the onset of flow and is associated with polymer
end-to-end relaxation and the break-up of end-group clusters. These latter correspondences
are clearly seen when the dynamic susceptibility for the V (t) and C(t) (see eq. (1)), given as

χ(ω) = ω Re
[ ∫ ∞

0

exp[−iωt]Ψ(t) dt

]
, (3)

where Ψ(t) = V (t) or C(t), are compared with the mechanical susceptibility in fig. 4a). A
lower-frequency shoulder, corresponding with the mechanical process (C) (i.e., the onset of
end-group hops), is also manifested in the dynamic susceptibility for the V (t) and C(t). At
T > Tx, the features associated with end-group motion and cluster dynamics disappear in
the viscoelastic response of the system, which then looks very much like the response of the
analogous system without end-group attraction. Furthermore, comparison of the dynamic-
mechanical response of the system below Tx with and without end-group attraction (see fig. 4)
reveals that the transient elastic response of the solution is due entirely to end-group interac-
tions, consistent with the assignments of mechanisms to the relaxation processes given above.

At temperatures below Tx where processes (C) and (D) are resolved, we have determined
the relaxation time associated with these processes and plotted them in fig. 3a). As expected,
the relaxation time for process (D) and its temperature dependence closely follows that of the
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end-to-end vector relaxation and cluster lifetime. The higher-frequency process (C), associated
with the onset of end-group hops, exhibits weaker temperature dependence following that of
the caging time. The processes appear to merge around Tx. This behavior resembles the
bifurcation of the primary low-frequency α process and secondary high-frequency sub-glass
β process in glass-forming liquids and polymers [17]. For these materials it is commonly
held that the β process reflects the fundamental underlying motion (e.g., conformational
transitions in polymers) whose cooperative manifestation leads to the primary relaxation.
The parallel with the dynamic-mechanical relaxation observed in our self-associating solution
is striking: below Tx we observe a relatively high-frequency process (C) reflecting the onset
of fundamental motions (“hopping” of end-groups between clusters) that ultimately leads
in a cooperative fashion to the destruction of clusters associated with the lower-frequency
process (D). The higher apparent activation energy for the cooperative process results in a
merging of their relaxation times at higher T . In fig. 3b) we show fits of the end-to-end vector
relaxation time and η by the Vogel-Fulcher (VF) equation that is commonly used to describe
the temperature dependence of the primary relaxation process in the glass transition region.
The VF fit predicts a much smoother transition between low- and high-temperature regimes
and especially deviate from the simulation data for T ≥ Tx. The relatively sharp transition (in
comparison with the VF prediction) between high- and low-T regimes for relaxation properties
observed in our self-assembling polymer system may be the result of the reorganization of the
diffuse clusters into more compact and longer-lived micelles below Tx. This kind of structural
changes presumably does not occur in conventional glasses [18], so that it is not surprising
that VF fits for our system are less than satisfactory. At any rate, it appears that our
system more closely resembles a “strong” glass-forming material [19] with an Arrhenius-like
temperature dependence of relaxation times. The inset of fig. 3b) shows the product of self-
diffusion coefficients (D) and η as a function of 1/T which sharply increases upon cooling
below Tx, a feature that is often observed in glass-forming liquids and attributed to fluid
“dynamic heterogeneity” [20]. An onset of “dynamic heterogeneity” in glass-forming liquids
for a crossover temperature about 1.2 times the calorimetric glass transition is another feature
that seems to be similar to our simulations [21].

Finally, we note that the elastic plateau in the dynamic-mechanical response and the
Arrhenius-like temperature dependence of the longest relaxation times for our system at
T < Tx resembles the behavior of entangled polymer solutions, an effect noted before by
Groot and Agterof [7]. Furthermore, experiments on telechelic triblock copolymer solutions
indicate a similar clustering transition to that observed in our simulations and relaxation
processes and dynamic properties similar to both glass and network formation [22]. In our
system at T < Tx the temporal crosslinks responsible for the transient elastic response of the
network are the end-group clusters, whose destruction results in the transition from elastic
to liquid-like response. This phenomenological picture is further supported by the correspon-
dence of the plateau shear modulus obtained from simulations with that yielded from simple
network entropy elasticity analysis [23], where each telechelic polymer is assumed to be a
stress-bearing chain segment. Similarities of dynamic features found for telechelic solutions
with those observed in glass-forming liquids and entangled polymer solutions will be discussed
in more detail in our forthcoming paper.

We have demonstrated that the onset of micellization results in a dramatic change in the
temperature dependence of the important relaxation times in our model self-associating poly-
mer system. Furthermore, micellization results in elastic dynamic-mechanical response over
increasingly long time scales with decreasing temperature whose relaxation is dominated by
the hopping of end-groups between clusters. At lower temperatures than those simulated here,
the longest relaxation times of the system, associated with the destruction of the end-group
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clusters, will become macroscopic and the system will undergo thermoreversible gelation, i.e.,
it will exhibit elastic (solid-like) behavior on macroscopic time scales. The complex viscoelas-
tic response of the material is due to the formation of a network of well-defined end-group
clusters connected by the telechelic chains which influences dynamic and viscoelastic response
only below the onset of micellization Tx, as evidenced by a) the presence of a geometrically
percolating network of telechelic chains, which occurs at all temperatures investigated; b) the
correspondence of the longest dynamic-mechanical relaxation time with the destruction of the
clusters, as shown in figs. 3 and 4, c) the complete lack of elastic behavior without attractive
end-groups, illustrated in fig. 4, and d) the close correspondence (within a factor of two) of
the plateau shear modulus with that obtained from simple network entropy elasticity theory.
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