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Abstract

In the injection/compression liquid composite molding process (I/C-LCM), a liquid polymer resin is injected into a partially open mold,
which contains a preform of reinforcing fibers. After some or all of the resin has been injected, the mold is closed, compressing the preform
and causing additional resin flow. This paper addresses compression of the preform, with particular emphasis on modeling three-dimensional
mold geometries and multi-layer preforms in which the layers have different mechanical responses. First, a new constitutive relation is
developed to model the mechanical response of fiber mats during compression. We introduce a new form of nonlinear elasticity for
transversely isotropic materials. A special case of this form is chosen that includes the compressive stress generated by changes in mat
thickness, but suppresses all other responses. This avoids the need to model slip of the preform along the mold surface. Second, a finite
element method, based on the principle of virtual displacement, is developed to solve for the deformation of the preform at any stage of mold
closing. The formulation includes both geometric and material nonlinearities, and uses a full Newton–Raphson iteration in the solution. An
open gap above the preform can be incorporated by treating the gap as a distinct material layer with a very small stiffness. Examples show
that this approach successfully predicts compression in dry preforms for three-dimensional I/C-LCM molds.q 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Injection/compression liquid composite molding (I/C-
LCM) is a process for manufacturing polymer–matrix
composites. As in other liquid composite molding
processes, a preform of reinforcing fibers is placed in the
mold, and a liquid resin is injected into the mold to saturate
the preform. Curing the liquid resin provides a stiff, solid
part. In I/C-LCM the mold is partially open during the initial
stages of injection; this permits easier resin flow, due to
higher porosity and permeability in the preform. After all
of the resin has been injected, the mold is closed to its final
position. This completes mold filling by compressing the
preform and inducing additional resin flow. Compared to

other LCM processes, I/C-LCM offers lower injection pres-
sures and faster mold filling.

Numerical simulation has already proved to be an impor-
tant tool for designing molds and selecting processing
conditions for liquid composite molding. Resin flow
through the porous fiber preform is modeled using the
theory of flow through porous media, and there are well-
established numerical methods for tracking the moving flow
front and solving the flow equations in complex geometries
[1–8].

In addition to the fluid mechanics of resin flow, a model
of I/C-LCM must treat the solid mechanics of fiber mat
compression. Several experiments have been done to char-
acterize the compressibility of fiber mats, measuring their
normal stress as a function of normal strain for a flat sample
[9–12]. And some simulations of resin flow and preform
deformation have been developed for injection/compression
processes [13,14], again for flat parts with uniform
thickness. However, practical problems can be quite
complex, involving three-dimensinoal (3D) geometries as
well as multiple reinforcement layers with different
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compressibilities and permeabilities. Some processes start
with an open gap between the preform and the mold, and
this gap gradually closes during the process. The goal of this
work is to develop a simulation of I/C-LCM that can treat all
of these factors.

In a previous paper [15] we showed how to generate a 3D,
layered finite element mesh for the mold cavity, starting
from the type of shell mesh that is typically used to represent
part geometry in mold filling simulations. We also intro-
duced the concept of separate finite element meshes for
modeling preform deformation and resin flow. Themechan-
ical mesh, used to calculate preform deformation, has one
layer of elements for each reinforcement layer in the
preform. At any stage of deformation this is automatically
subdivided into multiple sub-layers to create theflow mesh,
which is used to solve for the resin flow. We also developed
the geometry and data structure for compressing the mesh as
the mold closes. Each node in the 3D mesh sits on aspine,
which is a vector connecting a node on the lower mold
surface to a matching node on the upper mold surface. As
the mold closes, the internal nodes slide up and down on
their spines to adjust the shape of the mesh. This reduces the
number of displacement degrees of freedom per node from
three, as in a conventional solid mechanics problem, to a
single parameter that describes the position of the node
along the spine.

Building on that geometric treatment, this paper
addresses the solid mechanics of preform deformation. A
major assumption is that the deformation of the preform is
not affected by the resin flow. That is, the drag force on the
fibers from resin flow is too small to cause substantial defor-
mation of the fiber preform. This assumption decouples the
flow and preform deformation calculations, and allows us to
treat the preform deformation as a purely mechanical
problem.

In the first part of the paper we develop a general consti-
tutive equation for modeling preform compression in the
presence of large deformations and large rotations. Based
on the theory of anisotropic finite-strain elasticity, this equa-
tion provides a rigorous foundation for treating preform
deformation in complex mold geometries. The parameters
for any specific material can be developed from flat-sample
compression data, so no new experiments are required to
characterize a preform material.

In the second part of the paper, a finite element solution,
based on the theory of virtual displacement, is developed to
solve preform deformation problems. The formulation
includes both geometric and material nonlinearity, and the
nonlinear equations are solved using a full Newton–Raph-
son scheme. The use of spines in this formulation, and the
attendant reduction in nodal degrees of freedom, provides
considerable savings in computation. Open gaps are incor-
porated naturally, by treating the gap as a separate layer of
preform “material” which is much softer than the other
layers, but stiffens rapidly as its thickness approaches
zero. We present several examples to demonstrate the

accuracy and capabilities of the method. In a subsequent
paper [16] we combine this code with a finite element simu-
lation of resin flow to provide a complete treatment of I/C-
LCM.

2. A constitutive equation for fiber mat compression

2.1. Notation and kinematics

We begin by reviewing some basic aspects of large-strain
kinematics. The preform material begins from areference
configuration, say at time equal to zero, while at timet it has
some other deformed configuration. We will use a left
superscript to indicate the time at which a quantity is eval-
uated. Thus, the Cartesian coordinates of any material point
in the reference configuration are0x, while in the deformed
configuration the same material point has coordinatestx.
Now we assume that there is a smooth, invertible mapping
between the reference and deformed states,tx � tx�0x� or
0x � 0x�tx�: The derivatives of these functions are the defor-
mation gradient tensorsF andF21, whose components are

Fij � 2txi

20xj
and F21

ij � 20xi

2txj
�1�

These tensors describe the shape change and solid-body
rotation in the vicinity of any material point.

Using the deformation gradients, one can define finite
deformation tensors that describe the local shape change,
but are independent of the solid-body rotation. There are
four such tensors,

C � FT·F �2�

C21 � F21·F2T �3�

B � F·FT �4�

B21 � F2T·F21 �5�
where F2T stands for (F21)T. We will call these the
Cauchy–Green, Piola, Finger and Al-mansi tensors, respec-
tively. Each of these tensors has three scalar invariants. The
invariants of the Piola tensor are

I1 � tr�C21� �6�

I2 � 1
2 ��trC21�2 2 tr�C21�2� �7�

I3 � det�C21� �8�
The corresponding invariants ofC will be denoted byJ1,

J2 andJ3. We will also use the Green–Lagrange strain tensor
e, which is defined as

e � 1
2 �C 2 d� �9�

whered is the unit tensor.
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If an infinitesimal material vector connects two
neighboring material points, then that vectortp in the
deformed state in related to the same vector in the reference
state0p by

tp � F·0p �10�
Similarly, an infinitesimal material volume dV changes size
according to

dtV � det�F�d0V �11�
An infinitesimal material area is described by two quanti-
ties, a magnitude dS and a unit normal vectorn. These
transform according to

dtS� det�F�
��������������
0n·C21·0n

p
d0S �12�

tn � F2T·0n�������������
0n·C21·0n
p �13�

The Cauchy stress, or true stress, will be denoted byT. We
will also make use of the first and second Piola–Kirchoff
stress tensors,P andS, respectively, which are related toT
by

T � 1
det�F� F·P �14�

T � 1
det�F� F·S·FT �15�

2.2. Classical nonlinear elasticity

Returning to fiber preforms, we are interested in the
deformation when woven fabrics or random-fiber mats are
compressed in their thickness direction. These materials
have a reasonably well-defined thickness in the unstressed
state, and we take this as the reference configuration. Some
typical stress–strain curves, when these materials are
compressed between two flat plates, appear in Fig. 3. The
thickness changes are comparable to the initial thickness, so
this is clearly a large-strain problem. Also, there is no
noticeable expansion in the lateral directions, so the fiber
mats are being compressed volumetrically. Finally the
stress–strain curves are highly nonlinear, so a nonlinear
type of constitutive equation is required.

Here we choose to develop a constitutive framework
using the theory of nonlinear elasticity. We note that the
compressive response of fiber mats may not be purely elas-
tic. In particular, a mat that is compressed and then released
may exhibit some hysteresis. However, with few exceptions
[17], there is little data that explores this inelastic response.
More importantly, for I/C-LCM the compressive loading is
always monotonic, so we do not need to describe the load-
ing/unloading behavior, and a nonlinear elastic model is
adequate.

Fiber preforms are also highly anisotropic, with very
different structure and mechanical response in the in-plane

and thickness direction. Since our problem is dominated by
thickness-direction compression, we choose to develop a
model that is transversely isotropic, with the plane of the
sheet being the plane of material symmetry. This avoids a
great deal of mathematical complexity by ignoring the in-
plane anisotropy of woven fabrics.

The classical theory of large-strain elasticity is well docu-
mented in many books [18–20]. However, the treatment of
anisotropic, compressible materials is less well known. Here
we repeat a few of the key steps of the classical theory as
presented by Lurie [20], to lay the groundwork for our own
development. Some formulae used in this development are
given in Appendix A.

A material is elastic (or hyperelastic) if it stores, as inter-
nal energy, all the work done on it. Such a the material must
possess a scalarstrain energy function W(F), giving the
energy per unit unstrained volume stored at the deformation
stateF. Following Lurie (Chapter 4, Section 1), the change
in stored energy for a changedF in deformation is

dW � P : dF �16�

Comparing Eq. (16) to the definition of a derivative of a
scalar with respect to a tensor, Eq. (A1), we find that the
stress in an elastic body is given by

P� 2W

2FT �17�

For the constitutive equation to be objective,W must be
independent of the solid-body rotation contained inF, and
hence must depend on quantities like the deformation
tensors in Eqs. (2)–(5). Any one of these four tensors
might be chosen, but the classical choice is to takeW to
be a function ofC. We can use Eqs. (2) and (A2) to replace
2W/2F by 2W/2C. Then, using Eq. (14), we find that the
Cauchy stress in an elastic material is given by

T � 2
det�F� F·

2W
2C

·FT �18�

The scalar functionW is said to be anisotropic functionof
the tensorC if the form of its functional dependence onC is
unaltered by any orthogonal transformation ofC (i.e. any
rotation of the coordinate axes). Typically this property
holds for some subgroup of all orthogonal transforms, and
this subgroup determines the symmetry group (i.e. the type
of anisotropy) of the material. IfW is an isotropic function
for all orthogonal transforms, then it corresponds to the
properties of an isotropic material, andW must depend
only on the invariants ofC, namelyJ1, J2 and J3. If W is
an isotropic function for all orthogonal transforms that
preserve the direction of a single symmetry axis0p, then
the material istransversely isotropic, and the functional
form must be

W�C� �W�J1; J2; J3;L;M� �19�
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The additional scalars that characterize the strain state are

L � 0p·C·0p �20�

M � 0p·C2·0p �21�
We now expand the derivative in Eq. (18) using the chain

rule:

2W
2C
� 2W

2J1

2J1

2C
1

2W
2J2

2J2

2C
1

2W
2J3

2J3

2C
1

2W
2L

2L

2C

1
2W
2M

2M

2C
�22�

This expression is substituted into Eq. (18), and simplified
by introducing formulae for the derivatives of the invariants,
Eq. (A4), and ofL andM, Eqs. (A5) and (A6). We also use
Eq. (10) to transform0p in the reference state to the vectortp
in the deformed state. That is, the material symmetry axis is
assumed to deform like a material line. After some simpli-
fication, this gives the Cauchy stress as

T � 2
det�F�

( 
J3

2W
2J3

!
d 1

 
2W
2J1

1 J1
2W
2J2

!
B 2

 
2W
2J2

!
B2

1

 
2W
2L

!
tptp 1

 
2W
2M

!
�tptp·B 1 B·tptp�

)
(23)

This is the classical constitutive equation for a hyperelas-
tic material that is both compressible and transversely
isotropic, and is the form given by Lurie [20] and by
Green and Adkins [18]. The corresponding equation for
an isotropic material can be recovered by omitting the last
two terms. In this form the Cauchy stress is a function of the
Finger strain tensorB and the instantaneous material
symmetry axistp, and the material properties are contained
in the various derivatives ofW. This treatment is highly
appropriate when the anisotropy is induced by aligned fibers
that are initially oriented parallel to0p. Since these fibers are
embedded in the material, in the deformed state they will be
oriented in thetp direction. In particular, we can interpret
the term containing2W/2L as a normal stress parallel to the
fiber axis. Note thatL measures the amount of stretching
along the fiber axis.

2.3. A new constitutive equation

When modeling fiber mat compression during I/C-LCM,
we take the plane of the mat as the plane of isotropy, and the
vector normal to that plane as the material symmetry axis. If
the mold compressed the mat only along that axis, then Eq.
(23) might be quite suitable as a constitutive equation.
However, for realistic part geometries there are often
regions of the mold where the mold surfaces are not normal
to the mold closing axis. In these regions, closing the mold
not only compresses the preform, it also causes the moving
surface to translate parallel to the plane of the sheet. This
motion is probably taken up by slip between the outer

preform layer and the mold surface. However, it is more
convenient to build finite element meshes whose nodes are
fixed on the mold surfaces than it is to model this slip expli-
citly, and these meshes experience some shear as the mold is
closed. We would like to have a constitutive equation that is
insensitive to this shear, but still models the thickness-direc-
tion compressive behavior of the mat. Eq. (23) is not suitable
for this purpose, since the shearing motions keeptp from
being normal to the material symmetry plane.

A more appropriate constitutive equation can be developed
by reformulating the transversely isotropic hyperelastic mate-
rial, takingW to be a function of the Piola deformation tensor
C21. We will see later that this leads to a physically mean-
ingful way to characterize the thickness-direction compres-
sion in the preform, but for now we simply note that this is an
alternate formulation that is consistent with all the assump-
tions of the classical theory of nonlinear elasticity.

Using the derivative relation Eq. (A3), we find that the
derivatives ofW with respect toC andC21 are related by

2W
2C
� 2C21·

2W

2C21 ·C21 �24�

(Note thatC21 is symmetric.) This result can be combined
with Eqs. (18) and (3) to given the Cauchy stress as

T � 2
2

det�F� F
2T·

2W

2C21 ·F21 �25�

Since the material is transversely isotropic, the strain energy
function must depend on the invariants ofC21 and on two
new scalars,L andM:

W�C21� �W�I1; I2; I3;L;M� �26�
L � 0n·C21·0n �27�
M � 0n·�C21�2·0n �28�
Here 0n is a unit vector parallel to the material symmetry
axis in the undeformed state. As before, we expand2W/
2C21 using the chain rule, substitute for the derivatives of
the invariants with respect toC21 and return the result to the
stress Eq. (25). However, this time the natural simplification
is that n transforms between the reference and deformed
states like the normal to a material surface. That is,tn and
0n are related by Eq. (13). In fact, the denominator on the
right-hand side of Eq. (13) is the square root ofL, so the
relationship is quite simple. After a good deal of simplifica-
tion, we obtain the Cauchy stress as

T � 2
2

det�F�

( 
I3
2W
2I3

!
d 1

 
2W
2I1

1 I1
2W
2I2

!
B21

2

 
2W
2I2

!
�B21�2 1

 
L
2W
2L

!
tntn 1

 
L
2W
2M

!
�tntn·B21

1 B21·tntn�
)

(29)
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This is, as far as we know, a new form for the stress in a
transversely isotropic, hyperelastic material. Comparing it
to Eq. (23), we see that here the stress is a function of
the Almansi deformation tensorB-1 and the vectortn,
which we interpret as the instantaneous normal to the
plane of material symmetry. Note that0p and 0n are
coaxial; that is, the material symmetry axis is normal
to the material symmetry plane in the reference state.
However, for the deformed statetp and tn are not neces-
sarily coaxial. A finite deformation can result in a mate-
rial symmetry axis that is no longer normal to the
material symmetry plane. Eq. (29) is most suitable for
a material whose transverse isotropy is associated with a
plane of material symmetry, in our case the plane of the
fiber mat.

Since Eq. (29) was derived from the same assump-
tions as the classical Eq. (23), the two forms are, in
principal, equivalent. That is, for any set of material
properties used in Eq. (29), there should exist some
set of material properties that could be used in Eq.
(23) to produce identical behavior. The utility of Eq.
(29) is that useful, simple forms can be found by omit-
ting selected terms. We note that the term containing
2W/2L is a normal stress acting on the material symme-
try plane. This is the major effect we wish to capture,
so we specialize Eq. (29) by choosingW �W�L�; so
that

2W
2I1
� 2W

2I2
� 2W

2I3
� 2W

2M
� 0 �30�

This reduces the constitutive equation to

T � 2
2L

det�F�
2W
2L

tntn �31�

For a physical interpretation of this model, consider an
incremental material volume d0V that, in the reference
configuration, is a rectangular parallelepiped, with two
surfaces that are parallel to the material symmetry plane.
Let the area of one of these surfaces be d0S.The height0h of
this incremental volume, measured in the direction normal
to d0S, is equal to

0h� d0V=d0S �32�
If the material is deformed, then a similar equation relates

the heightth to the volume dtV and area dtS in that config-
uration. A convenient measure of thickness change in the
direction normal to the material symmetry plane is the ratio
of these two heights,

k �
th
0h
� dtV=dtS

d0V=d0S
�33�

We can generalize this idea using Eqs. (11) and (12),
definingk for any deformation as:

k ;
1�������������

0n·C21·0n
p �34�

k functions like a stretch ratio, but it measures the change in
separation of two parallel material planes, rather than the
change in length of a line element. Note thatk measures
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and (c) the element is compressed and sheared parallel to the plane.



deformation relative to a specific material plane, the plane
normal to0n.

Comparing Eq. (34) to Eq. (27), we see that

L � 1
k2 �35�

soL andk are equivalent measures of deformation. Sincek
admits a simple physical interpretation, we can makeW a
function ofk , and write our constitutive equation as

T � k

det�F�
2W
2k

tntn �36�

This is the final form of our proposed constitutive equation.
Specific material models are created by choosingW(k ).

To explore the behavior of this equation, consider the
three deformation states shown in Fig. 1. In all cases
ABCD is a material symmetry plane in the reference config-
uration, and both0n and tn are parallel to thex3 axis. Thus,
in all cases the only stress present isT33. The simple uniaxial
compression in Fig. 1(a) and the combined compression and
shear in Fig. 1(c) give the same values ofk and the same
deformed volume, so both deformations produce the same
T33. This insensitivity to shearing parallel to the material
symmetry plane is the quality that we sought in the consti-
tutive equation. Fig. 1(b) shows a compression along the
material symmetry axis, combined with spreading in the
1–2 plane. This also has the same value ofk as parts (a)
and (c), but has a different value of det(F). Hence,T33 for
this case will be lower than the other two cases. In fact, case
(b) has the same total force in thex3 direction as cases (a)
and (b), but this force is spread over a larger area. Our
rigorous constitutive derivation has provided a treatment
of volume change that is consistent with our other assump-
tions of elastic behavior.

Some care must be taken when using Eq. (36) to solve
boundary-value problems, for instance by the finite element
method. Several modes of deformation, such as shearing
parallel to the material symmetry plane, produce no change
in internal energy for this model. In effect, the material has
no stiffness to resist these deformation modes. Thus, if some
external factor is not present to constrain these modes, the
finite element equations will be singular and the problem
will not have a unique solution. One could remove this
singularity by adding small amounts of the isotropic terms
(the first three terms) from Eq. (29) back into the constitu-
tive equation. However, in our case the requisite constraints
are provided by using the spines to limit the motion of the
nodes in the finite element mesh, so we can use Eq. (36)
without any modification.

2.4. Fitting experimental data

To obtain a specific form for Eq. (36) we need to choose a
functional form forW(k), or alternately for2W/2k . Uniaxial
compression experiments are typically used to characterize
the compressibility of fiber mats [10–12]. During such an

experiment, a material element undergoes a deformation
like Fig. 1(a), for which the coordinate transformation is

tx1 � 0x1
tx2 � 0x2

tx3 � a0x3 �37�
Using Eqs. (1) and (3), the kinematic quantities are

F �
1 0 0

0 1 0

0 0 a

2664
3775 F21 �

1 0 0

0 1 0

0 0 1=a

2664
3775

C21 �
1 0 0

0 1 0

0 0 1=a2

2664
3775 det�F� � a

�38�

With this value ofC21 and with0n � tn � k0;0; 1l; Eq. (34)
yields k � a: Then from Eq. (36) we find thatTij � 0;
except for

T33 � 2W
2k

�39�

In an experiment one measuresT33 as a function of
k�� th=0h�; and a typical plot looks like Fig. 3.

Fitting experimental data simply requires choosing an
appropriate form for2W/2k and adjusting the parameters
of this form to fit the data. Several different functions have
been used to fit compression data for fiber mats [10–12,21].
Our calculations use a form suggested by Trevino et al. [9],
which yields

2W
2k
� 210��log�Vf0=k�1C�=D� 1 10��log�Vf0�1C�=D� �40�

Vf0 is the fiber volume fraction of the mat at its initial
uncompressed state�k � 1�; while C and D are constants
adjusted to fit the data. The second term on the right-hand
side of Eq. (40) is added to the original form of Trevino et al.
to give Tnn � 0 at k � 1: The finite element equation also
need the second derivative ofW, which is

22W
2k2 �

1
kD

10��log�Vf0=k�1C�=D� �41�

In some parts there is a gap between the top of the preform
and the upper mold surface in the initial configuration.
These gaps are modeled as a layer of a special material,
which develop very little stress at finite thickness, but
which stiffens dramatically as it is approaches zero thick-
ness. After some trial and error, the following expression
was found to exhibit the desired behavior:

2W
2k
� a3=2

1 2
��
a
p 1 2

1
k

� �
�42�

Herea is constant that must fall between 0 and 1. We typi-
cally usea� 1:0 × 1024

:
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3. Finite element procedures

3.1. Notation

Discussion of the finite element solution requires a great
many superscripts and subscripts, for which we follow the
conventions of Bathe [22]. As in the previous section, a left
superscript indicates the time at which a quantity is evalu-
ated. For quantities that depend both on the current config-
uration and a reference configuration, the time of the
reference configuration indicated by a left subscript. Thus,
the displacement gradient at timet with respect to a refer-
ence state at time 0, which wasF in the previous section, is
now written as0

tF; while t
t1DtF represents the displacement

gradient at timet 1 Dt with respect to a reference state at
time t.

Right subscripts will indicate the Cartesian components
of vectors and tensors, and a repeated index will imply
summation over the appropriate range.

A lower-case right superscript will indicate the node
number of a nodal quantity; summation over these indices
will always be written out explicitly. Right superscripts B
and S indicate body and surface quantities, respectively.
When discussing iterative solutions, right superscripts in
parentheses will indicate the iteration number.

3.2. Nodal degrees of freedom

The first paper in the series [15] introduced the use of
spines to control the deformation of the 3D finite elements
mesh. Each nodek is associated with a spine vectorsk,
which has unit length. The base of the spine vector resides
at a fixed positionX k, which corresponds to a node on the
(fixed) lower surface of the mold. The position of the node
along the spine is controlled by a scalar spine parameterl k,
such that at any timet the position of the node is given by

txk � Xk 1 tlktsk �43�
Using Eq. (43), the displacement of a node can be expressed
as:

tuk
i � tlk tsk

i 2 0lk 0sk
i �44�

where the left superscript 0 indicates the initial state. In an I/
C-LCM process the closing of the mold is prescribed, so the

position of the upper mold surface at each time step is
known. As a result, both of the spine vectorstsk

i and 0sk
i

are known. The initial spine parameter0l k is also known,
being calculated as part of the initial construction of the
mechanical mesh [15]. Therefore, the current spine para-
meter tl k is the only unknown in this expression for the
displacement. The unknown spine parameters for all the
nodes are the primary variables in our formulation.

3.3. Principle of virtual work

Our starting point for deriving the finite element equa-
tions is the principle of virtual work. This principle states
that a body is in equilibrium at timet 1 Dt if, for a small,
imaginary “virtual” displacement fielddui�xj�; the internal
work on the body equals the external work (e.g. Ref. [22]):Z

t 1DtV

t1DtTij dt1Dteij dt1DtV

�
Z

t 1DtV

t1Dtf B
i dui dt1DtV 1

Z
t 1DtSf

t1Dtf S
i duS

i dt1DtV

�45�
The virtual displacement field must be zero at all points
where the displacement of the body is prescribed, but is
otherwise arbitrary. In this equation

dt1Dteij � 1
2

2dui

2t1Dtxj
1

2duj

2t1Dtxi

 !
�46�

represents the infintesimal strain tensor corresponding to
virtual displacements,t1DtV is the volume of the body at
time t � Dt; t1DtSf is the part of the body’s surface where
surface traction boundary conditions are applied, andt1Dtf B

i

and t1Dtf S
i are the prescribed body force and surface trac-

tions, respectively.
For our problem the body forcef B

i is negligible. The
boundary conditions, as shown in Fig. 2, involve either a
prescribed displacement (on the mold surfaces) or zero
surface tractionf S

i (along the edges of the preform).
Hence, the right-hand side of Eq. (45) is zero, and we
neglect it from this point onward.

The left-hand side of Eq. (45) must be treated carefully,
since in a large-deformation problem we do not know the
deformed configurationt1DtV. We choose to use the updated
Lagrangian formulation. Suppose for the moment that we
know the displacements and stresses at timet, and we wish
to solve for the displacements at timet 1 Dt: The left-hand
side of Eq. (45) can be transformed into an integral over the
shape at timet, using Eqs. (15) and (9) to replace the Cauchy
stress with the second Piola–Kirchoff stress, and the infini-
tesimal strain with the Green–Lagrange strain. After some
cancellation (see Ref. [22]), we find the principle of virtual
work to beZ

tV
t
t1DtSijdteij dtV � 0 �47�
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Fig. 2. Boundary conditions: there is no traction�f S � 0� on surfaceSf, and
zero virtual displacement�du � 0� on surfaceSu.



Here te ij is the increment in the Green–Lagrange strain
tensor betweent andt 1 Dt;

teij � 1
2

2ui

2txj
1

2uj

2txi
1

2uk

2txi

2uk

2txj

 !
�48�

with ui, denoting the displacement increment,

ui ; t1Dtui 2 tui �49�
We generate an equilibrium equation for each of thennodes

nodes in the mesh by creatingnnodesdifferent virtual displa-
cement fields, each one corresponding to the perturbation of
a different spine parameterdl l. Then we can make replace-
ments like dteij � �2teij =2l

l�dll
: The perturbationdl l is

independent of position and can be brought outside the inte-
gral. Then, since the equation must hold for arbitrary virtual
dispacements, thedl l‘s can be canceled from the equation.
We are now left with a set of equilibrium equations,

t1DtRl ;
Z

tV
t
t1DtSij

2teij

2tll dtV � 0 �50�

wheret1DtRl is the residual for nodel.

3.4. Newton–Raphson iteration

To find an increment in the spine parameters dtlm that
will make eacht1DtRl equal to zero, we expand the residual

in a Taylor series about timet:

t1DtRl < tRl 1
Xnnodes

m�1

2tRl

2tlm dtlm �51�

We equate this expression to zero, and find the increment by
solvingXnnodes

m�1

2tRl

2tlm dtlm � 2tRl �52�

We then update the solution ast1Dtlm � tlm 1 dtlm
:

The resiualtRl is evaluated by lettingt 1 Dt ! t in Eq.
(50). Note that this gives

t
t1DtSij � tTij �53�
Using this in Eq. (50), the tangent stiffness matrix is calcu-
lated as

2tRl

2tlm �
Z

tV

2tTij

2tlm

2teij

2tll dtV 1
Z

tV

tTij
22

teij

2tll 2tlm dtV �54�

Owing to the nonlinearity of the problem, a single update
based on Eqs. (52) and (54) does not produce an adequate
solution, and multiple iterations are required. The first itera-
tion uses the equations developed so far, while all subse-
quent iterations linearize about the most recent trial
configuration, say at timet 1 Dt and iteration (p), to find
iteration�p 1 1�. Thus, our final algorithm is to solve for an
increment in the spine parameters usingXnnodes

m�1

t1DtKlm;�p� dt1Dtlm;�p� � 2t1DtRl;�p� �55�

and then update the solution using

t1Dtlm;�p11� � t1Dtlm;�p� 1 dt1Dtlm;�p� �56�
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Table 1
Parameters for the strain energy density function, Eq. (40), to give stress in
N/m2

Fiber mat Vf0 C D

Random mat 0.15 0.0916 0.2832
Unidirectional mat 0.25 1.057 0.1031
Bidirectional mat 0.30 1.177 0.0954

Fig. 3. Plot of compressive stress,T33, against compressive straink � (deformed thickness/initial thickness) for random, unidirectional and bidirectional fiber
mats. The curves are based on Eq. (40) and Table 1.



Here the tangent stiffness matrix and the residual vector at
iteration (p) are given by

t1DtKlm;�p� �
"Z

t 1DtV

 
2t1DtTij

2t1Dtlm

2t1Dteij

2t1Dtll

1 t1DtTij
22

t1Dteij

2t1Dtlm 2t1Dtll

!
dt1DtV

#�p�
�57�

t1DtRl;�p� � 2
Z

t 1DtV

t1DtTij
2t1Dteij

2t1Dtll
dt1DtV

� ��p�
�58�

The converged solution at the previous timet provides the
initial guess, and iterations proceed until the norms of both
the residual vectort1DtRl and the solution increment vector
t1Dtll are smaller than pre-set tolerances.

The quantites in Eqs. (57) and (58) are evaluated by
Gaussian quadrature. In our implementation the elements
are eight-node bricks, and we use 2× 2 × 2 quadrature.
We also use a six-node wedge element where we employ
7 × 2 quadrature. The reason for using these integration
schemes is to keep the degree of precision at least 3 [22].
The derivatives of the Cauchy stresst1DtTij and the strain
incrementt1Dteij with respect to the spine parameters must
be computed at each integration point for each iteration, a

process that is straight-forward but tedious. Detailed formu-
lae for these derivatives are given in Appendices B and C.

4. Results and discussion

The focus of the present work is to predict the deforma-
tion of a dry preform in a multi-step compression process. In
the following examples we use three different types of fiber
mat: random, bidirectional and unidirectional. The strain
energy function used to represent these mats is given in
Eq. (40), and the specific parameters for each mat appear
in Table 1. These parameters are representative of the prop-
erties reported in the literature for each type of mat. Fig. 3
shows the stress–strain curves corresponding to these prop-
erties. The bidirectional mat is the stiffest, and the random
mat is the most compliant. Some examples also have an
open gap, which is treated as a separate “material” using
the strain energy function in Eq. (42).

4.1. Inhomogeneous layers

First we compare our finite element results with a
problem that can be solved analytically. Consider a three-
layer preform in a flat, rectangular mold. The layers consist
of unidirectional (U) and bidirectional (B) fiber mats,
stacked in the sequence B–U–B. When the upper plate of

K.M. Pillai et al. / Composites: Part A 32 (2001) 207–220 215

Table 2
Comparison of the final thickness (in cm) predicted by the analytical and numerical solutions for a three-layer preform

Fiber mat Analytical prediction Numerical prediction % Error

Bidirectional (B) 0.07833 0.07837 1 0.05
Unidirectional (U) 0.04335 0.04323 2 0.28
Bidirectional (B) 0.07833 0.07837 1 0.05

Fig. 4. Compression of a two-layer preform in a flat rectangular I/C-LCM mold. The upper layer of the preform consists of random mat and the lower layer
consists of unidirectional mat; the top-most layer att � 0 is the gap. The mold has different thickness in the two halves, which is meshed by the brick and
wedge elements.c is the clamping direction.



the mold moves downwards, the preform compresses like
three springs in series. The compressive stress is the same in
all the three layers, and each layer deforms according to its
own stress-strain curve. In this example the preform is
compressed from an initial thickness of 0.3 cm (each layer
is 0.1 cm thick) to a final thickness of 0.2 cm, and the final
thickness of the three layers are to be determined. Using
Eqs. (39) and (40), the compressive stress in any of the
three layers is given by

T33 � 210��log�Vf0
0h=th�1C�=D� 1 10��logVf01C�=D� �59�

Material constantsVf0, C andD for the layers are listed in
Table 1, and0h is the given initial thickness of the layer.
Note that the compressive stress for a layer is a function of
the final thickness of the layer only, i.e.T33 � T33�th�: The
analytical solution is obtained by solving three simultaneous
equations for the final thickness of the three layers: two from
the equality of stresses in the layers and a third setting the
sum of final layer thickness to 0.2 cm. Table 2 lists the final
thickness of each layer as given by the analytical and
numerical solutions. As expected, the uniaxial layer
compresses more than the biaxial layers. There is a good
match between the analytical and numerical results, the
maximum error being less than 0.3%.

4.2. Planar mold with varying thickness and open gap

The second example is a flat, rectangular 1× 1 m2 mold
divided into two regions with different thickness. The
perform itself consists of a lower layer of unidirectional
mat and an upper layer of random mat, the layers having

equal initial thickness. The preform has a total initial thick-
ness of 10 cm in the thinner region of the mold and 12 cm in
the thicker region2. Initially there is an open gap between
the top preform layer and the upper mold surface, and the
thickness of the gap are 2 and 2.5 cm in the thinner and
thicker regions, respectively.

The mechanical mesh for this problem is shown in Fig. 4.
Two regions of the mold are represented by brick and wedge
elements, respectively3. The shell mesh used to generate this
mechanical mesh appears in Fig. 7 of Ref. [15]. The mesh
generation algorithm enforces a continuous thickness, so the
mold thickness change occurs gradually over two rows of
elements, rather than as a sharp step. Our finite element
formulation also enforces continuity of displacement in
the interior of the mesh.

We now close the mold such that the top mold plate
traverses 6 cm along thez axis. In principle it should be
possible to compress the mold in one large step, but because
of the limited radius of convergence of the Newton–Raph-
son scheme the process is accomplished in three equal time
steps of sizeDt. As the speed of the top plate is taken as a
constant, it travels 2 cm in each time step. The mechanical
compression process is unaffected by the mold closing
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Fig. 5. Compression of a two-layer preform in a 3D mold. The upper layer of the preform consists of random mat and the lower layer consists of unidirectional
mat; the top-most layer att � 0 is the gap.c is the clamping direction.



speed and the actual size of the time step is unimportant.
Only the position of the upper mold enters the finite element
calculation at each step.

Examining the results in Fig. 4, we see that the gap above
the preform disappears in the first time step. The elements
that represent the gap are still present, and have a small but
finite thickness from this point onward. This allows our
simulation to handle gap compression without implement-
ing a separate contact algorithm, and without removing or
deactivating elements during the simulation. In the second
and third steps, the upper, more compliant random mat is
compressed significantly more than the stiffer unidirectional
layer on the bottom. This matches our expectation that more
compliant fiber mats will take up most of the deformation
when stacked with stiffer mats.

Performing a variety of simulations like this example, we
found some cases that produced physical unrealistic results.
When the initial thickness of a layer was very different
between the two regions of the mold, our code predicted
wiggles in the interfaces between layers. The constitutive
relation, Eq. (36), mandates that the principal axis of the
stress tensor be aligned with the material normal of the
preform. At the mold surface the material normal is identi-
cal to the surface normal, so the traction applied by the mold
plate on the preform is always normal to the mold surface at
the point of contact. In a mesh like Fig. 4, the traction from
the upper mold plate has an in-plane component in the
region where mold thickness is changing, while the lower
mold surface applies traction in thezdirection only. The in-
plane force from the upper mold is not balanced by any
other external force, and must be absorbed as a reaction
force by the constraints on nodal displacement. The material
itself has no stiffness to resist the corresponding shear stres-
ses, so as this force is transmitted through the mesh some
irregularity in the deformation occurs. This is not a particu-
larly serious problem, since the initial thickness of the
preform layers is likely to be uniform across the mold,
and a step change in thickness is not attractive from a struc-
tural viewpoint.

4.3. Arbitrary 3D mold

Finally, we consider a mold that is curved in three dimen-
sions. The particular mesh was created from the shell mesh
of an arbitrary surface patch (Fig. 11 of Ref. [15]). Once
again, we consider a two-layer preform with a random mat
at the top and a unidirectional mat at the bottom. Now
there is only one material region in the mold, and the
initial layer thickness is 3 cm everywhere. There is also an
open gap at the top of the mold. The mold closes along the
k 2 1;21;21l direction, and we show results for three time
steps.

The initial mesh and the results are shown in Fig. 5, where
c indicates the clamping axis. In the initial mesh the layers
have uniform thickness. In the first step the open gap
compresses to near-zero thickness over most of the mold.

At the second step there is significant compression of the
upper layer of random mat. In the third step the lower layer
of bidirectional mat hardly compresses at all, while the
random mat is highly compressed near the center of the
mold, but still has significant thickness near the top and
bottom edges. This is a consequence of the way that local
cavity thickness changes with time in a 3D compression
mold. This example demonstrates the ability of our simula-
tion to capture the complex interactions between mold clos-
ing, mold geometry, open gaps and nonlinear material
properties that are inherent in I/C-LCM.

5. Summary

To predict preform deformation during I/C-LCM a model
must address several issues: the three-dimensional geometry
of the mold, nonlinear properties of the preform, large
deformation behavior and open gaps between the preform
and the mold. We have developed techniques for treating all
of these issues. The mold geometry is represented by a 3D
finite element mesh. A special data structure attaches each
node to a spine, and uses a single degree of freedom to move
the node along the spine. We have developed a special
constitutive equation to represent the mechanical response
of the preform. This equation accommodates a wide variety
of empirical equations for the stress–strain behavior in a
simple compression test, and allows those expressions to
be used in problems with large deformations and large rota-
tions. The stress calculated by this equation is unaffected by
shearing parallel to the plane of material symmetry, a
feature that avoids spurious results when modeling I/C-
LCM preforms. We have also developed finite element
equations and solution methods for this highly nonlinear
problem. The finite element formulation incorporates both
material and geometric nonlinearities. Open gaps are treated
as a separate layer of material, which has much lower stiff-
ness than the preform layers, but which stiffens dramatically
as its thickness approaches zero. Example calculations show
that this approach can model nonuniform material proper-
ties, open gaps and molds with complex shapes.

This paper has focused on modeling the deformation of
dry preforms. The next step is to combine this model with
calculations of resin flow during injection/compression
molding, to have a complete simulation of the process.
We will report on this in a future publication [16].

Acknowledgements

Financial support for this work was provided by the
National Institute of Standards and Technology.

Appendix A. Scalar functions of a tensor argument

To support the development of the constitutive equation,

K.M. Pillai et al. / Composites: Part A 32 (2001) 207–220 217



we quote some basic mathematical results for a function
f (Q), where f is scalar andQ is an arbitrary tensor.
These results are discussed in more detail in Appendix 2
of Ref. [20].

The derivative2f=2Q is defined such that the changedf
produced by a change in argumentdQ is

df � 2f

2Q
: dQT �A1�

Note that2f=2Q is a tensor of the same order asQ.
If one changes the argument off to �Q·QT� or to Q21

;

then the derivatives are related by

2f

2Q
� 2

2f

2�Q·QT� ·Q �A2�

QT·
2f

2Q
� 2

2f

2�Q21� ·Q
2T �A3�

The three invariants, as defined in Eqs. (6)–(8), have deri-
vatives of

2I1

2Q
� d

2I2

2Q
� dI1 2 QT 2I3

2Q
� I3Q2T �A4�

whered is the unit tensor.
If a andb are arbitrary vectors, the bilinear formsa·Q·b

anda·Q2·b have derivatives

2

2Q
�a·Q·b� � ab �A5�

2

2QT �a·Q2·b� � ba·Q 1 Q·ba �A6�

Appendix B. Derivatives of the stress

B.1. Interpolation of displacement

Using Eq. (43), displacement at any arbitrary point inside
an element is interpolated as

t1Dtx�p�i �
Xnnie

k�1

hkXk
i 1

Xnnie

k�1

hk t1Dtlk;�p� t1Dtsk
i �B1�

wherehk is the interpolating function andnnie is the number
of nodes in an element. On differentiating this expression
with respect to the reference material coordinate0x, we
obtain the following expression for the displacement gradi-
ent tensor as a function of spine parameters,

0
t1DtF�p�ij �

Xnnie

k�1

2hk

20xj
Xk

i 1
Xnnie

k�1

2hk

20xj

t1Dtlk;�p� t1Dtsk
i �B2�

B.2. Differentiating the constitute equation

Using the notation of the finite element equations, the

constitutive Eq. (36) for stress is written as

t1DtT�p�ij � 0
t1Dtk�p�

det�0t1DtF�p��
2W
2k

� ��p�
t1Dtn�p�i

t1Dtn�p�j �B3�

The measure of compressive strain is

0
t1Dtk�p� � 1��������������������������������������

0n·� 0
t1DtF�p��21·� 0

t1DtF�p��2T·0n
q �B4�

In the finite element formulation, the independent vari-
ables are the nodal degrees of freedom,t1Dtlk;�p�

: Stress
ultimately depends on these variables, but for purposes of
differentiation it is convenient to regard stress as a function
of the following intermediate variables, which in turn
depend ont1Dtlk;�p� :

t1DtT�p�ij � t1DtT�p�ij � 0
t1Dtk�p�; det� 0

t1DtF�p��; t1Dtn�p�i ;
t1Dtn�p�j �

�B5�
We differentiate this expression using the chain rule:

2t1DtT�p�ij

2t1Dtlk;�p� �
2t1DtT�p�ij

2 0
t1Dtk�p�

2 0
t1Dtk�p�

2t1Dtlk;�p� 1
2t1DtT�p�ij

2t1Dtn�p�i

2t1Dtn�p�i

2t1Dtlk;�p�

1
2t1DtT�p�ij

2t1Dtn�p�j

2t1Dtn�p�j

2t1Dtlk;�p�

1
2t1DtT�p�ij

2 det� 0
t1DtF�p��

2 det� 0
t1DtF�p��

2t1Dtlk;�p� (B6)

Using Eq. (B3), the derivatives of stress in Eq. (B6) can
be computed as

2t1DtT�p�ij

20
t1Dtk�p�

� 2W
2k

1 k
22W

2k2

 !�p� t1Dtn�p�i
t1Dtn�p�j

det� 0
t1DtF�p�� �B7�

2t1DtT�p�ij

2t1Dtn�p�i

� k
2W
2k

� ��p� t1Dtn�p�j

det� 0
t1DtF�p�� �B8�

2t1DtT�p�ij

2 det� 0
t1DtF�p�� � 2 k

2W
2k

� ��p� t1Dtn�p�i
t1Dtn�p�j

�det� 0
t1DtF�p���2 �B9�

The remaining terms in Eq. (B6) are calculated in the
following sections.

B.3. Computing�2 0
t1Dtk�p��=�2t1Dtlk;�p��

Using Eq. (B4), we can write the derivative ofk as

2 0
t1Dtk�p�

2t1Dtlk;�p� � 2
1

2F3=2

2F

2t1Dtlk;�p� �B10�

where

F � � 0
t1Dtk�p��22 � 0n·� 0

t1DtF�p��21·� 0
t1DtF�p��2T·0n �B11�

Since0n is independent of deformation, the derivative of
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F is

2F

2t1Dtlk;�p� � 0n·
2� 0

t1DtF�p��21

2t1Dtlk;�p� ·� 0
t1DtF�p��2T·0n

1 0n·� 0
t1DtF�p��21·

2� 0
t1DtF�p��2T

2t1Dtlk;�p� ·0n �B12�

The derivatives on the right-hand side of this equation are
computed as:

2� 0
t1DtF�p��21

2t1Dtlk;�p� � 2� 0
t1DtF�p��21·

2 0
t1DtF�p�

2t1Dtlk;�p� ·� 0
t1DtF�p��21

�B13�
where, from Eq. (B2), we get

2 0
t1DtF�p�

2t1Dtlk;�p� �
2hk

20xj

t1Dtsk
i �B14�

Once the derivative of the inverse of0
t1DtF�p� is known,

the derivative of its transpose is simply the transpose of the
derivative.

B.4. Computing�2t1Dtn�p�i �=�2t1Dtlk;�p��
The upper and lower surfaces of each 3D element form

part of the fiber mat interfaces in the preform stack [15], and
these interfaces are material surfaces. We find the unit
normal vector t1Dtn�p�i by computing a material normal
vector t1DtN�p�

i at the desired point and then normalizing
it to unit length. At any point inside the element this vector
is interpolated from nodal valuest1DtNk;�p� as follows:

t1DtN�p�
i �

Xnnie

k�1

hk
t1DtNk;�p�

i

it1DtNk;�p�i
�B15�

The upper and lower faces of each brick element can be
treated as isoparametric quadrilateral elements, from
which the material normals corresponding to the top and
bottom surfaces are computed using

t1DtNk;�p� � Z × E �B16�
where

Z �
X4
l�1

2gl

2j
t1Dtxl;�p� E �

X4
l�1

2gl

2h
t1Dtxl;�p� �B17�

In these expressionsgl represents the two-dimensional
shape functions corresponding to nodel for the upper or
lower quadrilateral element, andj andh are the element
coordinates.

Differentiating t1Dtn�p�i with respect to the spine para-
meter t1Dtlk;�p� involves computing the derivative ofZ,
which is obtained from

2Z
2t1Dtlk;�p� �

2g
2j

����
j k;hk

t1Dtsk �B18�

with k being the node where the derivative is being evalu-
ated.2E=�2t1Dtlk;�p�� is derived similarly.

Now using Eqs. (B15)–(B18),�2t1Dtn�p�i �=�2t1Dtlk;�p�� can
be computed. Some simplification in Eq. (B17) results for
the wedge elements, because the upper and lower triangular
faces of the element are planar.

B.5. Computing�2 det� 0
t1DtF�p���=�2t1Dtlk;�p��

Using the laws of tensor algebra, one can write

2 det� 0
t1DtF�p��

2t1Dtlk;�p� � det� 0
t1DtF�p��� 0

t1DtF�p��2T :
2 0

t1DtF�p�

2t1Dtlk;�p�
�B19�

The right-hand side of this equation can be computed using
Eqs. (B2) and (B14).

Appendix C. Derivatives of the incremental strain

The incremental straint1Dte
�p�
ij is defined in Eq. (48). On

differentiating this with respect to the spine parameter, we
get:

2t1Dte
�p�
ij

2t1Dtll;�p� �
1
2

 
2t1Dtu

�p�
i; j

2t1Dtll;�p� 1
2t1Dtu

�p�
j;i

2t1Dtll;�p�

1 t1Dtu
�p�
k;i

2t1Dtu
�p�
k; j

2t1Dtll;�p� 1
2t1Dtu

�p�
k;i

2t1Dtll;�p� t1Dtu
�p�
k; j

!
�C1�

where a comma in a right subscript denotes partial differ-
entiation with respect to the coordinates indicated by the left
subscript, i.e.

t1Dtu
�p�
i; j �

2u�p�i

2t1Dtx�p�j

�C2�

From Eqs. (48), (49) and (B1), one obtains the following
expression,

t1Dtu
�p�
i; j �

Xnnie

k�1

2hk

2t1Dtx�p�j

�t1Dtsk
i

t1Dtlk;�p� 2 tsk
i

tlk� �C3�

On differentiating this with respect tot1Dtll;�p�
; we get:

2t1Dtu
�p�
i; j

2t1Dtll;�p� �
2hl

2t1Dtx�p�j

t1Dtsl
i �C4�

Then, substituting Eqs. (C2) and (C3) into Eq. (C1) and
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simplifying, we get

2t1Dte
�p�
ij

2t1Dtll;�p� �
1
2

"
2hl

2t1Dtx�p�j

t1Dtsl
i 1

2hl

2t1Dtx�p�i

t1Dtsl
j 1

2hl

2t1Dtx�p�j

×
 Xnnie

k�1

2hk

2t1Dtx�p�i

�t1Dtsk·t1Dtsl t1Dtlk;�p� 2 tsk·t1Dtsl tlk�
!

1
2hl

2t1Dtx�p�i

 Xnnie

k�1

2hk

2t1Dtx�p�j

�t1Dtsk·t1Dtsl t1Dtlk;�p� 2 tsk·t1Dtsl tlk�
!#

�C5�
On differentiating Eq. (C3) further with respect to

t1Dtll;�p�
; it is easy to show that �22�t1Dtu

�p�
i; j ��

=�2�t1Dtll;�p��2�; and all other similar double derivatives
appearing due to further differentiation of Eq. (C1), are
identically zero. As a result, differentiation of Eq. (C1)
yields:

22
t1Dte

�p�
ij

2t1Dtlm;�p� 2t1Dtll;�p�

� 1
2

2t1Dtu
�p�
k;i

2t1Dtlm;�p�
2t1Dtu

�p�
k; j

2t1Dtll;�p� 1
2t1Dtu

�p�
k;i

2t1Dtll;�p�
2t1Dtu

�p�
k; j

2t1Dtlm;�p�

 !
�C6�

We substitute Eq. (C3) in the above equation and simplify
to obtain the following

22
t1Dte

�p�
ij

2t1Dtlm;�p� 2t1Dtll;�p�

� 1
2

2ho

2t1Dtx�p�i

2hl

2t1Dtx�p�j

1
2hl

2t1Dtx�p�i

2ho

2t1Dtx�p�j

0@ 1At1Dtsl ·t1Dtso

�C7�

References

[1] Fracchia CA, Castro J, Tucker III CL. A finite element/control volume
simulation of resin transfer molding. Proceedings of the American
Society for Composites Fourth Technical Conference, Lancaster,
PA: Technomic, 1989. p. 157–66.

[2] Molnar J, Trevino L, Lee LJ. Liquid flow in molds with prelocated
fiber mats. Polym Compos 1989;10:414–23.

[3] Bruschke MV, Advani SG. A finite element/control volume approach

to mold filling in anisotropic porous media. Polym Compos
1990;11:398–405.

[4] Bruschke MV, Advani SG. RTM filling simulation of complex three
dimensional shell-like structures. SAMPE Q 1991;23(1):2–11.

[5] Young WB, Rupel K, Han K, Lee LJ, Liou MJ. Analysis of resin
injection molding in molds with preplaced fiber mats. II: Numerical
simulation and experiments of mold filling. Polym Compos
1991;12:30–8.

[6] Young WB, Han K, Fong LH, Lee LJ, Liou MJ. Flow simulation in
molds with preplaced fiber mats. Polym Compos 1991;12:391–403.

[7] Tucker III CL, Dessenberger RB. Governing equations for flow and
heat transfer in stationary fiber beds. In: Advani SG, editor. Flow and
rheolgy in polymer composites manufacturing, Amsterdam: Elsevier,
1994. p. 257–323.

[8] Advani SG, Bruschke MV, Parnas RS. Resin transfer molding flow
phenomena in polymeric composites. In: Advani SG, editor. Flow and
rheolgy in polymer composites manufacturing, Amsterdam: Elsevier,
1994. p. 465–515.

[9] Han K, Trevino L, Lee LJ, Liou M. Polym Compos 1993;14(2):144–
50.

[10] Lekakou C, Johari MAKB, Bader MG. Compressibility and flow
permeability of two-dimensional woven reinforcements in the proces-
sing of composites. Polym Compos 1996;17:666–72.

[11] Luce TL, Advani SG, Grant Howard J, Parnas RS. Permeability char-
acterization. Part 2: Flow behavior in multiple-layer preform. Polym
Compos 1995;16:446–58.

[12] Pearce N, Summerscales J. The compressibility of a reinforcement
fabric. Compos Manufacturing 1995:6.

[13] Phelan Jr. FR. Simulation of the injection process in resin transfer
molding. Polym Compos 1997;18(4):460–76.

[14] Phelan Jr. FR. Analysis of injection/compression liquid composite
molding process variants. ASME Proceedings, 1996. Presented at
the 1996 ASME International Mechanical Engineering Congress
and Exhibition, Atlanta, GA.

[15] Pillai KM, Tucker III CL, Phelan Jr. FR. Numerical simulation of
injection/compression liquid composite molding. Part 1: Mesh
generation. Composites Part A 2000;31:87–94.

[16] Phelan Jr. FR, Pillai KM, Tucker III CL. Numerical simulation of
injection/compression liquid composite molding. Part 3: Mold filling,
in preparation.

[17] Fanucci JP, Nolet S, McCarthy S. Pultrusion of composites. In:
Gutowski TG, editor. Advanced composites manufacturing, New
York: Wiley, 1997. p. 259–95.

[18] Green AE, Adkins JE. Large elastic deformations. Oxford: Oxford
University Press, 1960.

[19] Treloar LRG. The physics of rubber elasticity. 3rd ed.. Oxford: Clar-
endon Press, 1975.

[20] Lurie AI. Nonlinear theory of elasticity. Amsterdam: Elsevier, 1990.
[21] Gutowski TG, Dillon G. The elastic deformation of fiber bundles. In:

Gutowski TG, editor. Advanced composites manufacturing, New
York: Wiley, 1997. p. 115–56.

[22] Bathe KJ. Finite element procedures. Englewood Cliffs, NJ: Prentice
Hall, 1996.

K.M. Pillai et al. / Composites: Part A 32 (2001) 207–220220


