
PHYSICAL REVIEW E, VOLUME 63, 031205
Critical properties and phase separation in lattice Boltzmann fluid mixtures
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Basic equilibrium properties of lattice Boltzmann~LB! fluid mixtures~coexistence curve, surface tension,
interfacial profile, correlation length! are calculated to characterize the critical phenomena occurring in these
model liquids and to establish a reduced variable description allowing a comparison with real fluid mixtures.
We observe mean-field critical exponents and amplitudes so that the LB model may be useful for modeling
high molecular weight polymer blends and other fluid mixtures approximated over a wide temperature range by
mean-field theory. We also briefly consider phase separation under quiescent and shearing conditions and point
out the strong influence of interacting boundaries on the qualitative form of the late-stage phase-separation
morphology.
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I. INTRODUCTION

In many applications involving materials processing a
development, it is necessary to understand and control
morphology of multiphase fluid mixtures and particulate d
persions subject to a complex flow history. These appli
tions often involve free liquid-air boundaries that can
spond to flow and phase-separation processes, s
boundaries that can be preferentially wet by certain liq
components, thin-film geometries, complex solid substr
geometries, and high Reynolds number flows in which fl
inertia is important. The development of computation
methods of sufficient flexibility and generality to treat su
realistic fluid dynamics problems is a basic theoretical ch
lenge.

The lattice Boltzmann~LB! method and other relate
computational methods based on cellular-automata id
~e.g., lattice gas! @1# have emerged as powerful tools fo
modeling complex fluid dynamics problems. These meth
are developing rapidly in response to recent theoretical
vances and the availability of resources for large-scale c
putation. Applications of LB to modeling high Reynold
flow @1#, the dynamics of fluid phase separation@2,3#, and
multicomponent fluid flow in porous media@4–6# have
proven the potential of LB as a general purpose comp
tional scheme for modeling complex fluid dynamics pro
lems. Many of these exploratory studies have emphasized
development of the LB methodology and have not cons
ered a direct comparison to the properties of real liqui
Therefore, basic characteristics of these computational m
els of liquids are still largely unknown. In this paper, w
characterize the type of critical phenomena observed in
LB models of multicomponent liquids. The first model, d
to Shan and Chen@2#, modifies the Boltzmann equilibrium
distribution to account for fluid-fluid interactions. The se
ond approach, considered in the present paper, incorpo
the forcing between two fluids directly into the body-forcin
term of the Boltzmann equation@7#. In Appendix A, we
show how the second method is related to a density-grad
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expansion of a BBGKY collision operator@8–10#, which
should facilitate comparison with the Cahn-Hilliard theory
phase separation@11–16# and the Ginzburg-Landau theory o
critical phenomena@17,18#.

We calculate basic equilibrium properties~coexistence
curve, interfacial width and correlation length, surface te
sion! and express our results in terms of a reduced varia
description that allows comparison with real fluid measu
ments. Asymmetry in the mass and volume of the fluid co
ponents is considered in this comparison since this prop
is characteristic of real liquids. The effect of flow and inte
acting boundaries on the phase separation process is b
explored to identify some basic phenomena of experime
interest.

II. BRIEF REVIEW OF LATTICE BOLTZMANN MODEL
OF FLUID PHASE SEPARATION

The LB method of modeling fluid dynamics is actually
family of models with varying degrees of faithfulness to t
properties of real liquids. These methods are currently i
state of evolution as the models become better unders
and corrected for various deficiencies. In the present wo
we utilize two LB models of complex fluids. The first an
primarily studied method in this paper was proposed by S
and Chen@2,5#. It is particularly simple in form and adapt
able to complex flow conditions such as the presence
solid-fluid and air-fluid boundaries. For comparison, a s
ond approach is studied@7# that directly incorporates the
fluid/fluid interaction into a body-force term. This approa
removes second-order contributions with respect to the fo
ing ~see below!. The physical basis of such an approach
further described in Appendix A. A third approach, not stu
ied in this paper, is due to Yeomanset al. @3,16# and is
strongly rooted in the Cahn-Hilliard model of binary mix
tures@12–16#. A major criticism of this approach is the lac
of Galilean invariance, but recent work suggests that the
rors involved can be controlled in the description of t
phase separation of fluids in the absence of shear@16#. It
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remains to be seen whether these higher-order effects c
problems under conditions of fluid flow. All of these mode
however, are not strictly energy conserving, which should
important under conditions of deep quenches and high r
of flow. Recent work@10# has introduced a framework fo
overcoming this technical problem and allows for systema
improvements of the LB calculation of fluid properties.
the present paper, we focus on isothermal flows and
examine the effect of energy conservation on the two-ph
region of LB fluid mixtures in a future work.

We now present a brief description of the LB metho
used in this study. A considerable computational advant
in modeling the fluid is obtained by restricting the partic
positions to the sites of a lattice. The LB method extends
standard ‘‘quasicrystalline’’ fluid model@19–22# of classical
statistical mechanics by specifying the particle velocity d
tribution at each particle position so thatboth equilibrium
and dynamical properties of the fluid can be calculated. M
roscopic variables such as density and fluid velocity are
tained by taking suitable moments of the velocity distrib
tion function. The velocity distribution function,na

i (x,t),
where the superscripti labels the fluid component and th
subscripta indicates the velocity direction, is the numb
density of particles at nodex, time t with velocity ea , where
a51, . . . ,b. In this study, the particle velocities are repr
sented in terms of a basis set defined on a cubic lattice.
velocity vectors are directed towards points that are nea
and next-nearest neighbors about a central lattice site an
in units of the lattice spacing divided by the time step. In t
literature, this lattice is called a D3Q19 lattice, where the
corresponds to the basis set size,b519 @23#. Time is counted
in discrete time steps, and the fluid particles can collide w
each other as they move under applied forces~surface ten-
sion, applied shear, etc.!. The directions of the particle ve
locities are discretized in such a way that the isotropy of
pressure tensor and other properties are preserved@1#. The
discretization of the time and spatial coordinates greatly
duces the information required to specify the fluid dynami
thus extending the scale of the system that can be mod
by a given computational resource. This is the computatio
virtue of a lattice formulation. The price is that care must
taken to avoid artifacts that arise from the lattice model.

Macroscopic quantities such as density,r i(x,t), and fluid
velocity, ui , of each fluid component,i, are obtained by the
following moment sums:

r i~x,t !5mini~x,t !5mi(
a

na
i ~x,t ! ~1!

and

ui~x,t !5

(
a

na
i ~x,t !ea

ni~x,t !
, ~2!

wheremi is the molecular mass of thei th component. While
the distribution function is defined only over a discrete se
velocities, the actual macroscopic velocity field of the fluid
nearly continuous.
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The time evolution of the particle velocity distributio
function satisfies the following LB equation:

na
i ~x1ea ,t11!2na

i ~x,t !5Va
i ~x,t !, ~3!

whereVa
i is the collision operator representing the rate

change of the particle distribution due to collisions. The c
lision operator is greatly simplified by use of the single tim
relaxation approximation@23,24#,

Va
i ~x,t !52

1

t i@na
i ~x,t !2na

i (eq)~x,t !#, ~4!

wherena
i (eq)(x,t) is the equilibrium distribution at (x,t) and

t i is the relaxation time that controls the rate of approach
equilibrium. The equilibrium distribution can be represent
in the following form for particles of each type@23#:

na
i (eq)~x!5tani~x!@ 3

2 ~12do
i !13ea•v1 3

2 ~3eaea :vv2v2!#,
~5!

n19
i (eq)~x!5t19n

i~x!@3do2 3
2 v2#, ~6!

where

v5

(
i

S

mi(
a

na
i ea /t i

(
i

S

mini~x!/t i

, ~7!

and the weights areta5 1
36 for 1<a<12, ta5 1

36 for 13<a
<18, andt195

1
3 . The parameterdo

i can be related by self
consistency to an effective temperature,T, by the following
moment of the equilibrium distribution:

T~x,t !5

(
i

mi(
a

na
i (eq)~x,t !~ea2v!2

3(
i

ni~x,t !

. ~8!

In order that both fluid components have the same temp
ture, do

i may be defined by the relationdo
i 5122(T/mi),

where we choose units here such that Boltzmann’s cons
kB equals 1.

It has been shown that the above formalism leads t
velocity field that is a solution of the Navier-Stokes@24#
equation with the kinematic viscosityn @2,5#,

n5c2

(
i

S

cit i2
1

2

6
, ~9!

where ci is the concentration of each component and
lattice constantc5& for this model.
5-2
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A. Fluid interaction

An interaction forceFi for each fluid is needed to driv
the phase-separation process. We use a simple interac
suggested by Shan and Chen~the physical basis of this forc
ing is given in Appendix A!, that depends on the density o
each fluid:

Fi52ni~x!(
i 8

S

(
a

Gii 8
a ni 8~x1ea!ea , ~10!

whereGii 8
a

52G, G, and 0 for the casesueau51, ueau5A2,
and,i 5 i 8, respectively.G is a coupling constant controlling
the interaction strength. This term is analogous to a near
neighbor interaction in lattice models of interacting fluid
The forcing term has been shown to drive the phase sep
tion and to produce an interfacial surface tension effect c
sistent with the Laplace law@5#, which states that there is
pressure drop proportional to the local curvature at the in
face boundary between two fluids.

In the LB model of Shan and Chen, phase separa
takes place when the mutual diffusivity of the binary mixtu
becomes negative, providing a condition determining
critical couplingGc for phase separation. An analytical e
pression for the mutual diffusivity has been determined@25#.
For a viscosity matched binary mixture in which the partic
masses are also matched~‘‘symmetric fluid mixture’’!, phase
separation occurs when the critical coupling equals

Gc5
T

48

2c1n12c2n21A~c1n11c2n2!218n1n2

n1n2
.

~11!

It is not ordinarily possible to exactly calculate the critic
coupling for phase separation in three-dimensional liqu
and this condition for the critical coupling,Gc , is evidently
a clue to the nature of the phase-separation process. Sinc
LB method neglects thermal fluctuations that renormalize
critical coupling constantG, this method is amean-field
modelof fluid mixtures. This observation, which has bas
ramifications for the applicability of the model in compa
son with real fluid mixtures, is established numerically in t
next section, where the critical properties are examined
establish the nature of the model.

Once the forcing is described, it must be properly inc
porated into a LB model. Shan-Chen introduced the forc
by modifying the equilibrium velocityv @2#:

ni~x!v8~x!5niv~x!1t i

Fi

r i
, ~12!

wherev8 is the new velocity used in Eqs.~5! and ~6!. This
approach introduces a momentum transfer between fl
that preserves momentum globally. The main criticism of
Shan-Chen model is that when shifting the velocity in t
equilibrium distribution, additional corrections in the pre
sure tensor will appear that are of orderF2.

Instead of shifting the velocity in the equilibrium distr
bution as in the Shan-Chen model, the forcing between
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fluids can be directly included in the body-force term of t
Boltzmann equation. In the continuum Boltzmann equati
the body-force term is writtenBi5Fi /r i

•¹en
i(x,e), where

Fi /r i is an acceleration field due to a body force. An expr
sion of this body-force term, to second order in Herm
polynomials@7#, in the discrete velocity space of the D3Q1
lattice is given by

Ba
i 523tani~x!F ~eaÀv!•

Fi

r i
13~ea"v!S ea•

Fi

r i D G . ~13!

One can think of this acceleration field as being due to
‘‘mean field’’ produced by the surrounding molecules~see
Appendix A!. The main difference between this approa
and the Shan-Chen model is that it avoids terms of orderF2

that result from the shift of the velocity in the equilibrium
distribution, so that the linearity of the forcing is preserve
The effect of this modification of the LB model is invest
gated below.

Finally, Eq.~10! can be modified to mimic an interactio
between the solid surface and fluid@5#. Here ni 8(x¿ea) is
given the value 1 or 0 depending on whetherx1ea resides
on a point in the solid or fluid, respectively, and the value
Gii 8

a is then set to allow the solid to attract a fluid~wetting!
or to repulse a fluid~nonwetting!.

III. EQUILIBRIUM CRITICAL PHENOMENA
IN A LB FLUID MIXTURE

An understanding of the equilibrium critical phenome
of fluid mixtures is necessary for modeling the flow of mu
tiphase materials. This understanding is not only required
estimating phase stability and the type of phase-separa
process~droplet growth or bicontinuous fluid pattern forma
tion @12–16#!, but also for transport properties~collective
diffusion, self-diffusion, viscosity! that depend sensitively on
the nature of the critical phenomena occurring in the liqu
This is natural given the existence of order-parameter~fluid
composition! fluctuations that cause a mode coupling b
tween momentum and mass transport processes@26–32#.
Our first task in developing the LB model for these ma
practical applications~involving phase-separating fluid mix
tures under flow conditions! is to establish the type of equi
librium critical phenomena exhibited by this model flu
mixture. While the LB models do have hydrodynamic inte
actions, they do not treat hydrodynamic couplings associa
with non-mean-field contributions to the mode-coupling b
tween compositional and velocity fluctuations@26–29#. The
theory is thus a mean-field theory also in the sense of fl
dynamics, and the implications of this constraint require f
ther investigation.

IV. COEXISTENCE CURVE FOR LB MIXTURE

For a sufficiently large fluid interaction coupling,G, the
LB mixtures of componentsA andB phase-separate into liq
uids having coexisting compositionsfA and fB at equilib-
rium. The composition variablesfA andfB denote the rela-
tive volume fractions of the two fluid components. The
5-3
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NICOS S. MARTYS AND JACK F. DOUGLAS PHYSICAL REVIEW E63 031205
dimensionless concentration units are normalized so
fA1fB51. Compressibility effects on the fluid mixture ca
be treated through the addition of an additional vaca
componentfc such thatfA1fB1fc51, as in equilibrium
lattice model calculations of compressible mixtures@33#, but
this complication is not considered in the present paper.

Increasing the LB couplingG makes the coexisting com
positions more enriched in the pure components and thus
the same qualitative effect as lowering the temperature
systems exhibiting an ‘‘upper critical temperature’’ typ
phase separation~i.e., phase separation upon cooling!. The
parameterG thus plays a role similar to the binary intera
tion parameter« in the lattice model of fluid mixtures@19–
22,34#,

«5«AB2~«AA1«BB!/2, ~14!

where«AB and«AA ,«BB denote the mutual and self-neare
neighbor interactions of the fluid components.G is also
analogous to the well depth parameter«LJ in off-lattice mod-
els of phase separation based on Lenard-Jones or relate
tentials@35#. In all these models, it is the relative value of th
‘‘interaction strength’’ (G,«,«LJ) to the temperature that i
the dimensionless coupling constant defining the tende
toward phase separation. For example, the dimensionles
teraction in the lattice model of fluid mixtures is conventio
ally defined as@19–22,34#

x5q«/kbT, ~15!

whereq andkbT denote the lattice coordination number a
thermal energy, respectively. The inclusion of theq factor is
made to weight the number of possible nearest-neighbo
teractions. In magnetic phase transitions, we have the s
form of dimensionless couplings as Eq.~13!, where « is
replaced by the ‘‘exchange interaction’’J modeling the
short-range magnetic interparticle interaction@18,36#. From
these measures of interaction, we see that lowering the
perature has basically the same effect as increasing the i
action coupling («,«LJ) for the usual case where orderin
occurs upon cooling. Phase separation in the LB liquid a
occurs when the temperature is lowered withG fixed, and we
similarly define a dimensionless coupling constant,

xG[G/kbT. ~16!

A reduced variable temperaturet may then be defined from
the interaction coupling constant,xG ,

tG[
uT/G2T/Gcu

T/Gc
~17!

for our simulation performed at fixed temperatureT and vari-
ableG. For a particular fluid mixture it is natural to fixG and
to vary T so that the reduced temperature variable is defi
as

tG8 [
uT/G2Tc /Gu

Tc /G
, ~18!
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whereTc is the critical temperature for a fixed value ofG.
The absolute value definition in Eqs.~17! and ~18! ensures
that the reduced temperature variable is positive for no
tional simplicity, but this requires that we must careful
distinguish between the one-phase and two-phase reg
All of the computations of the present paper are performed
the two-phase region.

In Fig. 1, we present our results for the coexistence cu
of a symmetric LB fluid mixture~both mass and viscosity
ratios of fluid components are equal!. They axis denotes the
ratio of critical dimensionless coupling to the dimensionle
coupling,xGc

/xG , defined in Eq.~16! and thex axis denotes

the compositionfA of theA fluid. We observe that the criti-
cal compositionfc,A of the A component equalsfc5 1

2 ~a
‘‘symmetric mixture’’!, as required by the symmetry of ex
change of the fluid components. This exchange symmetr
well known in lattice models of fluid phase separation@37–
41#. The composition differenceDf5fA

(1)2fA
(2) between

the coexisting phases defines an order parameter for the
phase-separation process. The relation ofDf to the reduced
temperature is indicative of the type of critical phenome
~‘‘universality class’’! under discussion. In a mean-fiel
model of fluid phase separation,Df is described by the gen
eral relation@17,18,34#

Df52Btb, t5~T2Tc!/Tc , T'Tc, ~19!

where the order-parameter exponentb and critical amplitude
B for a symmetric incompressible fluid mixture equal@34#

B5A3/2, b5 1
2 . ~20!

The dashed line in Fig. 1 is the predicted value. Our data
consistent with the mean-field prediction astG→0. Note
that the Shan-Chen model deviates more from the mean-
prediction than does the simple body-forcing model. In ge
eral, it was found that the linear body forcing was somew

FIG. 1. Phase diagram of LB fluid mixture. Normalized co
pling xGc

/xG versus the compositionfA of fluid A. The solid
circles represent data from the Shan-Chen model and the trian
represent data from the body-forcing model.xGc

/xG also corre-
sponds to the temperature ratioT/Tc .
5-4
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CRITICAL PROPERTIES AND PHASE SEPARATION IN . . . PHYSICAL REVIEW E63 031205
more stable. The mean-field theory prediction@Eq. ~19!# is
further examined in Fig. 2, where we plot log10(Df) versus
log10(tG) for the lattice data shown in Fig. 1. It is appare
that a power-law scaling ofDf on tG is observed over an
appreciable temperature range. The solid line denotes
prediction of Eq.~19! with no free parameters, wheret is
equated withtG . Note that the critical temperature is n
adjustable in this comparison, in contrast to most simulati
and experiments in which this quantity is not known exac
Of course, the solution of the two-dimensional Ising sp
model and its lattice-gas analog is an exception to this g
eral situation@17,18#. Sengers gives an excellent review
the critical properties of fluids and fluid mixtures that pr
vides much further information about mean-field and no
mean-field critical properties and the ‘‘crossover’’ betwe
these property scaling regimes@42#.

Figures 1 and 2 not only verify that the phase-separa
process in LB fluids is described well by mean-field theo
but they also establish the utility of our definition of reduc
temperature scale,tG , which is required for other applica
tions involving LB fluid mixtures. For example, we ca
quantify the quench depth of our phase-separation meas
ments by specifying thetG value. These simulations can b
compared to experiments on real fluids at the correspon
t value. Quantitative agreement with the properties of r
liquids can only be expected for liquids that can be mode
by mean-field theory over a broad temperature range~see the
discussion below!. This identification between computation
and real fluids is generally restricted to a temperature ra
over which mean-field critical behavior is exhibited to
good approximation. Strictly speaking, no real fluids are
scribed by mean-field critical behavior, but for many flui
the approximation should be reasonable providedt is suffi-
ciently far from the critical point defined by the limitt
→01. The Ginzburg criterion defines the temperature ran
over which mean-field theory is a reasonable approxima
@33,43–50#.

Real fluid mixtures are characterized by differences in
molecular shapes and volumes of the fluid molecules
asymmetries in the intermolecular interaction potentials t

FIG. 2. Order parameterDf versus quench depth paramet
tG .
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destroy the symmetry of exchange between the fluid com
nents @38–40#. This symmetry breaking is evident in th
shape of the coexistence curve. The graph ofDf versust
becomes ‘‘skewed’’ so that the critical compositionfc no
longer equals1

2 @38–40#. The molecular asymmetry effect i
particularly evident in polymer fluid mixtures where the rat
of the molecular weights and the backbone chain struc
can be adjusted to ‘‘tune’’ the asymmetry of the coexisten
curve@21,22,34,51#. The asymmetry becomes extreme in t
case of high molecular weight polymers dissolved in lo
molecular weight solvents wherefA,c of the high molecular
weight component approaches zero with increasing mole
lar weight@21,52#. It is also possible to modify the molecula
weights of a blend to achieve an almost perfect symmetry
in Fig. 1 @53#. This symmetry is not usually observed in flu
mixtures or in single-component fluid phase transitions,
though the degree of asymmetry is usually modest in co
parison with polymer solutions.

The breaking of the particle exchange symmetry aris
from differences in molecular shape, rigidity, mass, a
other molecular parameters is difficult to describe in a m
soscale fluid model of phase separation. We can obta
simple model of this symmetry-breaking phenomenon, ho
ever, by considering the idealized Flory-Huggins~FH! mean-
field model of polymer blend phase separation@21#, which
accounts minimally for the molecular mass asymmetry of
fluid components~actually, the model accounts for a volum
asymmetry since this incompressible polymer blend mo
assumes all lattice sites are occupied and have equal den!.
Notably, the FH model completely ignores polymer topo
ogy, monomer asymmetry, polydispersity in the size a
monomer-monomer interactions, and other factors that su
influence polymer blend stability, but the mass ratio in t
FH model does provide a parameter that allows the asym
try of the coexistence curve to be ‘‘tuned’’ to fit observatio
on real blends.~The recently developed lattice cluster mea
field theory generalizes the FH model by incorporati
leading-order correlations associated with chemical conn
tivity and monomer structure@33#.! We first consider the
case in which the particle masses are ‘‘asymmetric’’ in t
LB fluid model in the same spirit of approximation. Figure
shows the coexistence curve for a LB fluid mixture having
mass ratiodM5MA /MB53, where the concentration differ
enceDf between the coexisting phases is given innumber
densityconcentration units rather than the volume fracti
units of Fig. 1. We examine the scaling ofDf on the quench
depth parametertG in Fig. 4, where we find a mean-fiel
scaling exponent12 as in Figs. 1 and 2 and a shift of th
critical coupling to the valueGc50.0135. The asymmetry o
the coexistence curve is quantified by calculating the dep
dence of the average compositionf Ā5(fA

(1)1fA
(2))/2 in the

coexistence curve shown in Fig. 3, wherefA
(1) andfA

(2) are
compositions of the coexisting phases. According to
‘‘law of rectilinear diameter’’ of Cailletet and Mathias@54#,
f̄ is linear function oft. This linearity is found to a good
approximation in the asymmetric fluid phase-separation
existence curve shown in Fig. 3. The average composi
fA is shown in Fig. 5, where the line denotes the rectiline
diameter fit,
5-5
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NICOS S. MARTYS AND JACK F. DOUGLAS PHYSICAL REVIEW E63 031205
f Ā5fA,c1AtG , ~21!

whereA is a constant,A50.11, andf Ā andfA,c are given in
number fraction units. This type of plot is an effective way
determine the critical composition of an asymmetric flu
mixture @55#. Fluctuation corrections to mean-field theo
can lead to deviations from Eq.~21! in real fluids that are
important near the critical point@56#.

We can also break the symmetry of interparticle excha
and thus distort the shape of the phase boundary by var
the relative volumes of the fluid particles~see Appendix B!.
In Fig. 6, we show the phase boundary calculated for a ra
of values ofl, the ratio of the volumes of componentsA and
B, l5VA /VB . We assume spherically shaped particles
that l scales as the cube of the ratio of the particle radiil
5(RA /RB)3. By convention, we take theA fluid component
to have the largest molecular volume. Increasing the part
size asymmetry strongly increases the asymmetry of
phase boundary, in qualitative agreement with the Flo
Huggins theory of polymer phase separation@21,22,34#.
Note that the data in Fig. 6 are given in volume fracti
units. The simple Flory mean-field treatment of the Flo
Huggins lattice model indicates thatfc51/@11l1/2#, where
l is the relative chain molecular volume~see below!. The
true critical composition seems to be approximated reas
ably well by a similar expression,fc51/@11l#, and the
arrows in the figure show the result in comparison with
data. We note that the phase diagrams of micelle and pro
solutions, where there is a large asymmetry in the size of
phase-separating species, tend to be asymmetric as in F
@57#.

In applications of the LB model to real measurements,
can phenomenologically adjust the relative mass~and thus
the critical composition in Figs. 3 and 4! or relative particle
volumel and identify the LB order-parameter variable@fA
~number density! or volume fraction units, respectively# with
the experimentally determined order-parameter concen
tion unit. While this is generally an approximation, we e
pect it to provide a reasonable mimic of the critical prop
ties of asymmetric fluid mixtures as in previous experien
with the FH model@58#.

A. Interfacial composition profile and correlation length

The interface between phase-separated liquids beco
diffuse near a critical point where the interfacial tension b
comes relatively low. The width of this interface can
quantified through the determination of the composition
terfacial profilefA(z), which measures the local compos
tion along a coordinate,z, normal to an interface between th
coexisting phases.

An interface in near-critical fluid mixtures can be prob
by optical reflectivity @59–61# or ellipsometry@62–64# to
determine its width, but accurate measurements of comp
tion gradients across the interface are difficult. Direct m
surement offA(z) has recently become possible in thin film
by neutron reflection@65,66#, but the broadening of thes
profiles by capillary waves and surface wetting effects co
plicates the interpretation of those measurements so
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it is hard to quantitatively evaluate theory in this importa
area @67–70#. The LB model allows the determination o
fA(z) for an ideal mean-field theory fluid. Some insight in
the fluctuation contribution tofA(z) can be obtained by
comparing these calculations to Monte Carlo calculations
fA(z) @69,70#. An important property that derives from th
determination offA(z) is the correlation lengthj2 in the
two-phase region, which governs the average width of
interface ~see below!. This definition of the correlation
length is more involved in asymmetric fluid mixtures sin
the composition profile,fA(z), is asymmetric about the cen
ter (z50) of the fluid interface.

Figure 7 shows an equilibrium interfacial compositio
profile fA(z) for a symmetric LB mixture having a quenc
depth in the two-phase region,tG50.1. The numerically de-
termined profilefA(z) is fit well by the mean-field theory
prediction@11,63,70–72#,

fA~z!5f̄1~Df/2!tanh~z/w! ~22!

for all tG considered in our paper. The dependence of
interfacial widthw on reduced temperaturetG is indicated in
Fig. 8. The mean-field correlation lengthj2 of the fluid mix-
ture in the two-phase mixture is related tow by @64,70,72#

2j2[w ~23!

so that the determinationfA(z) affords a means of determin
ing the basic propertyj2. A fit to the w data nearest the
critical point in Fig. 8 gives

j25~0.9660.05!tG
2n , ~24!

where the mean-field value of the critical exponentn5 1
2 is

assumed. Far away from the critical point, wheretG
;O(1), the correlation length becomes comparable to t
lattice spacing, as in Monte Carlo simulation of phase se
ration in small molecule liquids@70#. The lattice spacing in
the LB model should be interpreted as being comparabl
the average range of the interparticle interaction poten
This scale is typically comparable to the average molecu
dimensions of the molecule involved@73#, and for polymers
this scale can be fairly large@74#. Particle clustering can also
increase the magnitude of this scale in small molecule liqu
@75#.

In a mean-field model of phase separation, the correla
lengthj has the same singular dependence on reduced
perature,tG , in the one- and two-phase regions (j1 andj2,
respectively! @76#,

j5jo
2tG

21/2, j5jo
1tG

21/2, ~25!

but the correlation length amplitudesjo
1 ,jo

2 are related by a
constant ratio in mean-field theory@76#,

jo
1/jo

2521/2. ~26!

This ‘‘universal’’ ratio is closer to 2 in real fluid mixtures
exhibiting Ising-type criticality@77,78#. The discrepancy be
tween Eq.~26! and measurement is illustrative of the larg
5-6
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CRITICAL PROPERTIES AND PHASE SEPARATION IN . . . PHYSICAL REVIEW E63 031205
property changes that critical fluctuations can induce. Mo
over, the critical temperature, in three dimensions, can
shifted from its mean-field value by as much as 25%
fluctuations, so that the interaction parameters must
treated as phenomenological parameters in comparison to
periments in order to ‘‘absorb’’ these discrepancies@34#.

The interfacial composition profilefA(z) of asymmetric
fluid mixtures composed of mixtures of dissimilar molecu
is also asymmetric@79#. We briefly illustrate this effect in
Fig. 9 for a fluid having a mass ratiodM53 and a quench
depthtG50.1. Again, we present our concentration data
the asymmetric fluid in terms of number density units
simply realize the effect of fluid asymmetry@80#. While the
equilibrium profile may appear to be like the tanh profi
@Eq. ~22!# found in the symmetric case, we could not obta
a good fit to this function. A good empirical description
this profile is found by first taking a derivative of the profi
in Figure 9 to find its inflection point and by then fitting to
tanh profile oneach sideof the inflection point@65,81#. Fig.
9 shows a fit to the data where the characteristic widthswL

FIG. 3. Phase diagram of an asymmetric LB fluid mixture.

FIG. 4. Order parameterDf vs quench depth parametertG for
an asymmetric LB mixture.
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55.75 andwR55.0 correspond to the left and right sides
the inflection point. The averagew̄5(wL1wR)/2 provides a
good measure of the average interfacial width. We plan
discuss the properties of the LB model with a molecu
volume asymmetry further in a separate publication so t
this case is not discussed here. In all the discussion be
we restrict ourselves tol51.

It has sometimes been reported that two correlat
lengths exist in the two-phase region of fluid mixtures hav
asymmetric coexistence curves@75#. These measurement
are made by performing light or neutron scattering on co
isting phases in macroscopically phase-separated sam
The scale of the composition fluctuations appears to occu
different scales in thefA-rich andfA-poor coexisting phase
@75#. Apparently, the measurement process can give ris
unequal weighting in the different phases to the two sides
the fA(z) profile, leading to differentj2 estimates. Al-
though such measurements provide some insight into

FIG. 5. Rectilinear diameterf5(fA1fB)/2 versus quench
depthtG .

FIG. 6. Influence of particle size on phase boundary asymme
l51.0 ~filled circles!, 4.63 ~filled squares!, and 125.0 ~open
circles!. Dashed lines are included to help guide the eye.
5-7
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NICOS S. MARTYS AND JACK F. DOUGLAS PHYSICAL REVIEW E63 031205
asymmetry of thefA(z) profile, they should not be inter
preted as implying the existence of two distinct correlat
lengths in the two-phase region.

B. Interfacial tension

Interfacial tension measurements provide a direct me
of probing the interaction between fluids. This property
crucial in an industrial context for controlling the size a
phase stability of mechanically dispersed droplets and o
transient structures formed in the course of phase separa
In principle, the interfacial tension,s, provides a conceptu
ally simple means of determining the reduced tempera
variablet5(T2Tc)/Tc needed to characterize the phase s
bility of fluid mixtures, but experimental complication
@82,83# ~e.g., high viscosity in polymeric systems! have lim-
ited somewhat the application of this method to the criti
phenomena of fluid mixtures. Part of the difficulty is th
need for a more predictive theory of interfacial tension

FIG. 7. Interface composition profilefA for a quench depth
tG50.08. z is in the direction normal to the center of the flu
interface. Solid line is fit to Eq.~22!.

FIG. 8. Interfacial widthw as a function of the reduced intera
tion tG .
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which reliable thermodynamic interaction (x or G) measure-
ments can be based. Recently, there has been great effo
modeling the interfacial tension of polymeric blends
Monte Carlo simulation methods as a guide to improvi
analytic theory in this important area of technological app
cation @69,70#.

We calculate the LB interfacial tensions through an in-
tegration of the interfacial composition profile,

s5E ~Pzz2
1
2 @Pxx1Pyy# !dz, ~27!

where Pzz and 1
2 @Pxx1Pyy# are the normal and tangentia

parts of the pressure tensor, respectively. The numerical
ues of the interfacial tension for the symmetric LB fluid mi
ture, shown in Fig. 10, are consistent with a power law,

s5sotG
1.5, s0'4.2 ~28!

over a broad temperature range. The exponent 1.5 is an
tablished result for the interfacial tension in mean-fie

FIG. 9. The interfacial composition~number density! profile
fA(z) of an asymmetric fluid mixture having a mass ratiodM53
and quench depthtG50.08.

FIG. 10. Interfacial tension versus quench depth,tG .
5-8
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CRITICAL PROPERTIES AND PHASE SEPARATION IN . . . PHYSICAL REVIEW E63 031205
theory @12,70#, and is found to agree reasonably well wi
observations outside the critical region@84–86#. Fluctuation
effects modify the exponent to a value'1.25 @87#. This
fluctuation-modified exponent is often found to be quite
curate near the critical point for phase separation@77,78#.
The amplitude of the interfacial tension,s0, is a nonuniver-
sal quantity that depends on the interparticle potential ran
interparticle spacing, and molar volume of the liquid. Furth
discussion of the origin of interfacial tension in the L
model is given in Appendix A.

V. COMPARISON OF THE LB FLUID MIXTURE MODEL
TO POLYMER BLENDS

It is apparent from the examination of the LB mixtu
model above that the critical properties of this fluid are d
scribed by mean-field theory and that the critical expone
predicted by this model are inconsistent with those measu
for many real mixtures. This limits, of course, the compa
son of LB model calculations to certain qualitative trends
the equilibrium properties of near-critical fluid mixture
~The theory should become more reliable, however, aw
from the critical point.! Such inconsistencies can also be e
pected for certain dynamic properties near the critical po
For example, the shear viscosity of a near critical Ising-ty
fluid mixture diverges near the critical point while no dive
gence occurs in a model mean-field mixture@88#. Mode-
coupling effects due to compositional flucuations have
even larger effect on the collective diffusion coefficie
@30,31#. Although mean-field models of fluid mixtures a
idealized, there is a class of real liquids whose behavior
proaches this ideal type critical behavior. The phase sep
tion of polymer blends in the theoretical limit of infinit
molecular weight of the homopolymer components has b
argued@45,46# to be described by mean-field theory, so th
the phase separation of high molecular weight blends sh
be reasonably approximated by this idealized model. Mo
Carlo calculations support these theoretical arguments
though the chain length must generally be rather high for
approximation to apply@89,90#. There have also been rece
reports of apparent mean-field critical behavior in fluid m
tures with salts@90# and in ionic fluid mixtures@91#.

It is common practice in polymer science to fit the critic
properties of polymer blends to the Flory-Huggins~FH!
mean-field lattice model of phase separation where all in
curacies of the modeling~monomer structure, chain archite
ture, compressibility, . . .! are absorbed into the phenomen
logical ‘‘x parameter’’ in Eq.~16! @92#. A virtue of the FH
lattice model is that it often allows the prediction of qualit
tive trends in the scattering properties of polymer blends.
can retain this advantage and avoid the conceptual pitfall
interpretingx too literally as a ‘‘molecular’’ parameter by
establishing a formal correspondence between the param
of this model and the LB fluid mixture model.

In the FH model of polymer blend phase separation,
reduced temperature variable is@46,92#

tFH5ux2xcu/x5uTc2Tu/Tc , ~29!

where the critical interactionxc is defined by the condition
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xc5~2NAfc!
211@2NB~12fc!#

21 ~30!

and NA and NB are homopolymer polymerization indice
Symmetricblends are defined by the idealized conditionNA
5NB5N so thatfc5 1

2 andxc52/N. The critical composi-
tion fc of the blend no longer equals12 when the blends are
not symmetric (NA>NB) @21,46,74#,

fc5
NB

1/2

NA
1/21NB

1/2
. ~31!

As mentioned above, the incorporation of asymmetry in
the LB model requires adjusting the mass asymmetry or v
ume asymmetry to give a variation in the critical compo
tion. We can thenmimic the asymmetric phase of the pha
boundary of polymer blends by varying the mass asymme
dM or l and formally replacingtG by tFH.

The correlation lengthj of the FH model in conjunction
with the random-phase approximation@46,74# yields a scal-
ing relation forj in the two-phase region for a symmetr
blend

j25j0
2tFH

21/2, j0
25Rg /A6, ~32!

where Rg is the chain radius of gyration. We see from
comparison of Eqs.~32! to the LB expression Eq.~23! that
the lattice spacing in a coarse-grained model of polym
blends must be large since the lattice spacing is on the o
of Rg . This implies that the lattice spacing must be taken
depend on chain molecular weight in comparison with m
surements. Moreover, the predictions of the LB model m
be considered with caution when physically relevant sca
in physical problems become smaller than this coar
graining scale~lattice spacing! of the LB lattice model. This
limitation is natural since the LB model is a mesoscop
description of a fluid rather than a microscopic model.

There are a number of points to be drawn from our d
cussion of polymer blend critical properties in comparis
with the LB model of fluid phase separation.

~i! Polymer blends are reasonable candidates for comp
son with the LB mixture model.

~ii ! The mean-field model gives rise to universal scali
relationships that should allow fixing the parameters of
LB model according to the blend molecular characteristi
This gives some insight into the qualitative variation of t
LB parameters with the variation of molecular structure.

~iii ! Comparison of the LB model with parameters fixe
by the FH model with Monte Carlo calculations of the latti
model of polymer blends should provide some insight in
the mean-field approximation in the case of properties
tractable using analytic mean-field theory. For example,
can compare LB calculations of the interfacial tension
Monte Carlo calculations for polymer blends that avoid t
mean-field approximation.

~iv! Fixing the LB model parameters through ‘‘matching
to the FH model then allows a comparison with dynami
properties~transport coefficients! and processes~phase sepa-
ration, wetting, dewetting! of blends calculated using th
mean-field approximation.
5-9
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NICOS S. MARTYS AND JACK F. DOUGLAS PHYSICAL REVIEW E63 031205
~v! The expression of the results of measurements
terms of general and universal scaling relations~when they
exist! offers advantages to representations involving the p
nomenologicalx interaction parameter. Expressions betwe
large-scale observable properties deduced from mean-
theory often have greater applicability than expressions
tween observables and temperature-like variables suchx
andt.

VI. SOME ILLUSTRATIVE CALCULATIONS OF PHASE
SEPARATION WITH AND WITHOUT SHEAR AND

THE INFLUENCE OF INTERACTION BOUNDARIES ON
PHASE SEPARATION

Now that we have established the type of critical pheno
ena exhibited by the LB model of fluid mixtures and a r
duced variable description for some of the basic thermo
namic properties of this model fluid mixture, we can app
the LB model to the description of phase separation und
wide range of conditions. In this section, we will illustra
some phenomena we have investigated in connection
recent measurements.

The comparison of nonequilibrium phenomena such
fluid phase separation to LB model calculations requires
introduction of a dimensionless time unit that is comm
between the experimental and computational fluids. For fl
phase separation, it is conventional to express reduced
in terms of the mutual diffusion coefficientDm and the cor-
relation length,j2 @93–95#. We thus divide our computa
tional time t by the average initial rate of phase separati
tps52(j2)2/uDmu, deduced from Cahn-Hilliard theor
@11,93–95#. The mutual diffusion coefficient obtained for th
Shan-Chen model studied in this paper for a viscos
matched binary mixture is given by

Dm5tT F 12G82n1n2

11G8~c1n21c2n1!
2

1

2G , ~33!

FIG. 11. ‘‘Spinodal’’ phase separation morphology in critic
composition~50-50 relative composition! fluid mixture. The quench

depth equalstG50.537 andt̄ 53.6.
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whereG8512G/T. All times below are reported in the di
mensionless timet̄ 5t/tps in our discussion of the LB mode
of fluid phase separation. Results are presented from sim
tions corresponding to a sytem size of 803 in units of lattice
spacing cubed.

A. Phase separation without shear

In Fig. 11, we illustrate the case of a critical compositi
(fA5 1

2 ,mA5mB). The value of the ‘‘quench depth’’ equal
tG50.537 and the reduced time,t̄ 53.6. Periodic boundary
conditions are employed in this LB calculation to minimiz
wall effects. Figure 12 shows separation after a later tim
t̄ 517.8. The pattern is similar in geometric form to Fig. 1
but the characteristic scale of the pattern is larger after lon

FIG. 12. Spinodal phase separation in critical composition fl
mixture. Note the similarity of the structure in Fig. 12 to Fig. 1
apart from scale. This observation reflects the existence of dyna
scaling in the mixture coarsening. The quench depth equalstG

50.537 andt̄ 517.8.

FIG. 13. Off-critical~10-90 relative composition! phase separa
tion showing droplet formation and coarsening. The quench de

tG50.133 andt̄ 58.4.
5-10
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CRITICAL PROPERTIES AND PHASE SEPARATION IN . . . PHYSICAL REVIEW E63 031205
times, geometrically illustrating the notion ofdynamic simi-
larity in the phase-separation coarsening process. A stud
the time dependence of the growth of the phase separa
shows that the pattern scale grows slowly in the early st
of the phase-separation process, as the local compos
builds up to its coexisting composition value~one of the

FIG. 14. ~Color! Sheared critical composition blend. Th
‘‘string’’ structures are observed along shearing planes where
strings are oriented in the direction of the fluid flow. The quen

depthtG50.537, t̄ 58.5, andġtp50.18.

FIG. 15. ~Color! Early-stage off-critical~15-85! phase separa-
tion under shear. For Figs. 15–17, orange represents the regio
high localized phase fraction of fluidA (fA50.15). The green
regions represent the transition to a high localized phase fractio
fluid B, fB50.85. Note the incipient Taylor-Tomitaka instability i

some of the fluid ‘‘strings.’’ The quench depthtG50.287, t̄

516.4, and the dimensionless shear rateġtp50.56.
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coexisting phases,fB , has been rendered transparent in F
11!. At a later stage of phase separation, the pattern s
growth is roughly linear in time@96,97#. Other LB studies
have recently focused on modeling the kinetics of ph
separation, so we do not dwell on this well known pheno
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FIG. 16. ~Color! Intermediate stage off-critical~15-85! phase

separation (t̄ 527.6). Droplets form after the fluid threads in Fig
15 break up by the Taylor-Tomotika instability.

FIG. 17. ~Color! Late-stage off-critical~15-85! phase separation

( t̄ 556.8). Droplets shown in Fig. 15 reconnect into stringli
structures that appear to persist and coarsen in cross-section
mension with time. The strings in Fig. 17 are contrasted with
‘‘stringslike’’ structures near the mixture surface in Fig. 14, rep
sentative of a critical composition fluid mixture.
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FIG. 18. ~Color! Initial density of three phase systems to u
dergo surface-driven phase separation. The blue and green re
correspond to the location of the two-phase mixture. A third pha
lying above, is rendered as the translucent red region. The qu
depthtG50.7.

FIG. 19. ~Color! ‘‘Surface-directed’’ phase separation. Pha
separation of a fluid mixture between interacting solid and
boundaries. The layered morphology corresponds to ‘‘surfa
directed spinodal decomposition.’’ This stage of the phase sep

tion corresponds tot̄ 51.0.
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FIG. 20. ~Color! Phase separation of a fluid mixture betwe
interacting solid and air boundaries. This image indicates the de
opment of an instability that disrupts the layers in late-stage ph

separation. The reduced time equalst̄ 51.6.

FIG. 21. ~Color! ‘‘Disrupted’’ surface-directed phase separ
tion. The disruption effect of ‘‘pinching’’ of the layers allows fo
further coarsening and leads to a collapse of the layered struc

shown in Figs. 19 and 20. The reduced time equalst̄ 54.0.
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CRITICAL PROPERTIES AND PHASE SEPARATION IN . . . PHYSICAL REVIEW E63 031205
enon in the present paper@11,97–100#. We next illustrate the
qualitative change in the phase-separation morphology t
occurs under off-critical conditions. Figure 13 shows t
phase-separation morphology for a quench depth,tG

50.133. The rendered compositionfA is taken to have the
off-critical valuefA50.1. The phase separation then occ
through droplet formation rather than the formation of a
continuous ‘‘spinodal’’ phase-separation pattern. At a la
time, we observe the droplets to coarsen by coalescence
normal manner for off-critical fluids@101#. In future work,
we plan to explore the conditions~e.g., quench depth, vis
cosity mismatch, etc.! that determine the crossover betwe
the droplet and bicontinuous phase-separation patterns
served in the early stages of phase separation. Even this
aspect of fluid phase separation remains poorly unders
so that materials scientists must rely on engineering corr
tions @102#.

B. Phase separation under a steady shearing flow

We next illustrate a nontrivial application of the L
method to a situation in which fluid flow is crucially impo
tant. Figure 14 shows the phase separation of a critical c
position (fA5fB , MA5MB) blend for the same quench a
shown in Fig. 11. The upper and lower boundaries in
figure are energetically ‘‘neutral’’~neither fluid preferen-
tially wets the surface.! A hydrodynamic ‘‘stick’’ boundary
condition is imposed at the walls. The top and bottom wa
move at velocitiesuw and2uw such that the dimensionles
shear rate equalsġtps5(2uw /d)tps50.18, whered is the
spacing between the walls. The boundary condition is p
odic in the direction parallel to the translating planes. W
observe in the top view that the phase-separation pattern
pears to have a ‘‘stringlike’’ form at the boundary, but th
the structure within the film is actually more complicate
The phase separation in the plane perpendicular to the flo
remarkably undisturbed by the flow and closely resemble
two-dimensionalphase-separation pattern in the absence
shear. As time proceeds, the ‘‘penetration depth’’ of t
surface-induced ‘‘stringlike’’ structures in Fig. 14 increas
and the phase-separation morphology ultimately coarsen
a state where the fluid interface lies perpendicular to
shearing planes and parallel to the flow direction. T
surface-induced ‘‘structuring’’ of the blend morpholog
would be accentuated in the early stages of phase separ
if one of the blend components had a preferential attrac
to the shearing boundaries. This surface interaction evide
has a symmetry-breaking effect, since the fluid interface w
found to lieparallel to the interface of the shearing boun
aries at long times, when the boundary interaction was m
fied in this fashion. This illustrative calculation shows th
the surface interaction can have a large influence on the
timate alignment of a phase-separated fluid under shear.
also apparent that the interpretation of optical and scatte
data on sheared phase-separated fluids is complicated b
existence of gradients in the composition and structure of
fluid. Clearly, these observations warrant a thorough inve
gation of the many parameters that seem relevant to the
nomena~quench depth, surface energy, viscosity, molecu
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weight mismatch, roughness of shearing surface, steady
oscillatory shear, etc.!. We note that many experiments hav
recently reported ‘‘stringlike’’ structures in sheared phas
separating fluids using both light scattering and optical m
croscopy techniques@48,103,104#, and ‘‘stringlike’’ struc-
tures have also been reported in two-dimensional LB pha
separation simulations@105#. The case of two dimensions i
somewhat special, however, since the Taylor-Tomot
@106# instability is suppressed in two dimensions@107#.

An illustration of phase-separation in an off-critical blen
under steady shear also provides important insights into
kinds of phase-separation morphologies that can be expe
experimentally. Figure 15 shows an off-critical blend~15-85!
for a dimensionless shear rate,ġtps5(2uw /d)tps50.58. Ini-
tially, long narrow filaments formed and eventually the
broke apart into droplets due to the well-known Taylo
Tomotika instability@106#. The droplets~Fig. 16! then be-
came elongated and tilted at approximately 45° relative
the shear plane, as predicted in the limit of a low concen
tion of dispersed droplets@108#. However, at a later stage o
phase separation~Fig. 17!, the droplets coalesce to form un
dulating string structures that seem to persist indefinitely i
‘‘dynamic string state’’ ~a video of our simulation can be
found in Ref.@109#!. The correlated motions of the string
suggest that the hydrodynamic interactions between
strings and/or between the strings and the boundary of
sheared fluid seem to be playing an important role in
stabilization and formation of the extended string structur
Subsequent experiments have indicated a similar string
mation phenomenon in an off-critical blend sheared at l
shear rates in a parallel plate geometry having a narrow
relative to the droplet size@110#.

C. Surface-directed phase separation

As a final illustrative application of the LB method, w
consider an example of blend phase separation where
boundary is solid and the other interface is fluid~Figs.
18–21!. Figure 18 shows the initial fluid composition at
quench depth oftG50.7. The dark liquid phase has a pre
erential interaction@111# with both the solid substrate~bot-
tom boundary! and a third fluid~‘‘air’’ !. This image illus-
trates the well known phenomena of ‘‘surface-direct
spinodal decomposition,’’ in which the compositional wav
of phase separation are brought into registry with
symmetry-breaking walls@95,112–116#. The coarsening of
the layer structure at early and intermediate times occ
much like a bulk blend~see Fig. 12!, but the continued coars
ening at long times requires the intermittent loss of flu
layers. At some point, the undulations within the layers gr
sufficiently large~perhaps associated with the rupture of i
ner layers as required by coarsening! to induce perforations
in the outer surface of the blend film at the polymer-
boundary~Fig. 20!. This undulation phenomenon then caus
the layered structure to break up into a structure that su
ficially resembles a spinodal decomposition pattern wh
seen from above~Fig. 21!. A number of studies have indi
cated the presence of a ‘‘fast mode’’@117# in layered blend
films, corresponding to a rapidly growing length scale co
5-13
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sistent with a hydrodynamic instability. The instabili
shown in Figs. 18–21 provides a possible explanation for
geometrical nature of this transition. Further computatio
and experimental studies of the late-stage coarsening in
bilities in layered blends would clearly be interesting
check this novel picture of phase separation in thin quiesc
films in which the surface exerts a strong perturbing infl
ence on the phase-separating blend film structure.

VII. CONCLUSIONS

The development of the lattice Boltzmann methods
simulating flows in multiphase liquids has developed rapi
in recent years. The time has come to evaluate the crit
phenomena that characterize basic thermodynamic and
drodynamic properties of this type of model. We perform
numerical experiments on a LB fluid model to determine
equilibrium critical properties that are most important f
comparison with real fluids. The results of those simulatio
are represented in a reduced variable description tha
largely independent of the particulars of the model facilit
ing comparisons with other models of fluid mixtures a
with experiment. This type of representation should also
advantageous in expressing experimental measurements
model-independent form. Our observations indicate that
critical properties~coexistence curves, correlation length, i
terfacial profile, surface tension! of the LB fluid correspond
to an ideal mean-field fluid over a broad range of tempe
tures. This makes comparisons of the model to experim
particularly appropriate to the high molecular weight po
mer blends and other fluid mixtures~perhaps also including
some ionic fluids and fluid mixtures containing dissolv
salts@90,91#! that can be reasonably modeled by mean-fi
theory.

Now that we have established the equilibrium critic
properties of LB fluid mixtures, we are in a position to stu
much more complicated problems involving fluid flow
phase separation, and interacting complex boundaries.
illustrated this type of problem in the case of phase sep
tion in critical and off-critical fluid mixtures with and with
out shear. We also considered the perturbing influence
boundaries on quiescent phase separation and the flow i
bilities that can occur in late stages of phase separation.

Our bulk blend phase-separation studies show that
morphology of the phase-separation process in its early
intermediate stages depends on the fluid composition.
early stage of phase separation corresponds to the grow
the local composition to the value of the coexisting comp
sition. Coarsening proceeds at a later stage. The ph
separation morphology had a bicontinuous form under
critical conditions and the minority phase had a drop
morphology in a far off-critical blend. Previous LB calcula
tions have emphasized the kinetics of phase separa
which is not the emphasized phenomena here@11,98–100#.
In future work, we plan to study the crossover between
droplet to bicontinuous phase-separation morphology a
function of viscosity mismatch, composition, and quen
depth.

Next, we considered the more challenging problem
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phase separation under steady shear. Again we consid
on- and off-critical blends and found the morphologies to
qualitatively different. Shear had the effect of causing t
phase-separation morphology to ‘‘streak’’ into a stringli
morphology near the boundary of the critical compositi
phase-separating blend, leading to a complex gradient st
ture within the blend. The ‘‘penetration’’ depth of th
surface-induced strings seemed to grow with time in
course of phase separation. The ultimate configuration of
phase-separated blend, alignment parallel or perpendicul
the flow direction, depends on the polymer surface inter
tion. These observations of fluid heterogeneity on interme
ate time scales clearly raise questions about the proper in
pretation of light scattering and optical microscopy studies
blends under shear, since these methods often involve
averaging over the gradient structure or are limited to obs
vations of the near-surface properties of the mixture, resp
tively. The off-critical sheared blend simulations revealed
tendency toward droplet distortion and tilted alignment w
respect to the shear flow direction. At a latter stage, we
served droplet alignment and the droplets subsequently
lescenced into a stringlike morphology. These strings se
to be very stable under shear, which we expect to arise f
the strong hydrodynamic interactions between the strings
the shearing boundaries in these highly confined pha
separating fluids~see Fig. 17!. A similar phenomenon in off-
critical blends sheared at low rates in a confined geom
has recently been observed experimentally@110#.

In our final illustrative example, we considered the pe
turbing influence of solid and air boundaries on the ph
separation of a blend. The existence of a ‘‘free’’ deformab
boundary~polymer-air interface! makes this a particularly
instructive example of some of the advantages of the
method. We observe the development of composition wa
in the phase-separating blend, as observed in many prev
experimental and simulation studies with a preferential int
action between one of the blend components and the bo
aries @110,112–116#. The simulation illustrates the proces
by which layers are lost in the course of phase coarsen
These film coarsening processes apparently lead to a d
bilization of the layer structure in a late stage of phase se
ration. The fluctuations within the film associated with su
cessive film rupture processes cause the layer structur
collapse like a disturbed ‘‘house of cards,’’ leading to a po
mer blend morphologysuperficiallyresembling a bicontinu-
ous ‘‘spinodal’’ pattern. These observations emphasize
importance of time-dependent studies of blend film m
phologies in measurements on real blend films to prope
interpret their origin.

Our illustrations of LB calculations of blend phase sep
ration were purposely restricted to relatively simple geo
etries and flows that are under current study for their pot
tial relevance to processing applications. It is also possibl
incorporate many other fluid properties of interest~shear de-
pendence of fluid viscosity! and other important effects~tem-
perature gradients and time-dependent temperature v
tions, density mismatch of fluid components and segrega
with gravitational and centrifugal fields, fluid wetting an
dewetting on heterogeneous substrates, phase separati
5-14
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CRITICAL PROPERTIES AND PHASE SEPARATION IN . . . PHYSICAL REVIEW E63 031205
blend films on patterned substrates, phase separation in
tric fields, phase separation at high rates of flow where in
tial effects are important, flow in complex geometries a
with the presence of filler inclusions, etc.!. There are many
possibilities for further application. An important challeng
for future theoretical work is the incorporation of fluctuatio
effects to better describe fluid properties near the crit
point for phase separation.
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APPENDIX A: CONTRIBUTION TO PRESSURE TENSOR
FROM FLUID ÕFLUID INTERACTION

Here it is useful to discuss the relation between the
model and other mean-field models of phase separa
First, consider the equation for a single-particle distribut
function P1 based on the continuum BBGKY@8,9# formal-
ism, which is extended to the case of multiple species,

] tP1
i 1kW1•“P1

i 1FW •“kP1
i 5V i , ~A1!

wherekW is the microscopic momentum,F is the acceleration
due to a body force, andV is a collision operator. It can be
shown, when making a molecular chaos approximation@9#,
that the collision operator can be written as

V i52(
j 51

s ]P1
i ~rW1 ,kW1 ,t !

m]kW1

3E d3r 2r j~rW2 ,t !gi j ~rW1 ,rW2 ,t !
]Vi j ~r 12!

]rW1

. ~A2!

This approximation of the collision operator is of the form
a body-force term,F•“kP1. For urW12rW2u.d, whered is of
order a few ‘‘effective’’ hard-sphere diameters,gi j (rW1 ,rW2)
'1. After expandingr j about r 1, the contribution to the
collision operator associated with the attractive intermole
lar interaction,V i can be approximated byV i5( j 51

s
“Vm

i j

•“kP1
i , where Vm

i j 52ai j r
j (rW1)1k i j“

2r j (rW1) with ai j

5 1
2 *dd3rVi j (r ) and k i j 5

1
6 *d d3r r 2Vi j (r ). Vm

i j can be
03120
ec-
r-
d

l

-
l
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e
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n
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thought of as a mean-field potential produced by neighbor
particles and2“Vm

i j is the associated mean-field force.
The pressure tensor can be determined for this system

PJ5@2a11 r1
22a22 r2

222a12 r1r2

1k11~
1
2 u“r1u21r1“

2r1!1k22~
1
2 u“r2u21r2“

2r2!

1k12~“r1•“r21r1“
2r21r2“

2r1!# IJ2k11“r1“r1

2k22“r2“r222k12~“r1“r21“r2“r1!.

This expansion is a counterpart of the Cahn-Hilliard or La
dau free-energy expansion@12,17#. The forcing used in this
paper is for the case in which all terms in the above press
tensor are zero except that with the coefficienta12, which is
proportional to the coupling constant,G, described earlier in
the paper. While there is no explicit inclusion of a surfa
tension term in the model studied in this paper, an effect
surface tension force results in the Shan-Chen model du
how the forcing between fluid components is incorporat
This can be seen from the leading term in the expansion oF,

F;r~x1Dx!2r~x2Dx!'
]r

]x
, ~A3!

whereF2 corrections to the pressure tensor, a feature in
Shan-Chen model@7#, scale with the surface tension as
standard Cahn-Hilliard models. Higher-order terms, fro
Chapman-Enskog analysis, also contribute to the effec
surface tension, along with contributions that arise fro
finite-difference approximations of the contiuum equatio
Quantitative predictions of the surface tension require an
derstanding of all these terms.

APPENDIX B: HARD-SPHERE CORRECTION
TO INTERACTION TERM

The usual lattice Boltzmann method assumes that the fl
is composed of point particles. To include a volume exc
sion interaction and in effect obtain a relative volume of t
fluid particles, we utilize an Enskog hard-sphere model. T
relative volume fraction can be determined from the sph
radius and the number density. The application of Ensk
theory to multicomponent fluid mixtures is described by L´-
pez de Haroet al. @118# and in references cited in this work
While there are different formulations of hard-sphere mo
els, such as standard Enskog theory~SET! and revised En-
skog theory~RET!, we will utilize a form of forcing, arising
from hard-sphere interactions that are treated to lowest o
in density. In this case, the two theories are identical. Furt
details are described in Ref.@118#. In the isothermal regime
the additional correction to the forcing due to hard-sph
collisions,Bi (HS), is
5-15
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Ba
i (HS)52

2bi j x i jc

nj
na

i (eq)~ea2v!•
]nj

]x
, ~B1!

where x i jc is the equilibrium value of the pair correlatio
function for spheres of speciesi and j at contact with the
ce
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03120
equilibrium density replaced by the total local equilibriu
density at the pointx, bi j 5

2
3 pnjs i j

3 /r, with s i j equal to the
distance between sphere centers in contact andr is the local
density. The total forcing on a fluid componenti is thenBa

i

1Ba
i (HS) , whereBa

i is defined in Eq.~13!.
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@118# M. López de Haro, E. G. D. Cohen, and J. M. Kincaid,
Chem. Phys.78, 2746~1983!.
5-18


