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Basic equilibrium properties of lattice BoltzmaiibB) fluid mixtures(coexistence curve, surface tension,
interfacial profile, correlation lengthare calculated to characterize the critical phenomena occurring in these
model liquids and to establish a reduced variable description allowing a comparison with real fluid mixtures.
We observe mean-field critical exponents and amplitudes so that the LB model may be useful for modeling
high molecular weight polymer blends and other fluid mixtures approximated over a wide temperature range by
mean-field theory. We also briefly consider phase separation under quiescent and shearing conditions and point
out the strong influence of interacting boundaries on the qualitative form of the late-stage phase-separation

morphology.
DOI: 10.1103/PhysRevE.63.031205 PACS nunerd7.11+j, 05.20.Dd, 02.70-c
I. INTRODUCTION expansion of a BBGKY collision operatd8—10], which

should facilitate comparison with the Cahn-Hilliard theory of

In many applications involving materials processing andphase separatidid1-16 and the Ginzburg-Landau theory of
development, it is necessary to understand and control th@fitical phenomen17,18.
morphology of multiphase fluid mixtures and particulate dis- We calculate basic equilibrium propertig¢soexistence
persions subject to a Comp|ex flow history. These app“caCUrve, interfacial width and correlation Iength, surface ten-
tions often involve free liquid-air boundaries that can re-Sion) and express our results in terms of a reduced variables
spond to flow and phase-separation processes, solidescription that allows comparison with real fluid measure-
boundaries that can be preferentially wet by certain liquidments. Asymmetry in the mass and volume of the fluid com-
components, thin-film geometries, complex solid substrat@onents is considered in this comparison since this property
geometries, and high Reynolds number flows in which fluidis characteristic of real liquids. The effect of flow and inter-
inertia is important. The development of computational@cting boundaries on the phase separation process is briefly
methods of sufficient flexibility and generality to treat suchexplored to identify some basic phenomena of experimental
realistic fluid dynamics problems is a basic theoretical challnterest.

lenge.
The 'a.tt'cel Bo'tzhmg””(bLB) dmethOd lzlanld other re'at‘?;' IIl. BRIEF REVIEW OF LATTICE BOLTZMANN MODEL
Computatlona methods ase on cellular-automata 1deas OF FLUID PHASE SEPARATION

(e.g., lattice gas[1] have emerged as powerful tools for

modeling complex fluid dynamics problems. These methods The LB method of modeling fluid dynamics is actually a
are developing rapidly in response to recent theoretical adlamily of models with varying degrees of faithfulness to the
vances and the availability of resources for large-scale conproperties of real liquids. These methods are currently in a
putation. Applications of LB to modeling high Reynolds state of evolution as the models become better understood
flow [1], the dynamics of fluid phase separatidh3], and and corrected for various deficiencies. In the present work,
multicomponent fluid flow in porous medipd—6] have we utilize two LB models of complex fluids. The first and
proven the potential of LB as a general purpose computaprimarily studied method in this paper was proposed by Shan
tional scheme for modeling complex fluid dynamics prob-and Chen2,5]. It is particularly simple in form and adapt-
lems. Many of these exploratory studies have emphasized theble to complex flow conditions such as the presence of
development of the LB methodology and have not considsolid-fluid and air-fluid boundaries. For comparison, a sec-
ered a direct comparison to the properties of real liquidsond approach is studiefi7] that directly incorporates the
Therefore, basic characteristics of these computational modhuid/fluid interaction into a body-force term. This approach
els of liquids are still largely unknown. In this paper, we removes second-order contributions with respect to the forc-
characterize the type of critical phenomena observed in twing (see below. The physical basis of such an approach is
LB models of multicomponent liquids. The first model, due further described in Appendix A. A third approach, not stud-
to Shan and Chef2], modifies the Boltzmann equilibrium ied in this paper, is due to Yeomars al. [3,16] and is
distribution to account for fluid-fluid interactions. The sec- strongly rooted in the Cahn-Hilliard model of binary mix-
ond approach, considered in the present paper, incorporatasres[12—16. A major criticism of this approach is the lack
the forcing between two fluids directly into the body-forcing of Galilean invariance, but recent work suggests that the er-
term of the Boltzmann equatiof7]. In Appendix A, we rors involved can be controlled in the description of the
show how the second method is related to a density-gradiemthase separation of fluids in the absence of sh&éf. It
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remains to be seen whether these higher-order effects causeThe time evolution of the particle velocity distribution
problems under conditions of fluid flow. All of these models, function satisfies the following LB equation:

however, are not strictly energy conserving, which should be

important under conditions of deep quenches and high rates nL(x+e,,t+1)—ni(x,t) =0k (x,t), (3

of flow. Recent work{10] has introduced a framework for

overcoming this technical problem and allows for systematiGyhere )\, is the collision operator representing the rate of
improvements of the LB calculation of fluid properties. In change of the particle distribution due to collisions. The col-

the present paper, we focus on isothermal flows and willision operator is greatly simplified by use of the single time
examine the effect of energy conservation on the two-phasg,axation approximatiop23,24

region of LB fluid mixtures in a future work.
We now present a brief description of the LB methods . 1 '
used in this study. A considerable computational advantage QL(x,t)=—5[nk(x,H)—nieYx,1)], (4)
in modeling the fluid is obtained by restricting the particle T
positions to the sites of a lattice. The LB method extends the ieq) ) - o
standard “quasicrystalline” fluid mod¢lL9—27 of classical Whereny~"(xt) is the equilibrium distribution atxt) and
statistical mechanics by specifying the particle velocity dis-7i iS the relaxation time that controls the rate of approach to
tribution at each particle position so thaoth equilibrium  €quilibrium. The equilibrium distribution can be represented
and dynamical properties of the fluid can be calculated. Macin the following form for particles of each tyde3]:
roscopic variables such as density and fluid velocity are ob-
tained by taking suitable moments of the velocity distribu- ni®9(x)=t,n'(x)[2(1—d.)+3e,- v+ 2(3e,e,:vWw—V?)],

tion function. The velocity distribution functiomy(x,t), (5)
where the superscriptlabels the fluid component and the
subscripta indicates the velocity direction, is the number ni1(§Q)(x)=t19ni(x)[3do—%vz], (6)

density of particles at node timet with velocity e,, where
a=1,...pb. In this study, the particle velocities are repre-ynere
sented in terms of a basis set defined on a cubic lattice. The

velocity vectors are directed towards points that are nearest s
and next-nearest neighbors about a central lattice site and are 2 m> nle/n
in units of the lattice spacing divided by the time step. In the i a

, )

literature, this lattice is called a D3Q19 lattice, where the 19 V=

S
corresponds to the basis set size;19[23]. Time is counted E mn'(x)/ 7
in discrete time steps, and the fluid particles can collide with :
each other as they move under applied formsface ten- ) . L
sion, applied shear, elc.The directions of the particle ve- and the weights arg,= 35 for 1<sa<12, t,=3; for 13<a
locities are discretized in such a way that the isotropy of the=18, andt,g=3 . The parameted,, can be related by self-
pressure tensor and other properties are presdijedhe consistency to an effective temperatufe by the following
discretization of the time and spatial coordinates greatly remoment of the equilibrium distribution:
duces the information required to specify the fluid dynamics,
thus extending the scale of the system that can be modeled

: . . . i i(eq) )2
by a given computational resource. This is the computational Z m é Na " (X,t) (€~ V)
virtue of a lattice formulation. The price is that care must be T(x,t)= . (8)
taken to avoid artifacts that arise from the lattice model. 32 n'(x,t)
|

Macroscopic quantities such as densiy(x,t), and fluid
velocity, u', of each fluid component, are obtained by the

following moment sums: In order that both fluid components have the same tempera-
ture, d, may be defined by the relatiod,=1—2(T/m'),
pl(x,t)=mini(x,t)= miz n;(x,t) (1) where we choose units here such that Boltzmann’s constant
a kg equals 1.
It has been shown that the above formalism leads to a
and velocity field that is a solution of the Navier-Stokg24]
equation with the kinematic viscosity [2,5],
2 ni(xte, .
Ut = 2 !
' ni(x,t) EI 1= 5
- _ , v=c——0, 9)
wherem' is the molecular mass of thiéh component. While 6

the distribution function is defined only over a discrete set of
velocities, the actual macroscopic velocity field of the fluid iswhere ¢; is the concentration of each component and the
nearly continuous. lattice constant=v2 for this model.
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A. Fluid interaction fluids can be directly included in the body-force term of the

An interaction forceF' for each fluid is needed to drive Boltzmann equation. In the continuum Boltzmann equation,
the phase-separation process. We use a simple interactid}® Pody-force term is writteB'=F'/p'- Ven'(x,€), where

suggested by Shan and Chigne physical basis of this forc- F'/p' is an acceleration field due to a body force. An expres-

ing is given in Appendix A, that depends on the density of sion of t_his body—forcg term, to sepond order in Hermite
each fluid: polynomials[ 7], in the discrete velocity space of the D3Q19

lattice is given by

S
Fi=_n Gf”_‘, i’ , 10 ; i
n (X); é i’n (X+ea)ea (10 B;: _3tanl(X)

Fi Fi
(V) — +3<ed-v>( & —) 1 13
p p

i
whereG,=2G, G, and 0 for the casge?|=1, || =12, _ _ o .

and,i=i’', respectivelyG is a coupling constant controlling S)an?]agefg’lpkrg;sgg dagciféa;'sgofﬁgmas ntz(ce)llg?:u?égeto a
the interaction strength. This term is analogous to a neares}f\ppendix A ?rhe main é/ifference betwegn this approach

neighbor interaction in lattice models of interacting fluids. . i .
The forcing term has been shown to drive the phase separ nd the Shan-Chen quel Is that it a\(0|d_s terms of_(_)F(fer
that result from the shift of the velocity in the equilibrium

tion and to produce an interfacial surface tension effect con=.“" = . . T
distribution, so that the linearity of the forcing is preserved.

sistent with the Laplace la\\b], which states that there is a . e L .
pressure drop proportional to the local curvature at the inter] N effect of this modification of the LB model is invest-

face boundary between two fluids. gate_d below. . - . :

In the LB model of Shan and Chen, phase separation Finally, Eq.(10) can be modified to mimic a/n interaction
takes place when the mutual diffusivity of the binary mixture between the solid surface and fljifl]. Heren' (x+e,) is
becomes negative, providing a condition determining thegiven the value 1 or O depending on whethere, resides
critical couplingG, for phase separation. An analytical ex- 0N @ point in the solid or fluid, respectively, and the value of
pression for the mutual diffusivity has been determifsl. Gﬁ is then set to allow the solid to attract a fluidetting
For a viscosity matched binary mixture in which the particleor to repulse a fluidnonwetting.
masses are also matchgdymmetric fluid mixture”), phase
separation occurs when the critical coupling equals Ill. EQUILIBRIUM CRITICAL PHENOMENA
IN A LB FLUID MIXTURE

T —cint—c,n?+ /(¢ nt+c,n?)%+8nn?
GC:E 1.2 . An understanding of the equilibrium critical phenomena
n-n 1  Of fluid mixtures is necessary for modeling the flow of mul-
(12) tiphase materials. This understanding is not only required for

It is not ordinarily possible to exactly calculate the critical estimating phase stability f%”d the type O.f phase-separation
coupling for phase separation in three-dimensional ”quidsprocess(droplet growth or bicontinuous fluid pattern f(_)rma-
and this condition for the critical couplings., is evidently tion [12-16), but also for transport propertiegollective

a clue to the nature of the phase-separation process. Since tﬂiéfusion, self-diffusi'o.n, viscositythat depend' seqsitively on
LB method neglects thermal fluctuations that renormalize th he_ nafure of the_ critical ph(_anomena occurring in the .“q'“"d'
critical coupling constanG, this method is amean-field | HiS iS natural given the existence of order-paraméitard
modelof fluid mixtures. This observation, which has basic COMPOsition fluctuations that cause a mode coupling be-
ramifications for the applicability of the model in compari- tween momentum and mass transport proce$86s32.
son with real fluid mixtures, is established numerically in the©@Ur first task in developing the LB model for these many

next section, where the critical properties are examined tgractical applicationginvolving phase-separating fluid mix-
establish the nature of the model tures under flow conditionss to establish the type of equi-

Once the forcing is described, it must be properly incor-"bri“m critical phenomena exhibited by this model fluid

porated into a LB model. Shan-Chen introduced the forcindﬂix.ture‘ While the LB models do havg hydrodynamic int_er-
by modifying the equilibrium velocity [2]: actions, they do not treat hydrodynamic couplings associated

with non-mean-field contributions to the mode-coupling be-

Fi tween compositional and velocity fluctuatiof26—29. The
n'(X)v' (X)=n'v(x) + T =, (12 theory is thus a mean-field theory also in the sense of fluid
' dynamics, and the implications of this constraint require fur-

. ) ) ) ther investigation.
wherev’ is the new velocity used in Eq$5) and (6). This

approach introduces a momentum transfer between fluids
that preserves momentum globally. The main criticism of the
Shan-Chen model is that when shifting the velocity in the For a sufficiently large fluid interaction couplin@, the
equilibrium distribution, additional corrections in the pres- LB mixtures of componenté andB phase-separate into lig-
sure tensor will appear that are of ordef. uids having coexisting compositiors, and ¢g at equilib-
Instead of shifting the velocity in the equilibrium distri- rium. The composition variables, and ¢z denote the rela-
bution as in the Shan-Chen model, the forcing between twdive volume fractions of the two fluid components. These

IV. COEXISTENCE CURVE FOR LB MIXTURE
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dimensionless concentration units are normalized so tha  !!
da+ pg=1. Compressibility effects on the fluid mixture can /
be treated through the addition of an additional vacancy
componentp, such thatp,+ dg+ d.=1, as in equilibrium
lattice model calculations of compressible mixtufg3], but i
this complication is not considered in the present paper. 0.9 - P .
Increasing the LB couplin@ makes the coexisting com- = A .
positions more enriched in the pure components and thus ha 3 g :
the same qualitative effect as lowering the temperature in”< 08
systems exhibiting an “upper critical temperature” type 1
phase separatiofi.e., phase separation upon coolinghe o7
parametelG thus plays a role similar to the binary interac-
tion parametek in the lattice model of fluid mixturegl9— N (1)
22,34, 0.6 . ‘

T [
0.00 0.25 0.50 0.75 1.00
e=epg—(eantepp)/2, (14 P

'
———

FIG. 1. Phase diagram of LB fluid mixture. Normalized cou-
pling XGc/XG versus the compositiop, of fluid A. The solid
circles represent data from the Shan-Chen model and the triangles
689resent data from the body-forcing modggc/ Xc also corre-
sponds to the temperature rafiéT . .

wheree g andeap,egg denote the mutual and self-nearest-
neighbor interactions of the fluid component.is also
analogous to the well depth parametej in off-lattice mod-
els of phase separation based on Lenard-Jones or related
tentials[35]. In all these models, it is the relative value of the

“interaction strength” G,e,e;) to the temperature that is : - )
- - - L hereT, is the critical temperature for a fixed value Gf
the dimensionless coupling constant defining the tendenc&he absolute value definition in Eq&l7) and (18) ensures

toward phase separation. For example, the dimensionless ir)-

teraction in the lattice model of fluid mixtures is convention- at the reduced temperature variable is positive for nota-

. _ tional simplicity, but this requires that we must carefully
ally defined a319-22,34 distinguish between the one-phase and two-phase regions.
Y=0qslk,T (15) All of the computations of the present paper are performed in

the two-phase region.
In Fig. 1, we present our results for the coexistence curve
of a symmetric LB fluid mixture(both mass and viscosity

made to weight the number of possible nearest-neighbor inf&tios of fluid components are equarhey axis denotes the
teractions. In magnetic phase transitions, we have the santgti© ©f critical dimensionless coupling to the dimensionless
form of dimensionless couplings as E@{.3), wheree is COUpI'ng’XGc/XG’ defined in Eq(16) and thex axis denotes
replaced by the “exchange interaction] modeling the the compositionp, of the A fluid. We observe that the criti-
short-range magnetic interparticle interactidr8,36. From  cal compositiong, o of the A component equalgs.=; (a
these measures of interaction, we see that lowering the temisymmetric mixture”), as required by the symmetry of ex-
perature has basically the same effect as increasing the intethange of the fluid components. This exchange symmetry is
action coupling £€,e.;) for the usual case where ordering well known in lattice models of fluid phase separat{@i—
occurs upon cooling. Phase separation in the LB liquid als@l]. The composition differenca ¢p= ¢ — ¢{?) between
occurs when the temperature is lowered viitfixed, and we  the coexisting phases defines an order parameter for the fluid

whereq andk, T denote the lattice coordination number and
thermal energy, respectively. The inclusion of th&actor is

similarly define a dimensionless coupling constant, phase-separation process. The relatior ¢f to the reduced
temperature is indicative of the type of critical phenomena
xc=G/k,T. (16)  (“universality class” under discussion. In a mean-field

model of fluid phase separatiofg is described by the gen-
A reduced variable temperatutemay then be defined from eral relation[17,18,34

the interaction coupling constangg, Ag=2B18 T=T )T ToT 19
=<b71, T=U1 7 )l e, ~le

_|TIG-TIG| N )
6= TG (177 where the order-parameter expongrand critical amplitude
¢ B for a symmetric incompressible fluid mixture eqia#]
for our simulation performed at fixed temperatdirand vari- B=3/2, B=1. (20)

ableG. For a particular fluid mixture it is natural to fi@ and
to vary T so that the reduced temperature variable is definedhe dashed line in Fig. 1 is the predicted value. Our data are

as consistent with the mean-field prediction ag—0. Note
that the Shan-Chen model deviates more from the mean-field
Fl= ITIG-T./G| (18) prediction than does the simple body-forcing model. In gen-
¢ T./G ' eral, it was found that the linear body forcing was somewhat
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0.1 destroy the symmetry of exchange between the fluid compo-
nents[38-40. This symmetry breaking is evident in the
0.0 shape of the coexistence curve. The grapigf versusr

i becomes “skewed” so that the critical compositigh no
longer equals [38—4(. The molecular asymmetry effect is
particularly evident in polymer fluid mixtures where the ratio
of the molecular weights and the backbone chain structure

-0.1 4

0gw0 (Ag)

~0-2 7 can be adjusted to “tune” the asymmetry of the coexistence
1 curve[21,22,34,51 The asymmetry becomes extreme in the
=-03 o case of high molecular weight polymers dissolved in low
1 molecular weight solvents wheig, . of the high molecular
-0.4 | weight component approaches zero with increasing molecu-
lar weight[21,57]. It is also possible to modify the molecular
0.5 —— —— weights of a blend to achieve an almost perfect symmetry as
-1.5 -1.2 -0.9 -0.7 -0.4 -0.2 in Fig. 1[53]. This symmetry is not usually observed in fluid

log, (7¢) mixtures or in single-component fluid phase transitions, al-
though the degree of asymmetry is usually modest in com-
FIG. 2. Order parametef ¢ versus quench depth parameter parison with polymer solutions.
TG The breaking of the particle exchange symmetry arising
from differences in molecular shape, rigidity, mass, and
other molecular parameters is difficult to describe in a me-
log,o(7g) for the lattice data shown in Fig. 1. It is apparent ;Onfg?elemféﬂg r(;}ot?“esl S;ngr::egrey-?)?g:&?r:ggh(\e/\rlf)nggrr:oﬁ%atl)sv-a

that a power-law scaling ok ¢ on 75 is observed over an I . ; 5 i
appreciable temperature range. The solid line denotes ﬂ}(-:-ever, by considering the idealized Flory-Huggif$i) mean

. . . ield model of polymer blend phase separatj@i], which
prediction .Of Eq.(19) with no free_parameters, wher;gls accounts minimally for the molecular mass asymmetry of the
equated with7;. Note that the critical temperature is not

) .G . ; . .~ fluid componentgactually, the model accounts for a volume
adjustable in this comparison, in contrast to most S|mulat|on§isymmetry since this incompressible polymer blend model

and experiments in which this quantity is not known e)(""Ctly'assume:s all lattice sites are occupied and have equal density

Of course, the solution of the two-dimensional Ising spin . )
model and its lattice-gas analog is an exception to this genNOtably’ the FH model completely ignores polymer topol

L - : ogy, monomer asymmetry, polydispersity in the size and
eral s!tyatlon[17,1i_3j|. Sengers gives an exqellent review of monomer-monomer interactions, and other factors that surely
the critical properties of fluids and fluid mixtures that pro-

. ; : : influence polymer blend stability, but the mass ratio in the
vides much further information about mean-field and non--," - 4 "joes provide a parameter that allows the asymme-

tmhzgg-fura(l)d ecr?t'csilaﬁ:)pfemﬁézg]d the “crossover betweentry of the coexistence curve to be “tuned” to fit observations

i li)respl gnd 5 ngt or?l verif.y that the phase-separatio” real blends(The recently developed lattice cluster mean-

9 y P P Teld theory generalizes the FH model by incorporating

EL?C,;ZS :;S;Begtj;%ﬁslﬁ Sheesﬁ?iﬁfdo\;vgﬂrbge?nﬁggr']ﬂ;!dretgﬁg%’Ieading-order correlations associated with chemical connec-
y y tivity and monomer structur¢33].) We first consider the

temperature scalerg, which is required for other applica- case in which the particle masses are “asymmetric” in the

t'ﬁgitigvggln%eﬁhfggd tr:n gtlé)ruers. hzc;re-i)éazggénwrie;zﬂrL? fluid model in the same spirit of approximation. Figure 3
q q b P P &hows the coexistence curve for a LB fluid mixture having a

compared 10 experiment on feal fluids at the conrespondirf]255 [210% = Ma/Mg3, where the concentration difer-
P P P IEnceAq& between the coexisting phases is givemumber

more stable. The mean-field theory predicti&y. (19)] is
further examined in Fig. 2, where we plot lg@\¢) versus

I7i- v?(ljue. (ﬁuanr:tltgtlvexagrfe(;nfer;tliwrtiz ﬂ:ﬁ E)ropnegue?nog rlea ensity concentration units rather than the volume fraction
quias can only be expected Tor Iquids that can be modeled ;o Fig. 1. We examine the scaling &t on the quench
by mean-field theory over a broad temperature rasge the A ' .
. . g e . depth parametets in Fig. 4, where we find a mean-field
discussion beloyv This identification between computational . LI .
scaling exponent as in Figs. 1 and 2 and a shift of the

and real fluids is generally restricted to a temperature range .. . B
over which mean-field critical behavior is exhibited to acrmcal coupling to the valu&.=0.0135. The asymmetry of

good approximation. Strictly speaking, no real fluids are de:[he coexistence curve is quantified by calculating the depen-

scribed by mean-field critical behavior, but for many fluids dence of the average compositign= (4R + $)/2 in the
the approximation should be reasonable provided suffi-  Coexistence curve shown in Fig. 3, whepg” and %) are
ciently far from the critical point defined by the limi¢z ~ compositions of the coexisting phases. According to the
—0". The Ginzburg criterion defines the temperature rangelaw of rectilinear diameter” of Cailletet and Mathig$4],
over which mean-field theory is a reasonable approximatiorp is linear function ofr. This linearity is found to a good
[33,43-50Q. approximation in the asymmetric fluid phase-separation co-
Real fluid mixtures are characterized by differences in theexistence curve shown in Fig. 3. The average composition
molecular shapes and volumes of the fluid molecules an@, is shown in Fig. 5, where the line denotes the rectilinear
asymmetries in the intermolecular interaction potentials thatliameter fit,
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ba=bp ot Ars, (21) it is hard to quantitatively evaluate theory in this important
’ area[67-70. The LB model allows the determination of

¢a(2) for an ideal mean-field theory fluid. Some insight into
the fluctuation contribution tap,(z) can be obtained by
comparing these calculations to Monte Carlo calculations of
$a(2) [69,70. An important property that derives from the
determination ofé,(z) is the correlation lengtlg™ in the
two-phase region, which governs the average width of the
interface (see below. This definition of the correlation
ngth is more involved in asymmetric fluid mixtures since
e composition profileg(z), is asymmetric about the cen-
ter (z=0) of the fluid interface.

Figure 7 shows an equilibrium interfacial composition
cprofile ¢a(z) for a symmetric LB mixture having a quench
depth in the two-phase regiong=0.1. The numerically de-

— (Ra/Rg)%. By convention, we take tha fluid component termined profilega(2) is fit well by the mean-field theory

to have the largest molecular volume. Increasing the particIQred'Cmn[11'63'70_72
size asymmetry strongly increases the asymmetry of the
phase boundary, in qualitative agreement with the Flory-
Huggins theory of polymer phase separatiffi,22,34.
Note that the data in Fig. 6 are given in volume fraction
units. The simple Flory mean-field treatment of the Flory
Huggins lattice model indicates thet=1/[ 1+ \?], where
\ is the relative chain molecular volunisee below. The
true critical composition seems to be approximated reason- 28 =w (23)
ably well by a similar expressionp.=1/[1+\], and the
arrows in the figure show the result in comparison with theso that the determinatiofi,(z) affords a means of determin-
data. We note that the phase diagrams of micelle and proteing the basic property~. A fit to the w data nearest the
solutions, where there is a large asymmetry in the size of theritical point in Fig. 8 gives
phase-separating species, tend to be asymmetric as in Fig. 6
[57]. £ =(0.96+0.05 75", (24

In applications of the LB model to real measurements, we
can phenomenologically adjust the relative méasd thus Where the mean-field value of the critical exponents is
the critical composition in Figs. 3 and 4r relative particle assumed. Far away from the critical point, wherg
volumeX\ and identify the LB order-parameter varialplp, ~ ~O(1), thecorrelation length becomes comparable to the
(number densityor volume fraction units, respectivglyith lattice spacing, as in Monte Carlo simulation of phase sepa-
the experimentally determined order-parameter concentraation in small molecule liquid§70]. The lattice spacing in
tion unit. While this is generally an approximation, we ex-the LB model should be interpreted as being comparable to
pect it to provide a reasonable mimic of the critical proper-the average range of the interparticle interaction potential.
ties of asymmetric fluid mixtures as in previous experiencelhis scale is typically comparable to the average molecular
with the FH model58]. dimensions of the molecule involvé@3], and for polymers
this scale can be fairly larg&4]. Particle clustering can also
increase the magnitude of this scale in small molecule liquids
[75].
The interface between phase-separated liquids becomes | 3 mean-field model of phase separation, the correlation

diffuse near a critical point where the interfacial tension be4ength ¢ has the same singular dependence on reduced tem-
comes relatively low. The width of this interface can beperaturer, in the one- and two-phase regiors™ (and¢ ™,

quantified through the determination of the composition in-regpectively [76],
terfacial profile pa(z), which measures the local composi-
tion along a coordinate, normal to an interface between the E=¢, 162, E=¢&r1e"?, (25
coexisting phases.

An interface in near-critical fluid mixtures can be probedbut the correlation length amplitudés§ ,&, are related by a
by optical reflectivity[59-61 or ellipsometry[62-64 to  constant ratio in mean-field theofy6],
determine its width, but accurate measurements of composi-
tion gradients across the interface are difficult. Direct mea- &gy =212, (26)
surement okp,(2) has recently become possible in thin films
by neutron reflectior{65,6€], but the broadening of these This “universal” ratio is closer to 2 in real fluid mixtures
profiles by capillary waves and surface wetting effects com-exhibiting Ising-type criticality{ 77,78. The discrepancy be-
plicates the interpretation of those measurements so thawveen Eq.(26) and measurement is illustrative of the large

whereA s a constantA=0.11, andp, and¢a . are given in
number fraction units. This type of plot is an effective way to
determine the critical composition of an asymmetric fluid
mixture [55]. Fluctuation corrections to mean-field theory
can lead to deviations from Eq@21) in real fluids that are
important near the critical poif66].

We can also break the symmetry of interparticle exchang
and thus distort the shape of the phase boundary by varyin@
the relative volumes of the fluid particlésee Appendix B
In Fig. 6, we show the phase boundary calculated for a rang
of values of\, the ratio of the volumes of componemtsand
B, A\=V,/Vg. We assume spherically shaped particles s
that\ scales as the cube of the ratio of the particle radii,

da(2)= ¢+ (A Pl2)tanh( z/w) (22)
for all 7¢ considered in our paper. The dependence of the
interfacial widthw on reduced temperatutg; is indicated in

“Fig. 8. The mean-field correlation lenggh of the fluid mix-
ture in the two-phase mixture is relatedwoby [64,70,73

A. Interfacial composition profile and correlation length
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FIG. 3. Phase diagram of an asymmetric LB fluid mixture. FIG. 5. Rectilinear diameterp=(pp+ ¢g)/2 versus quench
depth7g .

property changes that critical fluctuations can induce. More-
over, the critical temperature, in three dimensions, can be=5.75 andwr=>5.0 correspond to the left and right sides of
shifted from its mean-field value by as much as 25% DbVipe inflection point. The averag;= (w, +wg)/2 provides a
fluctuations, so that the interaction parameters must b@ood measure of the average interfacial width. We plan to
tregted as _phenomenological parameters in comparison to e¥iscyss the properties of the LB model with a molecular
periments in order to “absorb™ these discrepandi8d].  yolume asymmetry further in a separate publication so that
The interfacial composition profilea(z) of asymmetric  thjs case is not discussed here. In all the discussion below,
fluid mixtures composed of mixtures of dissimilar molecules,ye restrict ourselves th=1.
is also asymm_etrict?f_)]. We briefly illustrate this effect in It has sometimes been reported that two correlation
Fig. 9 for a fluid having a mass ratiéy =3 and a quench |engths exist in the two-phase region of fluid mixtures having
depth7c=0.1. Again, we present our concentration data foragsymmetric coexistence curvégs]. These measurements
the asymmetric fluid in terms of number density units togre made by performing light or neutron scattering on coex-
simply realize the effect of fluid asymmetf0]. While the sting phases in macroscopically phase-separated samples.
equilibrium profile may appear to be like the tanh profile The scale of the composition fluctuations appears to occur at
[Ed. (22)] found in the symmetric case, we could not obtain gifferent scales in theb,-rich and¢,-poor coexisting phases
a good fit to this function. A good empirical description of [75), Apparently, the measurement process can give rise to
this profile is found by first taking a derivative of the profile unequal weighting in the different phases to the two sides of
in Figure 9 to find its inflection point and by then fitting to a he ba(2) profile, leading to differenté™ estimates. Al-

tanh profile oneach sideof the inflection poin{65,81. Fig.  though such measurements provide some insight into the
9 shows a fit to the data where the characteristic wigths

26.0
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w0l | | i
i 24.0 *_ @ /.____..\ /' __________ .\
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s ] S ILI] L .
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\570.2 — — 1 O!} 14 [ § [
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| 1601 @e b n ’
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log(Te)
FIG. 6. Influence of particle size on phase boundary asymmetry.

FIG. 4. Order parametek ¢ vs quench depth parameteg for N=1.0 (filled circles, 4.63 (filed squares and 125.0(open
an asymmetric LB mixture. circles. Dashed lines are included to help guide the eye.
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FIG. 7. Interface composition profileé, for a quench depth FIG. 9. The interfacial compositiofnumber density profile
76=0.08. z is in the direction normal to the center of the fluid ¢,(z) of an asymmetric fluid mixture having a mass rafig=3
interface. Solid line is fit to Eq(22). and quench depthg=0.08.

asymmetry of th%A(z) prof“e' they should not be inter- which reliable thermodynamic interaCtiON (Z)I’ G) measure-

preted as implying the existence of two distinct correlationMents can be based. Recently, there has been great effort in
lengths in the two-phase region. modeling the interfacial tension of polymeric blends by

Monte Carlo simulation methods as a guide to improving
) _ analytic theory in this important area of technological appli-
B. Interfacial tension cation[69,70.
Interfacial tension measurements provide a direct means We calculate the LB interfacial tensian through an in-
of probing the interaction between fluids. This property istegration of the interfacial composition profile,
crucial in an industrial context for controlling the size and
phase stability of mechanically dispersed droplets and other sz (P,,— [Pyt Py ])dz (27)
transient structures formed in the course of phase separation. 2z 2R Ty

In principle, the interfacial tensio rovides a conceptu- .
P Pie: € %, Pro P gvhere P,, and 3[ Py + P,y are the normal and tangential

ally simple means of determining the reduced temperatur . ;
variabler=(T—T_.)/T. needed to characterize the phase staP2"ts of the pressure tensor, respectively. The numerical val-
bility of fluid micxturces but experimental complications ues of the interfacial tension for the symmetric LB fluid mix-

[82.83 (e.g., high viscosity in polymeric systejrisave lim- ture, shown in Fig. 10, are consistent with a power law,
ited somewhat the application of this method to the critical
phenomena of fluid mixtures. Part of the difficulty is the
need for a more prediCtive theory of interfacial tension ONpver a broad temperature range. The exponent 1.5 is an es-
tablished result for the interfacial tension in mean-field

020'07(13'5, oo~4.2 (28
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FIG. 8. Interfacial widthw as a function of the reduced interac-
tion 7¢. FIG. 10. Interfacial tension versus quench depth,
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theory[12,70, and is found to agree reasonably well with Xe=(2Npacpo) 1+[2Ng(1— )]t (30)
observations outside the critical regif84—84. Fluctuation

effects modify the exponent to a valuel1.25[87]. This and N, and Ng are homopolymer polymerization indices.
fluctuation-modified exponent is often found to be quite ac-Symmetriddlends are defined by the idealized conditlp
curate near the critical point for phase separafion,78. =Ng=N so that¢.=3% and y.=2/N. The critical composi-
The amplitude of the interfacial tensioay, is a nonuniver-  tion ¢, of the blend no longer equatswhen the blends are
sal quantity that depends on the interparticle potential rangenot symmetric Na=Ng) [21,46,74,

interparticle spacing, and molar volume of the liquid. Further

discussion of the origin of interfacial tension in the LB N2
model is given in Appendix A. ¢°:—N1’2+N1’2' (31)
A B
V. COMPARISON OF THE LB FLUID MIXTURE MODEL As mentioned above, the incorporation of asymmetry into
TO POLYMER BLENDS the LB model requires adjusting the mass asymmetry or vol-

It is apparent from the examination of the LB mixture UMe asymmetry to give a variation in the critical composi-
model above that the critical properties of this fluid are de-ion- We can themimic the asymmetric phase of the phase

scribed by mean-field theory and that the critical exponent@oundary of polymer blends by varying the mass asymmetry
predicted by this model are inconsistent with those measurefiv 7 A and formally replacingrg by 7. o

for many real mixtures. This limits, of course, the compari- | "€ correlation lengttf of the FH model in conjunction
son of LB model calculations to certain qualitative trends inWith the random-phase approximatip#6,74 yields a scal-
the equilibrium properties of near-critical fluid mixtures. iNg relation for& in the two-phase region for a symmetric
(The theory should become more reliable, however, awap'end

from the critical pointl Such inconsistencies can also be ex- . _ip o

pected for certain dynamic properties near the critical point. §=&7Tm &0~ Rg/‘/g’
For example, the shear viscosity of a near critical Ising-type . . . :
fluid mixtupre diverges near the ():/ritical point while no dgi]vgrr-) where R.g is the_chain radius of gyration. We see from a
gence occurs in a model mean-field mixty@s]. Mode- comparison of Eqs(32) to the LB expression Eq23) that

coupling effects due to compositional flucuations have a Tgn:jasttlr‘?]is?%aec:gg énsizc((;ot?\rsz?tzgéngdagr?di 8; fhc:aly(;]g;r
even larger effect on the collective diffusion coefficient 9 P 9

[30,31. Although mean-field models of fluid mixtures are of Ry. This imp_lies that the Iatti_ce s_pacing must be t_aken to
depend on chain molecular weight in comparison with mea-

idealized, there is a class of real liquids whose behavior ap- rements. Moreover. the predictions of the LB model must
proaches this ideal type critical behavior. The phase separ u o over, the predict . u
e considered with caution when physically relevant scales

tion of polymer blends in the theoretical limit of infinite . hvsical problems becom maller than_ thi )
molecular weight of the homopolymer components has beelfl Physical problems become smaile a S coarse-

argued[45,4€| to be described by mean-field theory, so thatgra_ining spale(lattice s_pacingof the LB Iatti(_:e model. This .
the phase separation of high molecular weight blends shoug'"'tat.'or.1 IS natura_l since the LB m_odel IS a MEes0Scopic
be reasonably approximated by this idealized model. Mont escription of a fluid rather than a microscopic model. .
Carlo calculations support these theoretical arguments, al- There are a number of p‘?'.”ts to be dr.awn from our.dls—
though the chain length must generally be rather high for thigusston of polymer blend critical propertl|es In comparison
approximation to apply89,90. There have also been recent W'th the LB model of fluid phase separation. .
reports of apparent mean-field critical behavior in fluid mix- M F_’olymer blen_ds are reasonable candidates for compari-
tures with salt§90] and in ionic fluid mixtureg91]. son with the LB mixture model.

It is common practice in polymer science to fit the critical relgtli)o r:shr:aipnsqetﬁg;ﬂserllgur}:jogleklj\?vl\;&singsaéopirr];/ri:;zlrsszefmt?]%
roperties of polymer blends to the Flory-HuggifisH . -
propert oy y-HuggitEH) LB model according to the blend molecular characteristics.

mean-field lattice model of phase separation where all inac.l_hi iy me insiaht into th litative variation of th
curacies of the modelingmonomer structure, chain architec- S gIves some Insig 0 the qualitative variation ot the
LB parameters with the variation of molecular structure.

ture, compressibility, ..).are absorbed into the phenomeno- . . .
logical “xpparamet)ér” in Eq.16) [92]. A virtue gf the FH (iii) Comparlson of the LB model with parameters f|>§ed
lattice model is that it often allows the prediction of qualita- by tdhel Fl: mlodn?I \rNItt)r nMdontehCaIrc;o Cral\;l:jlat'or;i ofirgh? Ir?tttilr?f
tive trends in the scattering properties of polymer blends. Wi 0 ri Onﬂioﬁj € reximstsi rc:uin tﬂo € sof er S?ti not
can retain this advantage and avoid the conceptual pitfalls q € mean-iield approximation In the case of properties no
tractable using analytic mean-field theory. For example, we

interpreting x too literally as a “molecular” parameter by n compare LB calculations of the interfacial tension to
establishing a formal correspondence between the paramet { P . :
onte Carlo calculations for polymer blends that avoid the

of this model and the LB fluid mixture model. . Lo
mean-field approximation.

In the FH model of po_lymer_ blend phase separation, the (iv) Fixing the LB model parameters through “matching”
reduced temperature variable[#6,92] . . :
to the FH model then allows a comparison with dynamical
Ten= | x = Xl x=Te=T|/ e, (29)  propertiestransport coefficienisand processephase sepa-
ration, wetting, dewettingof blends calculated using the
where the critical interactioly, is defined by the condition mean-field approximation.

(32
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(v) The expression of the results of measurements in
terms of general and universal scaling relatiowhen they
exisp offers advantages to representations involving the phe-
nomenologicaly interaction parameter. Expressions between
large-scale observable properties deduced from mean-field
theory often have greater applicability than expressions be-
tween observables and temperature-like variables sugh as
and .

VI. SOME ILLUSTRATIVE CALCULATIONS OF PHASE
SEPARATION WITH AND WITHOUT SHEAR AND
THE INFLUENCE OF INTERACTION BOUNDARIES ON

PHASE SEPARATION

Now that we have established the type of critical phenom-
ena exhibited by the LB model of fluid mixtures and a re-
duced variable description for some of the basic thermody-

namic properties of this moq8| fluid mixture, we _Can apply FIG. 12. Spinodal phase separation in critical composition fluid
th_e LB model to the_(_iescrlptlon_ of pha_lse separz-,jtthn under fhixture. Note the similarity of the structure in Fig. 12 to Fig. 11,
wide range of conditions. In this section, we will illustrate gnart from scale. This observation reflects the existence of dynamic

some phenomena we have investigated in connection Withcajing in the mixture coarsening. The quench depth equals
recent measurements. =0.537 andt=17.8.

The comparison of nonequilibrium phenomena such as

fluid phase separation to LB model calculations requires thghere G’ =12G/T. All times below are reported in the di-
introduction of a dimensionless time unit that is common ensionless timgzt/tpsin our discussion of the LB model

between the experimental and computational fluids. For flui f fluid phase separation. Results are presented from simula-

phase separation, it is conventional to express reduced tirqe . : . .
: e g ions corresponding to a sytem size of80 units of lattice
in terms of the mutual diffusion coefficieit,, and the cor- spacing cubed

relation length,é~ [93-95. We thus divide our computa-
tional timet by the average initial rate of phase separation, ) ,
tos=2(£7)%|Dy), deduced from Cahn-Hilliard theory A. Phase separation without shear

[11,93-95. The mutual diffusion coefficient obtained for the  In Fig. 11, we illustrate the case of a critical composition
Shan-Chen model studied in this paper for a viscosity¢,=3,my=mg). The value of the “quench depth” equals

matched binary mixture is given by 76=0.537 and the reduced time=3.6. Periodic boundary
212 conditions are employed in this LB calculation to minimize
D.— 1-G"n'n _} (33) ﬂall effects. Figure 12 shows separation after a later time,
" 1+G’(c;n?+cynt) 2| t=17.8. The pattern is similar in geometric form to Fig. 11,

but the characteristic scale of the pattern is larger after longer

FIG. 11. “Spinodal” phase separation morphology in critical FIG. 13. Off-critical (10-90 relative compositiorphase separa-
composition(50-50 relative compositigrfluid mixture. The quench  tion showing droplet formation and coarsening. The quench depth
depth equalg¢=0.537 andt=3.6. 76=0.133 andt=8.4.
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FIG. 14. (Colorn Sheared critical composition blend. The
“string” structures are observed along shearing planes where th
strings are oriented in the direction of the fluid flow. The quench

depth7¢=0.537,t=8.5, andyt,=0.18.

FIG. 16. (Color Intermediate stage off-criticall5-85 phase

times, geometrically illustrating the notion dnamic simi-  Separation (=27.6). Droplets form after the fluid threads in Fig.
larity in the phase-separation coarsening process. A study dff Preak up by the Taylor-Tomotika instability.

the time dependence of the growth of the phase separation | L
shows that the pattern scale grows slowly in the early stag80€Xisting phasesg, has been rendered transparent in Fig.
of the phase-separation process, as the local compositioh)- At @ later stage of phase separation, the pattern scale

builds up to its coexisting composition valfene of the ~9rowth is roughly linear in tim¢96,97. Other LB studies
have recently focused on modeling the kinetics of phase

separation, so we do not dwell on this well known phenom-

FIG. 15. (Color) Early-stage off-critical(15-85 phase separa-
tion under shear. For Figs. 15-17, orange represents the regions of FIG. 17. (Color) Late-stage off-critical15-85 phase separation
high localized phase fraction of fluid (¢,=0.15). The green ({_5g8) Droplets shown in Fig. 15 reconnect into stringlike

regions represent the transition to a high localized phase fraction Qfiyyctures that appear to persist and coarsen in cross-sectional di-
fluid B, ¢5=0.85. Note the incipient Taylor-Tomitaka instability in - yension with time. The strings in Fig. 17 are contrasted with the

some of the fluid “strings.” The quench depths=0.287, t “stringslike” structures near the mixture surface in Fig. 14, repre-
=16.4, and the dimensionless shear rptg=0.56. sentative of a critical composition fluid mixture.
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FIG. 18. (Colon Initial density of three phase systems to un-  F|G. 20. (Color Phase separation of a fluid mixture between
dergo surface-driven phase separation. The blue and green regiofgeracting solid and air boundaries. This image indicates the devel-
correspond to the location of the two-phase mixture. A third phasegpment of an instability that disrupts the layers in late-stage phase
lying above |s rendered as the translucent red region. The quen%paratlon The reduced time equtaﬂsl 6.
depthrg=

FIG. 19. (Color) “Surface-directed” phase separation. Phase
separation of a fluid mixture between interacting solid and air FIG. 21. (Color) “Disrupted” surface-directed phase separa-
boundaries. The layered morphology corresponds to “surfacetion. The disruption effect of “pinching” of the layers allows for
directed spinodal decomposition.” This stage of the phase separdurther coarsening and leads to a collapse of the layered structure
tion corresponds to=1.0. shown in Figs. 19 and 20. The reduced time equaigl.0.
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enon in the present papglrl,97—100. We next illustrate the weight mismatch, roughness of shearing surface, steady and
gualitative change in the phase-separation morphology thabscillatory shear, etg.We note that many experiments have
occurs under off-critical conditions. Figure 13 shows therecently reported “stringlike” structures in sheared phase-
phase-separation morphology for a quench depth, separating fluids using both light scattering and optical mi-
=0.133. The rendered compositi@y, is taken to have the croscopy techniquef48,103,104, and “stringlike” struc-
off-critical value $,=0.1. The phase separation then occurstures have also been reported in two-dimensional LB phase-
through droplet formation rather than the formation of a bi-separation simulationsl05]. The case of two dimensions is
continuous “spinodal” phase-separation pattern. At a latersomewhat special, however, since the Taylor-Tomotika
time, we observe the droplets to coarsen by coalescence in[#06] instability is suppressed in two dimensigiD7].

normal manner for off-critical fluid$101]. In future work, An illustration of phase-separation in an off-critical blend
we plan to explore the condition®.g., quench depth, vis- under steady shear also provides important insights into the
cosity mismatch, etgthat determine the crossover betweenkinds of phase-separation morphologies that can be expected
the droplet and bicontinuous phase-separation patterns obxperimentally. Figure 15 shows an off-critical blefid-85
served in the early stages of phase separation. Even this bagi a dimensionless shear rat'ﬁpsz (2uy,/d)t,=0.58. Ini-
aspect of fluid phase separation remains poorly understooghlly, long narrow filaments formed and eventually they
so that materials scientists must rely on engineering correlggroke apart into droplets due to the well-known Taylor-

tions[102]. Tomotika instability[106]. The droplets(Fig. 16 then be-
came elongated and tilted at approximately 45° relative to
B. Phase separation under a steady shearing flow the shear plane, as predicted in the limit of a low concentra-

We next illustrate a nontrivial application of the LB ton of dispersed droplefs08]. However, at a later stage of
method to a situation in which fluid flow is crucially impor- Phase separatiofirig. 17), the droplets coalesce to form un-

tant. Figure 14 shows the phase separation of a critical conflulating string structures that seem to persist indefinitely in a
position (ba= bz, Ma=Msz) blend for the same quench as “dynamic string state”(a video of our simulation can be

shown in Fig. 11. The upper and lower boundaries in thdound in Ref.[109]). The correla_lteql motions of the strings
figure are energetically “neutral’(neither fluid preferen- suggest that the hydrodynamic interactions between the

tially wets the surfacg.A hydrodynamic “stick” boundary strings and/or between the strings and the boundary of the

condition is imposed at the walls. The top and bottom wallsSheared fluid seem to be playing an important role in the
move at velocities,, and — u,, such that the dimensionless stabilization and formation of the extended string structures.

. . b t iments have indicated a similar string for-
shear rate equalyty.=(2u,/d)t,=0.18, whered is the Subsequent experiments have indicated a similar string for

. T .mation phenomenon in an off-critical blend sheared at low
spacing between the walls. The boundary condition is peri-

odic in the direction parallel to the translating planes. Wersgzz\r/éattg?r:g grgaralle! plate geometry having a narrow gap
. . . plet sizgl10].
observe in the top view that the phase-separation pattern ap-
pears to have a “stringlike” form at the boundary, but that
the structure within the film is actually more complicated.
The phase separation in the plane perpendicular to the flow is As a final illustrative application of the LB method, we
remarkably undisturbed by the flow and closely resembles aonsider an example of blend phase separation where one
two-dimensionabhase-separation pattern in the absence oboundary is solid and the other interface is fluiEigs.
shear. As time proceeds, the “penetration depth” of thel8-2J. Figure 18 shows the initial fluid composition at a
surface-induced “stringlike” structures in Fig. 14 increasesquench depth of¢=0.7. The dark liquid phase has a pref-
and the phase-separation morphology ultimately coarsens &rential interactiorj111] with both the solid substratéot-
a state where the fluid interface lies perpendicular to théom boundary and a third fluid(*air” ). This image illus-
shearing planes and parallel to the flow direction. Thetrates the well known phenomena of “surface-directed
surface-induced ‘“structuring” of the blend morphology spinodal decomposition,” in which the compositional waves
would be accentuated in the early stages of phase separatioh phase separation are brought into registry with the
if one of the blend components had a preferential attractiosymmetry-breaking wall$95,112—116 The coarsening of
to the shearing boundaries. This surface interaction evidentlthe layer structure at early and intermediate times occurs
has a symmetry-breaking effect, since the fluid interface wasuch like a bulk blendsee Fig. 12 but the continued coars-
found to lie parallel to the interface of the shearing bound- ening at long times requires the intermittent loss of fluid
aries at long times, when the boundary interaction was modilayers. At some point, the undulations within the layers grow
fied in this fashion. This illustrative calculation shows thatsufficiently large(perhaps associated with the rupture of in-
the surface interaction can have a large influence on the uher layers as required by coarsening induce perforations
timate alignment of a phase-separated fluid under shear. It is the outer surface of the blend film at the polymer-air
also apparent that the interpretation of optical and scatteringoundary(Fig. 20. This undulation phenomenon then causes
data on sheared phase-separated fluids is complicated by ttiee layered structure to break up into a structure that super-
existence of gradients in the composition and structure of thécially resembles a spinodal decomposition pattern when
fluid. Clearly, these observations warrant a thorough investiseen from abovéFig. 21). A number of studies have indi-
gation of the many parameters that seem relevant to the pheated the presence of a “fast modgl17] in layered blend
nomena(quench depth, surface energy, viscosity, moleculafilms, corresponding to a rapidly growing length scale con-

C. Surface-directed phase separation
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sistent with a hydrodynamic instability. The instability phase separation under steady shear. Again we considered
shown in Figs. 18—21 provides a possible explanation for then- and off-critical blends and found the morphologies to be
geometrical nature of this transition. Further computationabjualitatively different. Shear had the effect of causing the
and experimental studies of the late-stage coarsening instghase-separation morphology to “streak” into a stringlike
bilities in layered blends would clearly be interesting to morphology near the boundary of the critical composition
check this novel picture of phase separation in thin quiescerihase-separating blend, leading to a complex gradient struc-
films in which the surface exerts a strong perturbing influ-ture within the blend. The “penetration” depth of the

ence on the phase-separating blend film structure. surface-induced strings seemed to grow with time in the
course of phase separation. The ultimate configuration of the
VII. CONCLUSIONS phase-separated blend, alignment parallel or perpendicular to

the flow direction, depends on the polymer surface interac-
The development of the lattice Boltzmann methods oftion. These observations of fluid heterogeneity on intermedi-
simulating flows in multiphase liquids has developed rapidlyate time scales clearly raise questions about the proper inter-
in recent years. The time has come to evaluate the criticgdretation of light scattering and optical microscopy studies of
phenomena that characterize basic thermodynamic and hyends under shear, since these methods often involve an
drodynamic properties of this type of model. We performedaveraging over the gradient structure or are limited to obser-
numerical experiments on a LB fluid model to determine thevations of the near-surface properties of the mixture, respec-
equilibrium critical properties that are most important for tively. The off-critical sheared blend simulations revealed a
comparison with real fluids. The results of those simulationgendency toward droplet distortion and tilted alignment with
are represented in a reduced variable description that iespect to the shear flow direction. At a latter stage, we ob-
largely independent of the particulars of the model facilitat-served droplet alignment and the droplets subsequently coa-
ing comparisons with other models of fluid mixtures andlescenced into a stringlike morphology. These strings seem
with experiment. This type of representation should also be&o be very stable under shear, which we expect to arise from
advantageous in expressing experimental measurements irttee strong hydrodynamic interactions between the strings and
model-independent form. Our observations indicate that théhe shearing boundaries in these highly confined phase-
critical propertiegcoexistence curves, correlation length, in- separating fluid¢see Fig. 1Y. A similar phenomenon in off-
terfacial profile, surface tensipof the LB fluid correspond critical blends sheared at low rates in a confined geometry
to an ideal mean-field fluid over a broad range of temperahas recently been observed experimentglly0].
tures. This makes comparisons of the model to experiment In our final illustrative example, we considered the per-
particularly appropriate to the high molecular weight poly-turbing influence of solid and air boundaries on the phase
mer blends and other fluid mixturéperhaps also including separation of a blend. The existence of a “free” deformable
some ionic fluids and fluid mixtures containing dissolvedboundary (polymer-air interface makes this a particularly
salts[90,91)) that can be reasonably modeled by mean-fieldnstructive example of some of the advantages of the LB
theory. method. We observe the development of composition waves
Now that we have established the equilibrium critical in the phase-separating blend, as observed in many previous
properties of LB fluid mixtures, we are in a position to study experimental and simulation studies with a preferential inter-
much more complicated problems involving fluid flow, action between one of the blend components and the bound-
phase separation, and interacting complex boundaries. Waries[110,112—-11% The simulation illustrates the process
illustrated this type of problem in the case of phase separay which layers are lost in the course of phase coarsening.
tion in critical and off-critical fluid mixtures with and with- These film coarsening processes apparently lead to a desta-
out shear. We also considered the perturbing influence dfilization of the layer structure in a late stage of phase sepa-
boundaries on quiescent phase separation and the flow instation. The fluctuations within the film associated with suc-
bilities that can occur in late stages of phase separation. cessive film rupture processes cause the layer structure to
Our bulk blend phase-separation studies show that theollapse like a disturbed “house of cards,” leading to a poly-
morphology of the phase-separation process in its early ancher blend morphologguperficiallyresembling a bicontinu-
intermediate stages depends on the fluid composition. Theus “spinodal” pattern. These observations emphasize the
early stage of phase separation corresponds to the growth whportance of time-dependent studies of blend film mor-
the local composition to the value of the coexisting compo-phologies in measurements on real blend films to properly
sition. Coarsening proceeds at a later stage. The phasaterpret their origin.
separation morphology had a bicontinuous form under off- Our illustrations of LB calculations of blend phase sepa-
critical conditions and the minority phase had a dropletration were purposely restricted to relatively simple geom-
morphology in a far off-critical blend. Previous LB calcula- etries and flows that are under current study for their poten-
tions have emphasized the kinetics of phase separatiotial relevance to processing applications. It is also possible to
which is not the emphasized phenomena Hétfg98—-100. incorporate many other fluid properties of interéstear de-
In future work, we plan to study the crossover between thgendence of fluid viscosifyand other important effectsem-
droplet to bicontinuous phase-separation morphology as perature gradients and time-dependent temperature varia-
function of viscosity mismatch, composition, and quenchtions, density mismatch of fluid components and segregation
depth. with gravitational and centrifugal fields, fluid wetting and
Next, we considered the more challenging problem ofdewetting on heterogeneous substrates, phase separation of
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blend films on patterned substrates, phase separation in elefrought of as a mean-field potential produced by neighboring
tric fields, phase separation at high rates of flow where inerparticles and- VV,), is the associated mean-field force.

tial effects are important, flow in complex geometries and The pressure tensor can be determined for this system,
with the presence of filler inclusions, etcThere are many

possibilities for further application. An important challenge - 5 5

for future theoretical work is the incorporation of fluctuation P=[~811 p1=82 p2—2a12 p1p2

effects to better describe fluid properties near the critical

point for phase separation. + 1115 Vpal?+ p1V2p1) + koo 3|V pal >+ 2V 2ps5)
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how the forcing between fluid components is incorporated.

This can be seen from the leading term in the expansidf) of
APPENDIX A: CONTRIBUTION TO PRESSURE TENSOR

FROM FLUID /FLUID INTERACTION

J
Here it is useful to discuss the relation between the LB F~p(x+AX) = p(x—AX)~ (9_i’ (A3)
model and other mean-field models of phase separation.
First, consider the equation for a single-particle distribution
function P, based on the continuum BBGK}8,9] formal- ~ whereF? corrections to the pressure tensor, a feature in the
ism, which is extended to the case of multiple species, Shan-Chen moddl7], scale with the surface tension as in
standard Cahn-Hilliard models. Higher-order terms, from
S L _ A Chapman-Enskog analysis, also contribute to the effective
dP1+ky- VP1+F-V P1=0/, (A1)  surface tension, along with contributions that arise from
finite-difference approximations of the contiuum equations.

~ ) ) . ) Quantitative predictions of the surface tension require an un-
wherek is the microscopic momenturf, is the acceleration derstanding of all these terms.

due to a body force, an@ is a collision operator. It can be
shown, when making a molecular chaos approximat@jn
that the collision operator can be written as
APPENDIX B: HARD-SPHERE CORRECTION

s e TO INTERACTION TERM
i dPy(rq,kyq,t) ) .
Q'=— —_— The usual lattice Boltzmann method assumes that the fluid

=1 maky is composed of point particles. To include a volume exclu-
sion interaction and in effect obtain a relative volume of the

o . . Vii(rp) fluid particles, we utilize an Enskog hard-sphere model. The

X f dropl(rp,1)gij(ri.r2.)—=——. (A2)  relative volume fraction can be determined from the sphere
e radius and the number density. The application of Enskog

theory to multicomponent fluid mixtures is described by Lo

This approximation of the collision operator is of the form of \B\%’Ide #af(ﬁt a'-(g%ﬁfm] an(?c in ferer_encesfcri]teddin tEiS W0rk-d
> > - ile there are different formulations of hard-sphere mod-
- . . —ro> -
a body-force :ermF_ViPl For|ry—ry _ d, whered is of els, such as standard Enskog the(®gT) and revised En-
order a few “effective” hard-sphere diameterg;(r,r,)

- . o skog theory(RET), we will utilize a form of forcing, arising
~1. After expandingp’ aboutr,, the contribution to the o hard-sphere interactions that are treated to lowest order
collision operator associated with the attractive intermolecu

) ! : . s i in density. In this case, the two theories are identical. Further
lar m';eracuon,Q can be apEroxmated b% =2j-1VVm  details are described in Ré118]. In the isothermal regime,
-ViPy, where Vi=2ap!(r))+«;jV%!(r;) with a; the additional correction to the forcing due to hard-sphere
=3[4d3rVii(r) and xij=¢[q d*rr?V;(r). V), can be collisions,B'9), is
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an’

X (B1)

_ 2b; xiie
By"= - LR {# e, v).

where yjjc is the equilibrium value of the pair correlation
function for spheres of speciésand | at contact with the

PHYSICAL REVIEW B3 031205

equilibrium density replaced by the total local equilibrium
density at the poink, b;; = %wnjaﬁ-/p, with o; equal to the
distance between sphere centers in contacteaisdthe local
density. The total forcing on a fluid componeris then Bia
+B"S)  whereBl, is defined in Eq(13).
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