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ABSTRACT: The dependence of the apparent heat capacity obtained from quasi-isothermal
temperature-modulated differential scanning calorimetry (TMDSC) experiments and the
thermal conductivity is determined for several cases. The relationships are based on the
solution of the heat conduction equation which gives the temperature profile in the
TMDSC sample. The temperature profile is then used to calculate the sinusoidal heat
flow to the sample. We compare our results with those of other researchers. We also
show the effect of thermal contact resistance on the results.

INTRODUCTION

EMPERATURE-MODULATED DIFFERENTIAL SCANNING calorimetry (TMDSC)

is a new technique in thermal analysis in which a sinusoidal temperature per-
turbation is used. The purported advantages of TMDSC include the ability to sepa-
rate overlapping phenomena, as well as improved resolution and sensitivity [1].
There are problems associated with the interpretation of TMDSC data, especially
when nonlinear processes, such as melting, reaction, or structural recovery [2,3]
are involved. Thermal lag in the sample also presents problems for quantitative
analysis of the heat capacity in TMDSC data since the apparent heat capacity de-
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creases as the thermal lag increases [3]. However, since the thermal lag and appar-
ent heat capacity are directly related to the thermal conductivity of the sample, the
thermal conductivity can, in principle, be determined from TMDSC measure-
ments of the apparent heat capacity.

Here we question the method proposed by Marcus and Blaine [4] to obtain the
thermal conductivity from TMDSC measurements. In their work, those research-
ers presented an equation to calculate the thermal conductivity from the apparent
heat capacity based on their solution of the one-dimensional heat flow problem for
a thick sample in an open pan. The derivation of the equation assumed that the bot-
tom face of the sample (which is against the heat source) follows the applied tem-
perature perturbation and the heat flow through the top of the sample is negligible.
Based on this equation and TMDSC measurements, they calculated values of ther-
mal conductivity for four materials that deviated from other literature values ob-
tained by more conventional techniques by as much as 20%. In order to correct
these results they accounted for radial heat losses in the relatively thick (>3 mm)
samples used and then reported values that are within 3% ofthe literature values.

The equation derived by Blaine and Marcus 4] is:

21(mC,,, )*
o= ———TE M
C,pA°P

where m is the mass of the sample, C,,,, is the measured heat capacity of the thick
sample, C, is the heat capacity of the thin sample (assumed to be the true heat
capdcity), 4 is the area of the sample, and Pis the period of modulation. We needed
to include the mass in Equation (1) because we take the units of C,,, tobe J g 'K,
whereas in their work, Marcus and Blaine defined C,,, as having units of J K™
Substituting the modulation frequency w = 2/P and p = m/AL (where L is the
sample thickness), the equation of Marcus and Blaine reduces to:

c. \
k= pC 0l [—C—"”) (2)
P
The equation they used to correct forradial losses is:

=[k— 2D+ (x* — 4Dk)* )2 3)

where Dis typically 0.014 W/°Cm [4].
One problem with the method Marcus and Blaine [4] proposed to obtain the
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thermal conductivity from TMDSC is that two samples are used, a thin sample en-
closed in the typical aluminum pan in which no thermal lag is assumed to be pres-
ent, and a thick sample, generally a 3—6 mm extruded rod which is placed in an
open sample pan. The heat transfer coefficient between the sample and the furnace
may vary between the two samples and this will affect the accuracy of the results.
A more significant issue is the validity, or lack thereof, of their solution to the heat
flow boundary value problem and the resulting equation relating the thermal con-
ductivity to the apparent heat capacity as a function of experimental variables,
such as sample thickness, and frequency and amplitude of modulation.

Here, we rederive the equation for « as a function of the apparent heat capacity
and compare the result to that of Marcus and Blaine [4]. To this end, we first obtain
the time-dependent temperature profile in the sample and the sinusoidal heat flow
by solving the one-dimensional heat conduction equation for the boundary condi-
tions assumed by Marcus and Blaine [4]. Using the analytical expressions ob-
tained, we proceed to derive the relationship between the thermal conductivity and
the apparent heat capacity as a function of sample thickness, frequency, and the
heat transfer coefficient. Our results indicate their equations are in error. The use of
other boundary conditions are also examined and discussed.

ANALYTICAL SOLUTION OF THE HEAT FLOW PROBLEM
FOR A THICK SAMPLE IN AN OPEN PAN

Temperature Profile in Sample

The one-dimensional heat conduction equation [5], in which radial heat transfer
is neglected, given below, is solved to yield the temperature profile in the sample
as a function of distance from the bottom of the sample x and of time #:

a T oT

Ll o0 B 4
axxax p”at S

where T'is temperature, & is the thermal conductivity, p is the density, and C; is the
heat capacity of the material. If we assume that the thermal conductivity is not a
strong function of temperature (and hence, x), the equation is simplified:

3’T _aT

where k = k/pC, is the thermal diffusivity. To solve Equation (5), the boundary
and initial conditions need to be specified. We first examine the case considered by
Marcus and Blaine [4] where the bottom of the sample (at x = 0) is assumed to fol-
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low the furnace temperature and there is no heat transferred from the top of the
sample (atx = L):

T(x=0)=T, + A sin (w?) ()
—‘;—f (x=L1)=0 ™) .
T(t=0)=T, @®)

The steady state (but oscillatory) solution is given by the following series:

odd R
_ . _ (A, cos (wt)+ O sin (wt)) | x
T(x,t)=[Ty + 4 sin (wt)] 2A9'§ . 02507 sin (,Mn L) ©)

where 4, are the eigenvalues given by \/Z = nm/2. The parameter 6 is a dimen-
sionless parameter and is equal to wL¥/k. Equation (9) is obtained using a solution
procedure similar to those commonly presented in textbooks [5], with the differ-
ence being the difficulties added by the presence of the time-dependent boundary
condition. The application of the solution procedure to a DSC temperature ramp
has been published [6].

Heat Flow in Sample

If one performs a TMDSC experiment under conditions such that there are no
thermal events, such as structural recovery, melting or crystallization, or chemical
reaction, then the heat flow to the sample depends on the sample geometry, heat ca-
pacity, mass, and the rate of temperature change. For the simplest case in which
there is no thermal gradient in the sample and no heat loss, the heat flow is given
by:

dT
=C, —
2 dt

Q0 (10)

When a thermal gradient exists, the heat flow is proportional to the average rate of
temperature change in the sample:

f‘ﬂdg (11

=G, Odr
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where & =x/L is a dimensionless sample thickness measured from the bottom of
the sample.

We obtain an analytical solution for the steady-state sinusoidal heat flow for a
thick sample in an open pan by taking the time derivative of Equation (9) for the
temperature and then inserting this expression into Equation (11) and integrating
over the thickness:

odd : -
A, sin (wt)— O cos (wt)} (12)

)=C_A 20
0 » w{cos (wt)+ ,,2:1 \[3:[/12,,'*92]

The series in Equation (12) converges to within 1% of the limiting value in two
terms for values of the parameters w and 8 examined; in some cases, for values of 0
much less than 77%/16, the series may converge in one term.,

Apparent Heat Capacity

Now that we have an analytical expression for the steady-state heat flow, we can
obtain an expression for the apparent heat capacity, generally taken to be the am-
plitude of the sinusoidal heat flow, B, divided by the amplitude of the sinuscidal
rate of temperature change Aw:

B Oum
= 2 13
P Aw Aw (13)

The amplitude of the heat flow is equal to the maximum in the heat flow Q ., in
our calculations because we assume no heat loss (i.e., we assume that the heat flow
oscillates about 0 since d7/dt oscillates about 0). (It is noted that the apparent heat
capacity is often taken to be a dynamic quantity and it is defined in Equation (13)
similarly to the modulus of a dynamic heat capacity. We disagree with that inter-
pretation in that we argue that the frequency-dependence lies in the enthalpy and is
notinherent in the heat capacity [7].)

We can obtain an analytical expression for the amplitude of the heat flow by
solving for the heat flow when the heat flow is a maximum. The value of wr at
which the heat flow is a maximum, W#mayx, is found through differentiation since:

Qo L
d(wt)—o when 0= Q. (14)
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If the series in Equation (12) does not converge in one term, we find Wty from
Equation (14) and the relationship between « and C,,, from Equations (12) and
(13). If the series converges in one term, we can write an analytical expression for
Wtmax and obtain an expression relating « and C,,,. For example, sy and Q ax ATE
given by the following when the series converges in one term:

- (15)
nz[”—wz)—s(ﬁ

T cos (@F 0y )= O'sin (w2, )
4 Ead +6?
2116

Now we can insert our expression for the amplitude of the heat flow [Equation
(16) for the one-term approximation] into the expression for the modulus of the
complex heat capacity [Equation (13)]. For the one-term approximation we can re-
arrange and solve the resulting quadratic equation for = wL¥k. We then rear-
range and solve fork = kp C,;:

O rmax = C, Awicos (0t . )+ 20 (16)

C, wl?
P id el an
0
where §is givenby:
—b*./b% — 4ac
=— (18)
2a
and a, b, and c are given by the following:
2 Copp 2
a=un —C———+(8—n )cos (wt .. ) (19)

P
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b=— 8 ? sin (0t ) (20)

2 (¢,
c=7:_6{C’: —cos (a)tmax)} 21)

Equation (17) cannot be solved explicitly for « since the equation is nonlinear: k
depends on Wmax through Equations (19)—~(21) for 8, and #,s in turn depends on 6
per Equation (15). However, simultaneous solution of the equations gives k as a
function of C,p,.

RESULTS AND DISCUSSION

Relation Between x and C,, for a Thick Sample in an Open Pan
Assuming Perfect Heat Transfer

The equations we derived above relating « and C,,/C, for a thick sample in an open
pan assuming perfect heat transfer at the bottom of the sample differ significantly
from the solution obtained by Blaine and Marcus [4]. We compare our solution with
theirs in Figure 1. We plotted C,,,/C, versus 1/8 = k/owL? = k/pC, wL? rather than
versus k at a givenpC, wL? in order to give the more general results. Two results
are shown for our derivation: a four-term approximation and the one-term ap-
proximation {Equations (15), (17)—(21)]. The one-term and four-term approxi-
mations are identical (within less than 1%) and cannot be distinguished except at
very small values of #/wL?. Only Equation (2) from the work of Blaine and Mar-
cus [4] is shown; the corrected result which presumably accounts for radial heat
loss depends on the value of D in Equation (3), as well as the value of k, and can-
not be shown as a single curve as a function of the dimensionless variable k/wL>.
The results of Marcus and Blaine are in agreement with our solution at A/wL? less
than approximately 0.2. The limiting behavior at high k/wL? differs signifi-
cantly between their solution and ours. For our solution, the limiting value at
high k/wL?is C,,,/C, = 1.0; whereas in the equation given by Marcus and Blaine
[4], Capp/C, = 1.0 at KlwL? = 1.0 and C,,,/C, > 1.0 for larger values of k/wL>.
Values of C,,,/C, > 1.0 are not theoretically possible unless the sample is under-
going an endothermic kinetic event.

The discrepancy between our result and that of Blaine and Marcus arises from
the assumption made in their derivation [4,8] that the term!

"The term shown in Equation (22) is from Reference [8]; the factor of 2 preceeding the second term in the denomina-
tor is missing in Reference [4]. However the presence or absence of this factor is of minor importance and does not
affect our arguments or conclusions. '
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Figure 1. Apparent heat capacity versus kjwL? for a thick sample in an open pan comparing
our relationship with that in Reference [4].

1- 2e*? cos (2zL)+ e*4

14 2e*4 cos (2zL) + e*4

22)

can be set to unity, where Z = (w/2k)". Although this assumption is valid for very
large e** at they note, errors above 10% are incurred for k/wL? values between 0.16
t00.67, as shown in Table 1. The error in the apparent heat capacity will be half the

Table 1. Percent error in c,Pp/cp due to assumption in derivation
made in Reference [4].

% Error in Equation (22) % Error in

kol?  4zL e*?  Equation (22) when itis set to 1.0 Capp/Cp
005 1265 311486 0.99 0.7 04
010 894 7664 1.01 -1.1 -0.5
015  7.30 1484 1.09 -8.7 -4.3
020 632 558 118 ~15.6 -7.8
030 5.6 175 1.29 ~22.6 -11.3
040 447 88 1.30 -23.1 -115
050  4.00 55 1.25 -19.9 -10.0
060  3.65 39 117 -14.7 -7.3
070 338 29 1.09 -8.2 -4.1
080  3.16 24 1.01 -0.8 -0.4
090 298 20 0.93 7. 36
1.00 283 17 0.87 15.4 7.7
120 258 13 0.81 32.9 16.4

1.50 2.31 10 0.62 60.3 30.2
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error incurred by assuming Equation (22) is unity since the term in Equation (22) is
related to the square of the apparent heat capacity [8]. For example at a value of
Kwl? of 0.4, the error in the C,,,/C, obtained from Equation (2) will be 11% too
low (0.08 too low in terms of C,,/C,), exactly the discrepancy observed. Interest-
ingly, at a value of k/wL? near 0.8, the error incurred by assuming Equation (22)
goes through zero and changes sign (see Table 1); this is responsible for the cross-
ing of the two solutions in Figure 1 at k/wL* = 0.81. We note that Table 1 encom-
passes the range of e*“ between 40 and 3000 which Blaine and Marcus 8] state is
the approximate range of application for their equation. Clearly, their statement is
incorrect.

Effects of Heat Transfer on the Relationship between x and C,, for a
Thick Sample in an Open Pan

In addition to the apparent error in their derived equation, the methodology of
Marcus and Blaine [4] has other problems. One issue is that perfect heat transfer
between the furnace and sample is assumed. The effect of a finite heat transfer co-
efficientis a change in the boundary conditions atx = 0:

E(E 0)——H(T T,) .(2?)

where £ is the dimensionless sample thickness, 7}, is the furnace temperature [= o + 4 sin
(wf)) and H is the dimensionless heat transfer coefficient (H = h/kL, where h is the
heat transfer coefficient with units of Jm™2s~" K™!, k is the thermal conductivity,
and L is the sample thickness). For this boundary condition at the bottom of the
sample coupled with the original boundary condition at the top of the sample and
the original initial condition, the heat flow problem can be solved. The solution for
athick sample in an open pan where there is thermal resistance between the sample
and the furnace is givenby:

- o sin? J1, (1, sin (ot)— 6 cos (wt))
| Q—CpAw{cos (wt)+ 292 0] (24)

where the eigenvalues are given by J—_ tan J—— H and where 0 stlll equals
pC,wL¥k. The effect on the relationship between Cg,p and & is thata smaller value
of C,,,/C is observed for the same value of k/wL? (or k keeping the other variables
the same), as shown in Figure 2. Hence, the ability to accurately determine « based
on the measurement of the apparent heat capacity depends on whether the heat
transfer coefficient is adequately known.
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~ Figure 2. Apparent heat capacity versus k/wL2 fora thick sample in an open pan showing the
effects of thermal resistance between the furnace and the sample pan.

Solution for an Encapsulated Sample with and
without Heat Transfer Limitations

Another problem in the method of Marcus and Blaine [4] is the use of a thick
sample not enclosed in a sample pan. As they point out, thermal losses along the
sides of the sample can be important and will result in a larger value of C,,,/C for
the same value of k/wL? (or k keeping the other variables the same) since the heat
flow into the sample will need to be higher to compensate for the losses (assuming
that the losses are much greater for the sample than for the reference). For their
thick sample, radial heat loss can be substantial because the radial surface area is
50% of the area of the top of the sample. Another factor that may be important for
thick samples is the presence of a thermal gradient in the DSC furnace itself since a
lower temperature in the furnace at the top of the sample will contribute to greater
heatloss from the sample. ‘

Incorporating heat loss due to a thick sample or due to a gradient in the DSC fur-
nace into the heat flow problem is difficult. Hence, the empirical approach {Equa-
tion (3)] taken by Marcus and Blaine [4]is reasonable, However, an alternative ap-
proach is to exploit the fact that the apparent heat capacity depends on w as well as
on sample thickness. Hence, one can use a single nominal DSC sample encapsu-
lated in an aluminum pan to determine thermal conductivity with measurements
being performed over the frequency range available (approximately 0.06 rad/sec
to 0.31 rad/sec).This approach mitigates the problems associated with radial heat
loss and with the effects of gradients in the DSC furnace.

We now solve the heat flow problem for a thin encapsulated sample. We assume
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that when the sample is encapsulated, the temperature at the top of the sample is the
same as at the bottom of the sample (i.e., the sample pan is assumed to have no ther-
mal resistance and the thermal contact between the sample and the pan is assumed
to be perfect). The boundary condition atthe top of the sample then becomes:

T(x=L)=T(x=0) (25)

or alternatively:
dr
— (x=L/12)=0 26
(x=L12) 26)

For the new boundary condition coupled with the original boundary condition at
x = 0 and the original initial condition, the heat flow is given by:

%4 A, sin (wt)— 6 cos (wt)
2 7 +e?]

where the eigenvalues are givenby JT; = nor rather than nt/2. For the case where
there is thermal resistance between the sample bottom and the furnace but where
the temperature profile in the sample is still symmetric (i.e., there is no thermal re-
sistance between the pan and sample or within the pan itself) the heat flow is given
by Equation (24) with 0 being redefined as pCwL?4k. Figure 3 shows how the ap-
parent heat capacity is expected to vary with k/wL? for two values of H for a ther-

Q= C,dwicos (wt)+ 80 (27)

1.0

0.8 | -
C_/C y
app P

0.6 -

0.4 | -

0.2 KL~ : '

00 02 04 06 08 1.0
k/ wlL

Figure 3. Apparent heat capacity versus k/wL2 for a thin encapsulated sample showing the
effects of thermal resistance between the furnace and the sample pan.
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Figure 4. Apparent heat capacity as a function of wl2 for a thin encapsulated sample show-
ing that the effects of k and H cannot be distinguished.

mal diffusivity (k = x/pC,) value of 0.001 cm s-! (typical of polystyrene). The re-
sults show that the apparent heat capacity depends strongly on w but also that
without knowing the heat transfer coefficient, accurate prediction of k or x is not
possible. This is even more apparent in Figure 4. Here we plot the apparent heat
capacity versus wL? over the typical range of wL? for two cases: k = 0.00101 cm
s™! with H =  (no thermal resistance), and &£ = 0.00126 cm s~ with H = 10. The
curves for these two cases are identical. It is evident that the thermal diffusivity or
thermal conductivity cannot be determined unless the heat transfer coefficient is
known.

CONCLUSIONS

The analytical solution to the heat flow problem for a thick unencapsulated sam-
ple demonstrates that the equation relating the apparent heat capacity to the ther-
mal conductivity proposed by Marcus and Blaine [4] is incorrect due to an approxi-
mation made in their derivation. In addition, examination of boundary conditions
which assume some thermal resistance between the sample and the furnace show
that thermal resistance can have a significant effect on the measured apparent heat
capacity. The heat flow problem was also solved foranominal DSC sample encap-
sulated in an aluminum pan. The thermal conductivity can be easily obtained from
a single sample run at several frequencies if the heat transfer coefficient is known;
however, ifthe heat transfer coefficient is not known, an accurate value of k cannot
be obtained.
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