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Abstract

In 1964 Kovacs (Kovacs, AJ, Transition vitreuse dans les potgsiamorphes. Etude fph@menologique. Fortschr Hochpolym-Forsch
1964,;3:394-507) published a paper in which he analyzed structural (volume) recovery data in asymmetry of approach experiments. Kovacs
used a parameter referred tomsffective (r¢;) which is defined in terms of the volume departure from equilibriuasrof = — 1/8 dd/dt.

In plots of the log(1fex) vs. 8 Kovacs observed an apparent paradox in that the valueszafid not converge to the same point &s
approached zero (i.e. equilibrium). Hence the equilibrium mobility of the structural recovery seemed path dependent. Also, the apparent
paradox was accompanied by a spreading of the curveggor the up-jump experiments which has come to be known as the expansion gap.
While it is currently accepted that the paradox itself does not exist because the curves will converge if the measurements are made closer to
5 = 0 (Kovacs' estimates of s were made for values as small &s= 1.6 x 104, the existence of the expansion gap is still a subject of
dispute. This is particularly relevant today because recent models of structural recovery have claimed ‘success’ specifically because the
expansion gap was predicted. Here we take the data Kovacs published in 1964, unpublished data from his notebooks taken at the same time
as well as more recent data obtained at the Institut Charles Sadron under his tutelage in the late 1960s and early 1980s. We then examine then
using several different statistical analyses to test the following hypothesis: the valyesfs| — 1.6x 10~ for a temperature jump froff

to Ty is significantly different from the value obtained for the temperature jump fridoT,. The temperatureg or T; can be either greater or

less thanT,. If the hypothesis is rejected, thgg-paradox and expansion gap need to be rethought. If the hypothesis is accepted, then the
argument that reproduction of the expansion gap is an important test of structural recovery models is strengthened. Our analysis leads to the
conclusion that the extensive set of data obtained @ 4Qpport the existence of an expansion gap, hence an apparently paradoxical value of

e, Or values of8| = 1.6x 10~ *. However, at smaller values [#] it appears that the values f; are no longer statistically different and, in

fact, the data suggest that|as— 0 all of the 7. values converge. In addition, data for experiments &3 not have sufficient accuracy to

support the expansion gap for such small valuepbecause the duration of the experiments is significantly longer than thoséCat 40
Consequently the data readings taken 4C3Were made at longer time intervals and this leads to dramatically reduced error correlations.

© 1999 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction from equilibrium 8 as 7o = ( — 1/8)d&/dt. In plots of the
log(1/me) vs. 6, Kovacs observed an apparent paradox in
In 1964, Kovacs [7] published a paper in which he thatthe values of. did not converge to the same pointéas
analyzed structural recovery data in asymmetry of approachapproached zero (i.e. equilibrium), hence the equilibrium
experiments using a parameter that he referred toeffec- mobility of the structural recovery seemed path dependent.
tive (7ef). Ter Was defined in terms of the volume departure Also, the apparent paradox was accompanied by a spreading
of the curves forres in up-jump experiments which has
* This paper is dedicated to the memory of Ah#tevacs who taught come to be known as the expansion gap. While it is
that the purpose of experimental science is to challenge current theories bycurrently accepted that the paradox itself does not exist
(vt the experiments be done in an uncommony painsiaking mamner.  DcCauSe the curves [10] converge if the measurements are
2 Corresgonding author. Tel.:+ 1—301—975—67%2% fax:+ l—%01—975—. made closer & = 0 (K_civacs’ eStI.mateS Ofr went Only to.
4977, values of6 = 1.6 X 10 ), the existence of the expansion

E-mail addressgmckenna@nist.gov (G.B. McKenna) gap (apparent paradox) is still a subject of dispute
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Fig. 1. Asymmetry of approach data for volume recovery of Poly(vinyl acetate) from Kovacs [7] as well as unpublished data of Kovacs as descrébed in the t
The final temperatures are (&= 35°C and (b)T; = 40°C and the initial temperaturés are as indicated in the drawing.

([12,13,16,19]. This is particularly relevant today because hypothesis: the value of.; as |§] — 1.6 X 1074 for
recent models [8,17] of structural recovery have claimed a temperature jump fror; to T, is significantly differ-
‘success’ specifically because the expansion gap is obtainedent from the value obtained for the temperature jump
Conversely, Struik [19] claims that the Kovacs’ data do not from T; to To. The temperature$; and T; can be either
support the expansion gap (or paradox) because the errors irgreater or less thaf,. If this hypothesis is rejected, the
the volume measurements propagate such that the errors irrez-paradox and expansion gap need to be rethought. If
e bECcOme greater than the gap itself at value$pf 5 x this hypothesis is accepted, then the argument that
10~* Itis interesting to remark that Kovacs and co-workers reproduction of the expansion gap is an important test
in subsequent work [6,22] agonized over the expansion gap/of structural recovery models is strongly supported. We
paradox and the fact that the reduced time models of struc-come to the conclusion that the data taken afC40
tural recovery that they had developed did not seem to support the existence of an expansion gap: hence, a
predict it. Struik’s [19] arguments concerning the Kovacs paradoxical 7o when |§] = 1.6 X 10", However, at
[7] data would actually support the validity of the simple smaller values ofl§], it appears that the values oty
reduced time models. are no longer statistically different and, in fact, the data
Here we take the data Kovacs published in 1964, suggest that a$5| — 0 all of the 7¢; values converge.
unpublished data of the same era from his notebooks, In addition, data for experiments at € do not have
and data obtained later (1969-1982) at the Institut sufficient accuracy to support the expansion gap for
Charles Sadron under his tutelage, and subject them tosuch small values otf5| because the duration of the
a rigorous statistical analysis. We test the following experiments is significantly longer than those afGl0
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Fig. 2. Originalr-effective plot from Kovacs [7] in which expansion gap and appargiparadox are evidenced. See text for discussion. (Figure courtesy of
A.J. Kovacs.)

and the data readings were made atlonger time intervals whichWe note that v is the specific volume at the time of
leads to dramatically reduced error correlations. measurement and.vis the value in equilibrium. An
explanation for the behavior seen in Fig. 1 has been
given [7,9,11,14,20] as a structure (volume) dependent
2. Asymmetry of approach experiments relaxation time. Hence, in the down-jump experiment,
the initial response relaxes very rapidly because the departure
In an asymmetry of approach experiment, a glass from equilbriumisinitially high and subsequently slows as the
forming material is equilibrated at some temperature, volume decreases. In the up-jump experiment, the initial
T, that is greater than or less than the final temperature departure is negative, hence the relaxation is slow initially
of test, To, by an amountAT. Subsequent to the equili- and, as the volume increases towards equilibrium, the mobi-
bration a Temperature Jum@-jump) is performed to lity increases. Therefore, the approach to equilibrium from
the final temperature and the sample structural recoverybelow and above is asymmetric.
is followed. Kovacs performed many such experiments The asymmetry of approach experiment is itself relatively
for volumetric recovery, and the results of experiments well understood and has been widely interpreted in terms of
to final temperatures of 35 and 4D are depicted in  either the Tool-Narayanaswamy—Moynihan [11,14,20]
Fig. 1(a) and 1(b) for different values of the initial fictive temperature based model of structural recovery or
temperature (orAT). The asymmetry arises when the the mathematically equivalent KAHR [22] model which is
up- and down-jump results for the same value XF based on the structural departure from equilibrium.
are not mirror images of one another. This is clear in However, the phenomenon described by Kovacs [7] as the
the figures, and one sees that the approach towardsr-effective paradox is not explained within the context of
equilibrium for the down-jump results is characterized these models [6]. In the next section we defineffective
by a small initial departure from equilibriurd = (v — and examine the ‘paradox’, and its precursor the expansion
V)V, compared with that for the up-jump experiment. gap.
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Fig. 3. 7¢x plot showing calculation from KAHR model showing no expansion gap and merging eftkalues a = 0. See text for discussion. (Figure from

ref. 22, republished with permission of J. Wiley.)

3. Definition of 7-effective and the Kovacsr-effective
paradox

Let 8(t) = 50e " be an exponential decay function. Then
the relaxation time is determined by taking the logarithmic =+ 7]
derivative ofé(t) with respect to time, i.e. 1

_ 1ds d(In|é _
Fio 10 _dind) o (1)

o dt dt o
For non-exponential decay functions the definitionrof
becomes less clear. In volume recovery experiments, M = =c o5 G
Kovacs [7] defined, as in Eq. (1), an effective rate or retar- o ' k 200

dation time r-effective or 7.+ whose deviations from

sign{delta)*Logldelta )

4 . 325C
constancy should be indicative of the non-exponentiality - w850
of the decay process. ] 3750

1

In his studies on the kinetics of structural recovery, oo [ % 42.20
45

Kovacs performed many types of experiments that
evidenced the nonlinear, non-exponential nature of the
decay process. It is the asymmetry of approach experiment
that interests us here because, in this experiment, Kovacs [7]
observed the so-called-effective paradox. Kovacs took
sets of data of the sort depicted in Fig. 1 and calculated
Te. The results that he presented in 1964 are shown in
Fig. 2 as — log(7ex) vS. 6. There are several things to
note from this figure. First, the up-jump results are to the
left of 8 = O (i.e. negative departures from equilibrium) and Time, secands

the down-jumps are _'FO Fhe right & = 0 (i.e. positive Fig. 4. Plotoflogs| vs.tin T-jump experiments for a final temperatdie=
departures from equilibrium). Second, there are data for 4¢c for the initial temperatures indicated in the figure. Ldg| is multi-
final temperatures of 40, 35, 30 and°@5 The latter two plied by the sign ofs in order to separate the up- and down-jump sets of
temperatures are for down-jumps only and there are data atexperiments.
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Fig. 5. Plot of logd| vs.t in T-jump experiments for a final temperature of ~ Fi9- 6- Plot of IOQ’_S‘_YS't in T-jump experiments for a final temperature of
T, = AC°C for the initial temperature; indicated in the figure. The data T; = 35°C for the initial temperatures; Thdicated in figure. The data have
have been shifted to intersect&t= 1 X 10°* to emphasize the trend of been shifted to intersect &t= 1 X 10™* to emphasize the trend of increas-

increasing slope with increasing initial temperature. Hatched area repre- N9 5'°p‘f5With increasing initial temperature. Hatched area repredents
sentsd < 3.2x 107>, 22X 107°,

First, the existent Tool-Narayanaswamy—Moynihan and
KAHR models [11,14,20,21] do not seem to give the gap
[6] and a good example of this is shown in Fig. 3 in which
the KAHR model was used to predict data similar to those of
Fig. 2 (note the rapid convergence of the curves). Moreover,
two models have appeared in the literature [8,17] in which
the ability to predict the expansion gap has been taken as
support for the validity of the models. In addition, there
have for a long time been questions, in particular in the
inorganic glass community, about the accuracy and preci-
sion of Kovacs' 1964 data and their ability to support the
existence of the expansion gap [12,13,16]. Also, Haggerty
[5], in studies of inorganic glass, did not see a significant
expansion gap because of insufficient experimental accu-
racy. Goldstein and Nakonecznyi [4] did not see an expan-
sion gap in Zn@ and speculated that polymers might be

40°C only for the up-jumps. The feature of interest in the
figure is the apparent lack of convergence of curves at the
same final temperature a — 0. Hence, the family of
curves afl = 40°C seems to fan with the order of the results
following the magnitude of the initial temperature 36€
32.5= 35= 37.5C. Similarly, the data at a final tempera-
ture of 35C follow in sequence for the up-jumps 36>
32.5C and the apparent final value for “8Dis different
from the single value seen for all of the down-jump experi-
ments. The behavior seen here is what Kovacs [7] referred
to as ther-effective paradox because the extrapolation of
the curves ta5 = 0 results in an apparent path dependence
of the equilibrium value ofro. There has been some work
[10] in which experiments were performed very close to
equilibrium (with, perhaps, an order of magnitude better
accuracy and resolutlt_)n than seen in the Kovacs [7] data) exhibiting behavior that differs from inorganic glasses
which seems to establish that there is no paradox. However, ;
. : because they have a broader spectrum of retardation
the observation that the curves do not converge in the range,. ; . ; .
L .. 2 times. Finally, in a recent paper, Struik [19] has claimed
of 8 measured by Kovacs and shown in Fig. 2, is still : .
. . . that the data Kovacs published in 1964 do not support the
perceived to be an important observation and has become__. :
: existence of the expansion gap and he has put forth a propa-
known as the expansion gap. (The data of McKenna et al. ~_ A .
gation of errors argument to justify his claim.
[10] were taken over a much smaller rangesohence the . . . .
. : , The purpose of this paper is to examine rigorously the
expansion gap is not so clearly defined. Further, the data . . . A
. . original Kovacs data. We consider not only the ‘representa-
were obtained for a different reason and hence are not nearly,. =, . .
tive’ data that he published, but also unpublished data taken
as complete as those of Kovacs.) : ; .
at the same time. Further, data using the same dilatometer
were taken later (1969-1982) under Kovacs' tutelage and
4. The expansion gap we consider these in our analysis. In the following, we first
describe the experiment of Kovacs and the sources of uncer-
It is very important to establish the existence of the tainty in the measurements. We then perform two types of
expansion gap in the Kovacs [7] data for several reasons.analysis on the data to estimate the point at which the value
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of e can no longer be said to be different between experi- fluctuations which are of the order of 0.015 K over a period
ments run at different values of initial temperature. In the ©f 100 h. This leads to an uncertaintydrof approximately
first data analysis, we analyze the slopes of curves|éf In  1.7% 10°°.
vs.t, which are, in fact, — 7. Secondly, we consider an One piece of information to address is the absolute
analysis using a propagation of errors approach in which we temperature of the baths @. Errors inTp do not affect
consider correlated errors — something not considered bythe determination of for a given experiment (i.e. errors
Struik [19]. From these two analyses we come to the conclu- in Slope determination). However, they do affect the ‘true’
sion that the expansion gap is real and establish limits on thevalue of rer,becauserey is temperature dependent. If the
minimum value ofs for which this can be said. temperature of a bath was changed, the mercury relay ther-
mometer could not be reset to exactly the same temperature,
hence itis important to have measured the absolute tempera-
5. The Kovacs experiments ture with some accuracy. The data we have chosen to
analyze are of two sorts. In the earliest experiments the
A major aspect of the determination of the statistical temperature was measured with a mercury thermometer
validity of the difference between values of; for different that was calibrated by the Bureau International des Poids
starting temperatures is to accurately estimate the sources oét Mesures in S3ges, France. For data obtained after 1965, a
error in the data. Hence we describe these in some detail. Hewlett-Packard quartz thermometer was used, and a differ-
Kovacs performed dilatometry using Bekkedahl-type ent calibration factor was obtained. Therefore, we have
dilatometers [1] in which a poly(vinyl acetate) sample of chosen to compare data at the nominal temperatures related
approximately 1.25 cfvolume is placed into a glass tube to the 1950 calculation. Importantly, the temperature depen-
which is sealed. The tube is attached to a capillary having adence ofr itself is not a major source of error. As one
diameter of approximately 0.454 mm. The capillary is grad- expectsr¢ to vary approximately 1 order of magnitude per
uated by marks engraved at 1 mm intervals. The system is3°C [23], an error of 0.1C leads to an error of #6°-1 =
evacuated and then filled with mercury. Changes in volume 0.072 — hence less than 10% which is significantly less than
of the sample are measured as changes in the height of théhe size of the expansion gap which can be as much as an
mercury in the capillary. order of magnitude. This can be seen in Fig. 2. Therefore,
One source of error in the measurements is the resolutionthis aspect of error is not considered further.
of the reading of the mercury height. This was done usinga Finally, an important problem in the analysis=®f is the
magnifying device having a low power lens and a reticle fact that this is a derivative in the data, hence the correla-
which was attached to the capillary. The mercury level tions in errors ind have an impact on the actual uncertainty
could be read to within 0.10 mm using this device. This in 7¢ We come back to this in more detail when we quan-
corresponds to a resolution of 610 ° cm®, or a resolu- titatively estimate the uncertainty using a propagation of
tionin & of 1.3x 10°°. errors analysis. First, however, we examine the data using
A second source of error arises in the temperature a method that allows us to look at them as they are and to
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Fig. 13. Contour plot for error correlations with time between readings for (a) temperature jump f208@°C to T; = 40°C. Perfect correlation would follow
the dashed line. (b). Same as (a) except That 40°C andT; = 35°C. See text for discussion.

thereby gain some insight into the meaning f, the
expansion gap and the behavior of the volume recovery as
8 — 0. This approach, in fact, implicitly includes the error
correlations.

)
=t
|
6. The data R
The original Kovacs [7] data represented only a partial set r'f 2 )il e

of the data that Kovacs had taken during the course of his £
studies. Further, subsequent work in the Laboratories at the 5 . ERRT ST
Institut Charles Sadron (formerly Centre de Recherches sur I =
les Macromoleules) was carried out, and we use these data TR L
to improve the statistigs for repeat tests — an important_ Z _ 1" Statistical Difference
aspect of the data quality because it provides another esti- " |inTau; Log|Deltal) = -4
mate of reproducibility beyond the within-test estimates of -~ S g B i
uncertainty given before. The data obtained from the & ' Log(IDchal) ' '

Kovacs notebooks was taken down as both mercury height

in the capillary and as a final calculatédWe treat the data ~ Fig- 14. Plot of loger) vs. logé| for T-jumps from 32.5C to different final

from the stage ob as the two are directly related. In any temperatured; of 37.5 and 48C. Solid lines are mean values and dashed
. . . lines give the 95% confidence limits assuming appropriate error correlation

given ?Xpe“_men.t' however’ we do note thf"‘t _there _'S _Somefunctions. The vertical line and shading represent the values & loglow

potential arbitrariness in the value = 0. This is the limit which one is no longer confident (at the 95% level) that the values of

of accuracy of the measurements as discussed before. log(rer) are different. See text for discussion.
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the same final temperatufg = 40°C. Solid lines are mean values and tures of 38C and 37.8C to a final temperatur& of 40°C. Solid lines are
dashed lines give the 95% confidence limits assuming appropriate error mean values and dashed lines give the 95% confidence limits assuming
correlation functions. The vertical line and shading represent the values appropriate error correlation functions.The vertical line and shading repre-
of log|§| below which one is no longer confident (at the 95% level) that sent the values of Id8| below which one is no longer confident (at the 95%
the values of logfes) are different. See text for discussion. level) that the values of log{y) are different. See text for discussion.

We consider up-jump and down-jump experiments to given series of experiments how the slopes of curves vary
final temperatures of 35, 37.5, 40 and 4Z.%rom multiple ~ as, €.g. the initial temperature is changed. Such a plot is
initial temperatures at which the samples had been equili- Shown in Fig. 4 for a final temperatui® = 40°C. Note
brated. We also examine down-jump experiments €30 that the hatched area corresponds to an uncertainiyah
which provide important information about the reproduci- 2% 10" °. The data for the up- and down-jumps are separated
bility of the data and the error correlation in down-jump for clarity by multiplying by the sign ob. We see several
conditions. Table Al, presented in the Appendix, details things in the figure. We see clearly that the data for the
the test conditions examined. Table A2, also in the Appen- down-jumps come into equilibrium very quickly relative
dix, summarizes the test conditions. As can be seen, thereto the up-jumps, and the down-jump experiments seem to
are over 90 experiments considered. We note that Kovacscome into the hatched area with about the same slope —
also performed many other experiments for other thermal hence the samee values. However, the up-jump data do
histories than the asymmetry of approach type of experi- not come together and the Slopes are not 0bViOUS|y all the
ment that is being examined here. same. It is also interesting to note that there is a relatively

Finally, for completeness, we note that there were 4 long portion of the up-jump data that seems to be linear on
experiments that we do not consider for temperature the plot, which would be true for a single relaxation process.
jumps to 35C from 35.6, 36.0, 36.2 and 3Z because A better depiction of the changes in slope as the initial
these were obvious outliers in that they recovered much temperature changes is seen in Fig. 5 where we have now
too fast into equilibrium for the final temperature of@5  shifted all of the curves to intersect|at = 10~* and we plot
All of the other data were included, even when noisy. It is 10g/8| vs.t on an expanded scale, so that the up- and down-
evident that Kovacs was meticulous in accepting certain jJump data can be directly compared. It is very clear from the
experiments prior to thinking them as high enough quality data that, as the initial temperature increases, the slopes of

for publication. With the exception aforementioned, we do the curves increase and begin to mergdgis approached
not make such a judgement here. and, for values corresponding to the down-jump conditions,

the curves become virtually indistinguishable. Hence, an
implication is that, at least untip| = 10™*, there is a differ-
7. A logarithmic representation of & vs.t ence int¢; that depends on the initial temperature for up-
jumps and approaches that obtained in the down-jumps as
One potential source of error in the Kovacs calculation of the magnitude of the jump decreases. This supports the
Te IS the determination of the slope of the data from a three original interpretation of the data as presented by Kovacs
point estimate. Further, plots éfvs.t or § vs. logt do not in 1964 in histex plots for the data obtained @ = 40°C.
give a direct visualization of the way in whichy is chan- Figs. 6—8 show similar depictions of Iéjvs.t for the final
ging with time (or 8) throughout an experiment. An temperatures of 35, 37.5 and 4Z5For the 35C data (Fig. 6)
obvious, in retrospect, method of presenting the data is to there is a slight trend similar to that seen in th&Cl8ata, but it
plot log|| vs.t. The slope of such a plot gives- 74 to is clear that the differences among the curves is slight. The
within a constant. Hence, one can see very dramatically in aresults do show, strongly, that the final valuergf seems to
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Fig. 17. Same as Fig. 16, but nélw= 30 and 35C. Fig. 18. Same as Fig. 16, but nolw= 42.5 and 6€C.

become independent of initial temperature for the down-jump with initial temperature. Similar results are shown in Figs. 10
conditions. For the other two temperatures the data are sparseand 11 for the final temperatures of 35 and 3Z.39t is also
but the same trend of increasing slope with increasing intitial seen that aks| decreases, the values of lag{) become less

temperature as evident in the’@data is seen. dependent on temperature and, in the intervalkliD > <
It is interesting to note that the differences in slopes |6] < 5.6 x 10>, the logr) values at the different starting
persist more clearly until small values éfin the Ty = temperatures become indistinguishable — hence showing that

40°C data (Fig. 5) than for the other final temperatures. the Kovacs data themselves resolvetheparadox. The data
There may be other reasons for this, but our feeling is that at 40C support the existence of the expansion gap beginning
the data taken for a final temperature of@Gare “better” in the range of values 0f 5%10 > < |8| < 1.8x 10 *and for
because the equilibration times are relatively short and thethe ranges above this. For the’G5data the results are less
individual data readings were taken relatively close together convincing, though there is a definite suggestion of a trend in
in time even a$ becomes small. This leads to greater error the logfrs) values that is similar to that seen in the@@lata.
correlation between data points taken at small value$ of At 37.5°C, the results are consistent with the existence of the
and, therefore, to less uncertainty in the slopes of the linesexpansion gap.
and corresponding values afy. This issue is addressed Examination of the Figs. 9—11 also shows an interesting
directly in a subsequent section. feature in that the plots of log{s) vs. T; seem to be sigmoi-
Although the representations of the data given in Figs. 4—8 dal in shape. At large values [T| (lower temperatures) in
are very striking, they do not answer directly the question the up-jump experiments the values of legd seem to be
whether or not the slopes, i.e.x, are statistically different  slowly changing until about°Z from the final temperature,
for different initial temperatures, nor do they answer the ques- where they rapidly drop to the values observed in the down-

tion “at what magnitude ofd| do the values ofr.; become jump experiments. The reasons for this are unclear. The
indistinguishable?”. In order to address this question directly results do show the kinetics of the structural recovery that
we estimated the uncertainty in the slopes (relateti{ by lead to the expansion gap, perhaps simply reflecting the

dividing the data intds| ranges. This approach assumes that sensitivity of the up-jump experiment to long time relaxa-
for small intervals in/§| the functions lodé(t)]) are nearly  tions [4,18,19] in the structural recovery process, or the
linear. We fit a straight line model, with possibly different different physics implicit in the constitutive models of
slopes for different initial temperatures, and allowing for Rendell et al. [17] or Lustig et al. [8] viS @s the TNM—
different intercepts for each experimental curve. The devia- KAHR type models.

tions in the data from the straight line model are assumed to be

Gaussian, with components of variance owing to variability

between curves and within a curve. As replicated curves areg. A propagation of errors analysis

available for several initial temperatures (at each final

temperature), the uncertainties in the slopes{s) can be 8.1. Importance of the analysis

estimated from the data. From these we determine the uncer-

tainty in — log(7er) as a standard error of estimate. InFig. 9we  In a recent paper, Struik [19] used a propagation of errors
showthe data for the estimatesin log§ and the uncertainties  analysis to argure that the Kovacs 1964 data do not support
for four intervals ofl 8| for the final temperature of 4G. The the expansion gap (or apparent paradoxdg). One of the
results are very intriguing. It can be seen that for the largest reasons for our disagreement with Struik’s analysis resides
values of 8| there is no doubt that the values of logy differ in his assumption that the errors in the estimatiord afre
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uncorrelated. In the analysis which follows, results similar results in similar conclusions to those discussed in the

to his would be obtained if there were no correlation in the previous section.

errors in Kovacs' measurements. However, simple exami-

nation of the data show that this is untrue, and a more 8-2. The error analysis

rigorous analysis allows us to estimate the correlation in

the data. Considering correlation in the data leads to conclu-

sions similar to those discussed before, and not in agreemen ) o S .
aylor series approximation, the uncertainty in an estimate

with those of Struik [19]. Further, the replication of Kovacs of 7 is related to the uncertainties in thameasurements.

experiments improves .the statistics and increases our confl-Struik [19] provides a conservative a-priori estimate for the
dence that the expansion gap exists.

- ; ; -1
What do we mean by uncorrelated and correlated standard deviation of the uncertaintydnEstimates ofr;

data? If the data are uncorrelated, this implies that the can be pbtamed emplrlcal]y and _plau5|blle.meas.ures of the
Lo . ' correlations among thé estimates in the divided difference
uncertainties in measurements made over time are inde-

pendent. Hence, if the errors are uncorrelated, the abso_approxmaﬂons torei can be estimated using replicated

lute error in the difference o measurements made 1 s data sets. Taken together, the Taylor series approximation,

) and estimates of the correlations amahgstimates taken
apart are the same as the errors in measuremnts madée

10 h apart. More formally, taking a measurement at closg togethqr In time e”a.b'e one tq esnmﬂécurve; as
. functions of time along with approximate 95% confidence
time t; followed by one att;;; would have the same

relative error as taking the measurement, dollowed by bands. By examining these curves in pairs, we can estimate

. ,1 . .
one att ;. Clearly, in measurements of the sort described the S _mallest yalues 0 for which 7 are statistically
significantly different.

in the experimental section where readings are taken manu- : . .
The data from each experiment consist of successive

ally and in which bath temperature fluctuations are likely to : L
. : . measurements of relative volume change from equilibrium
occur over a relatively long time-scale the errors in the data . )
. . (dy, ds,..., dy), and corresponding elapsed times after the
will be correlated. The effect on error correlations of the ;
temperature jumpgy t,,..., t,). We assume that the measure-

temperature fluctuation uncertainty is one that is readily ment uncertainty im’s is much areater than the uncertaint
understood. Imagine that the bath temperature fluctuates. y I 9 y

; in the times, so that the error made by treatingttkalues as
as a result of daily temperature cycles as damped by the, . o .
if they are known is negligible. For the measurgts, in
thermal mass and control system for the bath temperature.con,[rast letl — 5 + e wheres. is the ‘true’ value which
Then, in the limit thatAt =t;,; — t; — O, clearly the error in 1€ = 0; T &, :

. . . one would observe if there were no measurement uncer-
the height reading because of the bath temperature belng[ . ! ) : .
. . . ._“tainty. The ‘errors’e are assumed to be Gaussian with

different from one reading to the next vanishes. In this -
. . mean zero and standard deviatiep
case, the estimate af,;, which comes from the slope of . 1 . -
. ) . If Kovacs estimatedr; using a three-point divided
the height vs. time (I0g|vs. t), will be completely as a . o .
\ ; difference method, then one can express the ‘true’ quantity
result of the change in sample volume, hence will have no | . :
. . being estimated as
error even though the absolute measurement is somewhat in
error because of the temperature uncertainty. One would Oi+1— 81
expect that the correlation of the errors would decrease as Sitivr —t-p)’
the time intervalAt between readings increases. It is more .
s . . and the estimate as
difficult to define what the source of correlation among
errors arising from the meniscus reading procedure itself (b, = Gira—dig 3)
might be, however, it is clear from the data themselves eff di(tiyqg —t_p) "
D S oo T el because even where 1 we use the propagaton of erors approach [23) to
see Fig. 1 thegdagtla ch)gn e n)1/o(notonicall In the f(EJIIi)wirln3 ' approximate the standard deviationadf’, o, in terms of
we firsgt’.de)rive the ex resgsion for the erroyr.ﬂ' as a func- % a4 thets, and thed/s. Finally, the unknowr's are esti
P S mated from the measuredf's. The propagation-of-errors

tion of the error in the measurement ®fincluding a term . . . U
. . approximation to the relative uncertain is then
for the correlation of the errors. We show how the errors in PP ty 1o

the estimate ofr¢r are dramatically larger for the case of (/71 5 2
= tratp(z—5—) @
i i—1

We consider the divided-difference approximation that
Eovacs likely used to estimates [19]. Using a linear

3]

(Tett)i =

uncorrelated errors than for the case of perfectly correlated ood
errors. We then analyze data for a set of up-jump and a set of
down-jump experiments for which there is substantial repli- where p;_1;+1 is the correlation between measurements
cation in order to estimate the error correlation as a function made at timeg$_; andt;.; on the same curve. This correla-
of time between readings. With the appropriate correlation tion is apparently assumed to be zero in the analysis of
functions we then estimate the magnitudedadt which the Struik [19]; as seen later, for the data here it is non-zero
values of logfe) are significantly different with 95% confi-  and often close to one for the time intervals that were typical
dence for the Kovacs data discussed before. This analysisof data collection in the Kovacs experiments. From Fig. 12,

i+1



G.B. McKenna et al. / Polymer 40 (1999) 5183-5205 5195

= |

s i | 3001
2 ! 4
T
w =t
~F
§ = T
= i e i Wi TN R 3| I
& T £
S 50 |
] -, 5%
., "'l_‘
Ch o ™~
Ti= &5, Tl =35 ©
wn | T i=4A0.T_ i= 35
B Statietical Difforcnes . Stptistical Difference ™,
n Tau: LogilDeltall = -5.3 o ’ in Tap; LealiDelital) = -3.7
-4.5 -0 3.8 -3.0 -4.0 -3.3 -3.0
Log(|Daltal) Logi Deltal)
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where we present the ratio of Eq. (4) for different values of correlation is retained for times to approximately 2000 s. In

the correlation parametex_,; 4, it is clear that the impact  any event, we used the correlations shown in Fig. 13(a) for

of pi_1;11 on the estimated value of the uncertainty-ig is our up-jump calculations and the correlations of Fig. 13(b)

dramatic. for the down-jump calculations discussed in the following.
We have given our estimates of the uncertainty in

Kovacs’ data as mentioned previously, they are not greatly g 3. | imiting values o for which e values are different
different from those estimated by Struik [19], we use

Struik’s estimate to avoid further confusion. Struik [19] In the previous sections in which we estimated the limits
estimated the ‘uncertainty’ id to be + 2 x 107°. We for which the values ofr for temperature jumps to the
take this to representt 204 Hence, we estimatey =~ same final temperature are different, the analyses did not

1 x 107°. Of course, the unknown trué,; and §,_; are explicitly include correlation of errors, although the proce-
estimated byd..; and d;_;, respectively. To estimate the dures for taking the slopes of the plots of [Bgvs. t
correlation of the data;_,;., we use replicated curves for included any such correlations implicitly. Here we take
the Kovacs experiments far-jumps from 35 to 48C and the error correlations determined before for the ‘representa-
from 40 to 38C. The correlation functions which we esti- tive’ up- and down-jump experiments and apply them so
mated using the methods of Ramsey and Silverman [15] arethat we can compar€&-jump results from different starting
presented in Fig. 13 and discussed in the following para- temperatures to the same final temperatures. In particular,
graph. There were only three temperature pairs for which how small is the smallest ¢8| for which we have 95%
there is adequate replication of the experiments to estimateconfidence that the; values from two experiments are
pi-1j+1. Those relevant to the current analysis are the 35— different? We examine temperature jumps to 35 antC40
40°C data which we used to estimate ;.4 for all of the — the final temperatures originally considered by Kovacs. In
up-jump curves. The 40—36 estimates op;_,;., are used addition, there were sufficient data féfjumps to 37.5 and
for all of the down-jump curves. There are 15 data sets for 42.5C in the Kovacs notebooks to ask the same question.
the jump from 35 to 4% and 11 for the jump from 40 to  From examination of Fig. 2 we argue that the expansion gap
35°C. should be significant for temperature jumps from two differ-
Fig. 13(a) and (b) show the correlation in the deviations ent initial temperatures when they values are different
of the Kovacs volume recovery data from a mean line fit to when|s| = 1.6x 10 *or logé| = — 3.8. This number
the replicate sets of data for the 35=@0and the 40—-3% is chosen because it is approximately the valué &@ir the
experiments. What can be seen from these data is that in thdast data point in Fig. 2 for th&-jump from 30C to 35C. It
up-jump experiments the data correlation is very high is also in the region in which the curvature for thigump
(pi-1j+1 = 0.90) for data points taken up to approximately from 32.5C to 35C is changing into the flat line that looks
600 s apart. For the down-jump case, the high correlation as if it were extrapolating into th&= 0 line. It appears to be
extends to data readings taken approximately 4500 s apartthe limit for which Kovacs [7] trusted the data. As we go
Whether the differences in the times for the correlations to through the analysis that follows, these are the numbers to
begin decreasing is a function of the specific experiment, i.e. keep in mind.
down- vs. up-jump, or the final test temperature, is unclear. The analysis of each set of two curves was performed by
The other set of data available to perform such an analysis isrecognizing that we can estimate leg; as a function o
the temperature jump from 40 to 3, and there the high  from the data for each experiment using the divided
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Fig. 21. Same as Fig. 16, but ndly= 37.5C with T; = 32.5 and 4€C. Fig. 22. Same as Fig. 16, but nolw= 37.5C with T; = 35 and 40C.

difference approximation (Eq. (2)). The correlation between are 40 and 42 andT; = 35°C we find that the limiting
di,1 andd,_, are then approximated using the correlation for value of lodé| = — 4.5, (6 = 3.2x 107°) as seen in Fig. 15
the 35—-40C (up-jump) data, or the corresponding functions Here the statistics are undoubtedly better because of the fact
for the 40—358C (down-jump) data. All of these estimates that there are many replicatdd £ 15) for the experiment in
are then substituted into the propagation of errors formula which the temperature was changed from 35 t&C40
(Eq. (4)) in order to estimate the standard errorgfas a
function of 8. From this one can easily determine the stan- g 5 Temperature jumps to %D
dard error of logres.

To estimate the limiting value o¥ at which two curves Next we compare the up-jump data for different initial
become statistically indistinguishable we define this limit- temperatures for a final temperature of@G- the data most
ing value to be the largest value @for which the absolute  extensively analyzed by both Kovacs [7] and Struik [19]. As
difference in the corresponding lagg estimates, divided by  there are so many pairs of comparison to be made, we show
the standard error of this difference, is greater than 2. That isthree sets and the rest of the results are tabulated in Table

we require that A3. Fig. 16 shows the results from experiments performed
11007 +1 — [10G(Fa)li] in the up-jump to 48C from initial temperatures that are
= 9 9“2'*1 g2 f/f; >0 (5) close together and close to the final temperatie=
(o7 )1 T (O] 37.5C andT, = 35°C. Here it is clear that these two data
where the logfe) refer to the estimated values for log. sets are different to very small values of log= — 4.2,

Eq. (5) is closely related to the well-known two-sample (18] = 6.3x 10 ). However, (Fig. 17), whefi; = 30°C is
test used to test for a statistically significant difference COmpared tdl; = 35°C we find that the curves are different
between two means. Typically, the largest valueddbr only when logd| > — 3.6, (6 > 2.5x 10™), which would
which g = 2 will be slightly greater than the largest value Su99est that these two curves are not coming in to different
of d for which one of the estimated mean curves is within Imiting values agé| — 1.6x 10™*. This supports the obser-
the approximate 95% confidence interval for the other mean V&tion made previously thaty seems to follow a sigmoidal
curve. This approach is used in the following discussion. €SPONSe in going from relatively large up-jumps towards
small up-jumps and to the down-jump condition of a
8.4. Temperature jumps to different final temperatures ~ constant value ofer. In Fig. 18 we depict the comparison
of two down-jumps to 4%C: for T, = 42.5 and 60C. Here
The first comparison that we make is for two final we see thatthere is no difference over the range of available
temperatures that are close together and for up-jump condi-data. Finally, upon examination of the data in Table A3 (see
tions: T; = 37.5 and 4€C for the sameT;, = 32.5C. The Appendix), we see that the results observed with the
comparison is shown in Fig. 14 and we see that the value of previous analyses in which error correlation is implicit,
the departure from equilibrium for which we have 95% rather than explicit as here, the valuesgf are indistin-
confidence that the loges values for theT; = 40°C differ guishable for adjacent large up-jumps, which are different
from those afl; = 37.5Cis atlogé| = — 4.1, 6 = 7.9% from all of the down-jumps and there is a transition in which
107°) which is clearly smaller than the limit that we 7 changes and becomes indistinguishable between the
described above. This is expected since the valuessf small up-jumps and the down-jump experiments: hence,
should vary with temperature. When the final temperatures the existence of an expansion gap is supported by the
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Kovacs data in asymmetry of approach experiments@40 the error correlations when the time intervals between read-
As an additional point, we call the reader’s attention to the ings are longer decrease dramatically and the data have
fact that for the comparisons between the large up-jumpsgreater uncertainty. Of course, this does not mean that the
and all of the down-jumps the values of; are different at  “expansion gap” does not exist in the°85experiments, but

the 95% confidence level or better based on the aforemen-that the Kovacs’ 1964 data is insufficiently accurate to deter-

tioned criterion. mine whether or not the expansion gap exists. This is impor-
tant, because Rendell et al.[17] used théC3Bata, not the
8.6. Temperature jumps to 35 40°C data as support for their model.

Upon examination of Fig. 2 we see that for a final g7 Temperature jumps to 37G
temperature of 3%, Kovacs only showed results for initial
temperatures of 30 and 32&G In addition tore; appearing The data for temperature jumps to 3T5that are
different between these two initial temperatures, the data for presented and analyzed here were not reported in the origi-
the jump from 30C seems to come in to zero departure from nal Kovacs [7] work. As shown next, these results uphold
equilibrium at a value of.; very different from the values  the contention of Kovacs that the data in the up-jump

in the down jump experiments from 35, 40 andG0Hence, experiments show an expansion gap to very small values
we can treat the data as in the previous section to ask what iof §.
the limiting value of logs| (or |8]) below which the values In Fig. 21 we depict the curves from initial tempera-

of 7 are no longer different. This comparison is shown in tures of 32.8C and 40C to the final temperature of
Fig. 19 for the initial temperatures of 30 and 3Z5Two 37.5C along with the 95% confidence intervals. The
things can be seen from this figure. First, the 95% confi- values of logd| at which there; are no longer different
dence limits are very large and the limiting behavior is for occurs when the 95% confidence line for the= 32.5C
log|6| = — 3.3, (6| =5.0x 10~%), a value somewhat larger intersects the mean curve far = 40°C at lodé| = —
than observed for the experiments at@0The resultisalso 3.9, (§| = 1.3 X 10™%). Similarly, in Fig. 22 the curves
affected by the small number of replicate experiments. If, for T, = 35°C andT, = 40°C are different until lo¢s| =
however, we compare the experiment flor= 30°C with — 3.8, (6| = 1.6 x 10 %). Fig. 23 shows the comparison
that for T, = 40°C, for which there are 11 replicates, the for the two up-jump experiments. We see that, in this
result changes: As shown in Fig. 20, there is a significant case, they are different until values below [Rlg= -
difference betweem¢; until log|s| = — 3.7, 6 = 2.0 X 3.6, (8] = 2.5 x 107%, which does not support the
107%). This is, then, similar to what was found above for the existence of the expansion gap. However, because these
temperature jumps to 4. When we look at the full set of  two initial temperatures are close together, the results
results in Table A3, in the Appendix, itis clear that the data imply similar behavior to that seen in the “4D data,

for T-jumps to 38C do not support the existence of an i.e. the up-jumps are systematically different from the
expansion gap except, perhaps, for th&C30-jump relative down-jumps, hence supporting the gap. However, up-
to some of the down-jumps. The explanation for the differ- jump experiments from temperatures close together are
ence here and for the evidence obtained in the experimentsot necessarily going to show a difference at the 95%
at 40C is that the times required férto approach zero (or  confidence limit required here. The experiments of inter-
the value of 1.6< 10 %) is at least ten times as long in the est, T-jumps from lower temperatures, were not
35 C experiments as in the A0 experiments. As a result, performed.
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8.8. Temperature jumps to 42% error correlations became very weak. The data at’87ahd
_ 42.5C are a bit ambiguous, with the former supporting the
The data for temperature jumps to 4Z5that are  expansion gap and the latter not doing so at the 95% confi-
presented and analyzed here were not reported in thegence level. However, neither of these data sets was very
original Kovacs [7] work. In Fig. 24 we depict the curves gytensive.
from initial temperatures of 35 and 4D to the final The conclusions drawn here disagree with the argument
temperature of 42°& along with the 95% confidence inter- o5 Struik [19] who uses a propagation of errors argument in
vals. The values of Idg| at which therey are no longer  \hich the uncertainties are assumed to be uncorrelated.
dlffer(-_:nt occurs when the 95% confidence line for The= Importantly, his analysis focused on the°@0data. Our
40°C interesects the mean curve fir= 35°C at logs| = analysis shows a correlation of the error in the data which
—3.6, (5 = 2.5x 10°). These data are not supportive of s first, not unexpected and, second, sufficient to allow a
the existence of the expansion gap under the above defined;gphisticated error propagation analysis that includes the
criterion. However, it should be recalled that there are no ¢orelation of the uncertainties.
replicate data for these experiments, which would greatly  ap interesting feature of the up-jump curves in|Blg/s.t
improve the statistics. Also, there are no down-jump dafa is that they remain linear for long stretches in time, which
here for comparison. may have implications for the development of the constitu-
tive models and their description of the expansion gap visi-
ble in the original Kovacs data and the expanded data shown
9. Summary and conclusions here.
This brings us to the two final points of the paper. First,
In 1964 Kovacs published a set of data from structural a@lthough the data originally published by Kovacs in 1964
recovery experiments in which he made the observation thatdoes not in its entirety support the existence of the expan-
a plot of log(rex) vs. 8 exhibits an apparentys -paradox and ~ Sion gap (apparentg-paradox), the analyses presented here
an expansion gap. As there is some controversy in the litera-show that it definitely exists for the data obtained at a final
ture concerning both the apparent paradox and the expaniemperature of 4, and has a strong likelihood of being
sion gap, we have returned to the origina| Kovacs notebooksfound at the other temperatures if data were taken at closer
to analyze data that were taken at the same time as the daténtervals in time. This is because for data taken at shorter
published in 1964, as well as subsequent data taken at thdime intervals the errors would be more strongly correlated
same laboratory under Kovacs' tutelage. Two different data and there would also result more replicate data which would
analyses have been presented that demonstrate convincinglymprove other aspects of the statistics. This being said, then,
that the expansion gap exists to valuesok 1.6x 10°*. there is still a need to explain the expansion gap. Earlier we
This is true for both analyses in which the final temperature alluded to several possibilities for the explanation. One is
of test is 40C and for which the data error correlations are the need for better constitutive equations than those of the
expected to be the greatest. A simple analysis in which plots Tool-Narayanaswamy—Moynihan et al. [11,14,20,21]
of log|6| vs.t (slope oc 7) are made, shows very strongly (TNM) or KAHR models. Rendell et al. [17] and Lustig et
that there is a systematic trend in the slopes with increasingal- [8] have suggested such equations. However, it may be
initial temperature in the experiments. This supports the that the expansion gap is merely a manifestation of the long-
original contention of Kovacs that there exists an expansion €st relaxation time processes occurring in the polymer glass.
gap or apparent.s -paradox. Goldstein and Nakonecznyj [4] first intimated this possibi-
In an analysis of the data in which an estimate was madelity. More recently Schultheisz and McKenna [18] have
of the actual correlation of the errors in the experiments the explicitly considered this possibility and Struik [19] in his
results are unambiguous for the experiments with a final Work questioning the expansion gap also seems to suggest
temperaure of 4. This is undoubtedly the best data set such a possibility. Clearly, then, the expansion gap is impor-
for two reasons. It is very extensive and the time-scale of the tant and better measurements of its nature and improved
experiments was such that the manual reading proceduregnodels to explain and describe it are needed.
resulted in data being taken at time intervals such that the
error correlation remained high. In contrast, the data &35
is far less convincing even though it, too, is an extensive Appendix A. Tables A1-A3 describing Kovacs’
data set. One reason for this is that the times required for theexperiments and their interpretation
experiments were such that the manual reading procedures
lead to long time intervals between data points such that the Tables A1-A3
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Table Al

Dilatometric experiments on poly(vinyl acetate) performed in the Laboratories of the Centre de Recherches sur les Macromolecules (now tiestitut Cha
Sadron) by Kovacs and co-workers between 1959 and 1981 and analyzed in this work. The first column denotes the nominal final tempergjurapf the
experiment. The second column denotes the nominal initial temperature. The third through fifth columns denote the temperature according tevthe 1950 S
calibration, 1965 Sees calibration, or quartz thermometer reading respectively. In instances in which the temperatures are italicized, there is no record in the
notebooks of actual reading, only the nominal temperature is given. The final column presents the date of the measurement as day/month/yeéy— followed
the fill number for the dilatometer used in all of these experiments. Where a Fig. number is indicated, it is known that these data were used in tlaed4964 Kov
paper and the figure number refers to that reference

Final temp. Initial temp. Tleg(1950) Tleg(1968) Quartz thermometer Date of exp — fill #.

42.5C 40C 39.97C t0 42.50C 39.97C to 42.50C — 15/02/60 — 1

42.5C 35C 34.97- .99C to 42.38C 34.87— .88C to 42.26C — 16/06/60 — 2

40°C 37.5C 37.47C to 40C 37.36C to 40C — 11/01/60 — 1 (Fig. 23)

40°C 37.5C 37.5t0 40°C 37.5t0 40°C — 12/01/60 — 1

40°C 35C 35t0 40°C 35t040°C — 11/01/60 — 1 (Fig. 23)

40°C 35C 34.84—.96C to 39.95C 34.74—-.86C to 39.84C — 08/01/60 — 1

40°C 35C 34.94-35.0%C to 39.98C 34.84-.91C to 39.87C — 01/06/60 — 2

40°C 35C 34.96-.98C to 39.99C 34.86-.88C to 39.88C — 14/06/60 — 2

40°C 35C 34.90-.93C to 39.96—.97C 34.80-.83C to 39.85-.86C — 18/10/62 — 3

40°C 35C 35.00-.01C to 40.04—.0%C 34.90-.91C to 39.93-.92C — 06/12/62 — 3

40°C 35C 35.02C to 40.00C 34.86C to 39.89C — 06/12/62 — 3

40°C 35C — — 34.97-.95C to 24/01/69 - 5
39.94-.98C

40°C 32.5C 32.5C to40°C 32.4C to 40°C — 24/12/59 - 1 (Fig. 23)

40°C 32.5C 32.46C t0 40.05C 32.36C t040.05C — 06/01/60 — 1

40°C 30C 29.94-.98C to 40.00-.01C 29.84-.88C to 39.89-.96C — 03/01/63 — 3 (Fig. 23)

40°C 30C 29.95-.98C t0 39.97C 29.85-.88C t039.97C — 15/02/60 — 1

40°C 25C (1500 25.00C to 39.98C 24.9C to 39.87C — 25/05/60 — 2

h)

40°C! 42.5C 42.5C t040.0C — — 15/02/60 — 1

40°C 50°C 50.0C t040.0C — — 11/01/60 — 1

40°C 50°C — — 49.99-50.0TC to 23/01/69 — 5
39.94C

40°C 60°C 60.15-.18C t0 40.0C 59.99-60.0Z to 40.0C — 15/02/60 — 1

40°C 60°C 60.0C t040.0C — — 17/03/60 — 2

40°C 35C — — 35.00-.02C to 08/10/80 — 6
40.00C

40°C 35C — — 35.00C to 40.00C 09/10/80 — 6

40°C 35C — — 34.99-35.0C to 17/10/80 — 6
40.00C

40°C 35C — — 35.00C to 40.00C 22/10/80 — 6

40°C 35C — — 35.00-.01C to 24/10/80 — 6
40.00C

40°C 35C — — 34.99-35.0C to 30/10/80 — 6
40.00-.01C

40°C 35C — — 34.99-35.0C to 07/01/81 — 6
40.00-.01C

40°C 45C — — 44.99-45.0TC to 14/10/80 — 6
40.00C

40°C 50C — — 49.96C to 40.00— 07/10/80 — 6
.02C

40°C 60°C — — 60.00C to 40.00C 16/10/80 — 6

38C 35C 34.98C to 37.95C 34.88C to 37.84C — 23/06/60 — 2

37.5C 32.5C — — 32.51-.53C to 03/06/69 — 5
37.52-.54C

37.5C 40C 40°C to 37.46C 40°C to 37.36C — 11/01/60 —1

37.5C 40C 40°C t0 37.5C 40°C t0 37.5C — 11/01/60 — 1

37.5C 40C — — 40.00C to 37.48— 08/10/80 — 6
.50°C

37.5C 35C — — 35.00C to 37.50C 13/04/81 - 6

37.5C 35C — — 35.00C to 37.50C 14/04/81 - 6

37.5C 32.5C — — 32.48-.50C to 27/04/81 — 6
37.47-.49C

37C 35C 34.97-.99C to 36.95— 34.87-.89C to 36.85—-.99C — 25/06/60 — 2

37.01C

35°C 32.5C 32.49-.52C to 34.91-.92C 32.39-.42C to 34.81-.82C — 13/06/63 — 4 (Fig. 23)
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Final temp. Initial temp. Tleg(1950) Tleg(1968) Quartz thermometer Date of exp — fill #.
35°C 30C 29.95-.97C to 35°C 29.85-.87C to 35°C — 04/12/62 — 3 (Fig. 23)
35°C 37rC 36.96—37.0% to 34.97C 36.85—.91C to 34.87C — 27/06/60 — 2 (Fig. 23)
35°C 40C 40.04-.0%C to 35°C 39.93-.94C to 35°C — 06/12/62 — 3 (Fig. 23)
35°C 40C 40.03C to 34.87-.8C 39.92C to 34.77-.78C — 30/01/63 — 3 (Fig. 23)
35°C 40C 40.05C to 34.93-.96C 40.05C to 34.83-.86C — 07/01/60 — 1
35°C 40C 40°C to 34.84—.96C 40°C to 34.74—.86C — 08/01/60 — 1
35°C 40C 39.98C to 34.96-.98C 39.87C to 34.86—.88C — 13/06/60 — 2
35°C 40C 39.99C to 34.97-.9%C 39.88C to 34.87-.8%C — 14/06/60 — 2
35°C 40C 39.95-.96C to 34.93C 39.84-.85C to 34.83C — 17/10/62 — 3
35°C 40C — — 39.94C to 34.97— 23/01/69 - 5
.99C
35°C 50C 50°C to 34.96C 50°C to 34.86C — 21/06/60 — 2 (Fig. 23)
35°C 32.5C — — 32.48-.56C to 21/10/80 — 6
35.00C
35°C 30C — — 29.98-30.0C to 22/12/80 - 6
35.00C
35°C 37.5C — — 37.48-.56C to 08/10/80 — 6
35.00C
35°C 37.5C — — 37.48C to 35.00C 15/10/80 — 6
35°C 40C — — 40.00-.01C to 07/10/80 — 6
34.99-35.01C
35°C 40C — — 40.00C to 34.99— 09/10/80 — 6
35.00C
35°C 40C — — 40.00C to 35.00C 13/04/81 — 6
35°C 50°C — — 50.00C to 35.00C 10/10/80 — 6
35°C 60°C — — 60.00C to 35.00C 13/10/80 — 6
35C 42.5C 42.38C to 34.97C 42.26C to 34.87C — 16/06/60 — 2
35°C 45C 44.98C to 34.96-97C 44.85C to 34.86—-87C — 20/06/60 — 2
35°C 41C 40.98C to 34.98C 40.87C to 34.88C — 22/06/60 — 2
35°C 39C 38.99C to 34.98C 38.88C to 34.88C — 22/06/60 — 2
35°C 38C 37.95C to 34.97-.9%C 37.84C to 34.87-.8%C — 24/06/60 — 2
35°C 38C 37.99C to 34.97-.9%C 37.88C to 34.87-.8%C — 24/06/60 — 2
35°C 37C 36.95-37.0C to 34.97C 36.85—.91C to 34.87C — 27/06/60 — 2
35°C 36C 36°C to 34.98C 36°C to 34.88C — 05/07/60 — 2
35°C 33.75C — — 33.75C to 35.00C 31/03/80 — 6
35°C 36.2C — — 36.18C to 35.00C 01/04/81 — 6
35°C 31.2C — — 31.19-.26C to 12/06/81 — 6
35.00C
35°C 34.36C — — 34.35-36C to 19/06/81 — 6
35.00C
35°C 35.6C — — 35.62-.63C to 29/06/81 — 6
35.00C
32.5C 40C 39.97C to 32.49-.52C 39.86C to 32.39—-.42C — 07/06/63 — 4
32.5C 40C — — 40.00C to 32.49— 17/10/80 — 6
.50°C
32.5C 40C — — 40.00C to 32.48— 16/04/81 — 6
.50°C
32.5C 37.5C — — 37.49-.52C to 16/05/69 — 5
32.49-.53C
32.5C 37.5C — — 37.52-.54C to 04/06/69 — 5
32.50-.53C
32.5C 37.5C — — 37.52C to 32.52— 10/06/69 — 5
.53C
32.5C 37.5C — — 37.52C to 32.52— 17/06/69 — 5
.53C
30°C 60°C 59.9°C to 29.97-.98C 59.9°C to 29.87-.88C — 08/03/60 — 1 (Fig. 23)
30°C 40C 39.90-40.0TC to 29.93C 39.79-39.8%C t0 29.83C — 15/12/59 - 1
30°C 40C 40.0C to 29.92-.98C 40.0C to 29.82-.88C — 13/01/60 — 1
30°C 40C 39.98C to 29.94-.9%C 39.87C to 29.84—-.8%C — 10/03/60 — 1
30°C 40C 39.98C to 29.92-.98C 39.87C to 29.82-.88C — 16/10/62 — 3
30°C 40C 39.96C to 29.93-.98C 39.85C to 29.83-.88C — 18/10/62 — 3
30°C 40C 40.00-.01C to 29.96-.98C 39.89-.90C to 29.86—.88C — 03/01/63 — 3 (Fig. 23)
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Table Al gontinued

Final temp. Initial temp. Tleg(1950) Tleg(1968) Quartz thermometer Date of exp — fill #.
30°C 40C — — 39.94-.95C to 24/01/69 — 5
30.02-.08C
30°C 37.5C 37.48C to 29.98C 37.48C to 29.88C — 24/02/60 — 1 (Fig. 23)
30°C 35C 34.97C to 29.95-.9%C 34.87C to 29.85-.8%C — 26/02/60 — 1 (Fig. 23)
30°C 35C 34.87-.88C t0 29.93-.9%C 34.77-.7¢C to 29.83-.8%C — 31/01/63 - 3
30°C 32.5C 32.36C to 29.96—30.0C 32.26C to 29.86-.9tC — 04/03/60 — 1 (Fig. 23)
30°C 40C — — 40.00C to 30.00— 16/10/80 — 6
.orc
30°C 40C — — 40.00C to 29.99— 22/10/80 — 6
30.0TC
30°C 40C — — 40.00C to 29.98— 24/10/80 — 6
30.0rC
30°C 40C — — 40.00-.01C to 30/10/80 — 6
29.99-30.01C
30°C 40C — — 40.00C to 29.98— 05/11/80 — 6
30.02C
30°C 40C — — 40.00C to 29.99— 06/01/81 — 6
30.0rC
30°C 40C — — 40.00C to 29.99— 07/01/81 — 6
30.0rC
30°C 40C — — 40.00C to 29.99 — 22/07/81 — 6
30.00C
30°C 45C — — 45.06C to 30.31— 24/10/68 — 5
.32C
Table A2

Summary of T-jump volume recovery experiments; is the initial
(nominal) temperature of the experiment amdis the final (nominal)
temperature. Numerals represent number of replicate experiments for
each experimental condition

T T

30°C 3%C 37rC 375C 38C 40C 425C

25C 1
30 2
31.2

325 1
33.75
34.36

35 2 1 2 1 15 1
35.6

36

36.2

37

375 1
38

39

40 15
41

425

45 1
50

60 1

2
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Table A3

Limiting values of logé| and|s| for which 7 values are different between two different temperature jumps TidmT;. NA implies curves were different for

all values ofé. Ind implies that the data were indistinguishable over the full range of the experiments. The qualifying column that tells “Same” or “Different” is
our choice to setIdg| = — 3.8 or|5| 1.6x 10~* as the limit at whichre; values from two different experiments are different at the 95% confidence level

CompareT; to T; with T; to T Log|s| 18] “Same” or “Different”
Tf = 300C
32.5C to 30C 35C to 30C -31 7.9x 10°* Same
32.5C to 30C 37.5C to 30C -31 7.9x 1074 Same
32.5C to 30C 40°C to 30C No overlap No overlap Insufficient data
32.5C to 30C 45°C to 30C NA NA Different
32.5C to 30C 60°C to 30C -31 7.9x 1074 Same
35°C to 30C 37.5C to 30C -29 1.3x 1073 Same
35°C to 30C 40°C to 30C Overlap to — 2.8 Overlap to 1.6< 103 Insufficient data
35°C to 30C 45°C to 30C Data different to— 3.2 Data different to 6.% 10™* Insufficient data
35°C to 30C 60°C to 30C -29 1.3x 1073 Same
37.5C to 30C 40°C to 30C Overlap to — 2.8 Overlap to 1.6< 102 Insufficient data
37.5C to 30C 45C to 30C - 3.0 1.0x 1073 Same
37.5C to 30C 60°C to 30C - 28 1.6x 1073 Same
40°C to 30C 45°C to 30C Overlap to — 2.8 Overlap to 1.6 102 Insufficient data
40°C to 30C 60°C to 30C - 26 2.5x 10°° Same
45°C to 30C 60°C to 30C -27 2.0x10°° Same
Ti=35C
30°C to 35C 31.2C to 35C -28 1.6x 1073 Same
30°C to 35C 32.5C to 35C - 33 5.0x 107* Same
30°C to 35C 33.75C to - 34 4.0x 107 Same
35°C
30°C to 35C 34.36C to - 3.6 2.5x 1074 Same
35°C
30°C to 35C 37.5C to 35C - 3.8 1.6x 1074 Different
30°C to 35C 38C to 35C NA NA Insufficient data
30°C to 35C 39C to 35C - 3.6 2.5x 107* Same
30°C to 35C 40°C to 35C - 3.7 2.0x 1074 Same
30°C to 35C 41°C to 35C - 36 2.5x 1074 Same
30°C to 35C 42.5C to 35C - 3.6 2.5x 10°* Same
30°C to 35C 45C to 35C - 3.7 2.0x 10°* Same
30°C to 35C 50°C to 35C - 3.6 2.5x10°* Same
30°C to 35C 60°C to 35C - 3.6 2.5x 1074 Same
31.2C to 35C 32.5Cto 35C - 3.2 6.3x 107* Same
31.2C to 35C 33.75C to - 34 4.0x 107 Same
35°C
31.2C to 35C 34.36C to - 3.6 2.5x 1074 Same
35°C
31.2C to 35C 37.5C to 35C - 3.7 2.0x 10°* Same
31.2C to 35C 38C to 35C NA NA Insufficient data
31.Z2C to 35C 39C to 35C - 3.6 2.5x 10°* Same
31.2C to 35C 40°C to 35C - 3.6 2.5x 1074 Same
31.2C to 35C 41°C to 35C - 35 3.2x 107* Same
31.2C to 35C 42.5C to 35C - 3.6 2.5x10°* Same
31.2C to 35C 45C to 35C - 3.6 2.5x 107* Same
31.2C to 35C 50°C to 35C - 3.6 2.5x 10°* Same
31.2C to 35C 60°C to 35C -35 3.2x107* Same
32.5C to 35C 33.75C to -33 5.0x 10°* Same
35°C
32.5Cto 35C 34.36C to -35 3.2x 10°* Same
35°C
32.5C to 35C 37.5C to 35C -35 3.2x10°* Same
32.5C to 35C 38C to 35C - 34 4.0%x 107 Same
32.5C to 35C 39C to 35C - 34 4.0x 107 Same
32.5Cto 35C 40°C to 35C - 34 4.0%x 107 Same
32.5C to 35C 41°C to 35C -33 5.0x 10°* Same
32.5Cto 35C 42.5C to 35C - 33 5.0x 107* Same
32.5C to 35C 45C to 35C -33 5.0x 10°* Same
32.5C to 35C 50°C to 35C - 33 5.0x 10°* Same
32.5C to 35C 60°C to 35C - 34 4.0x 107 Same
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CompareT; to Tt with T; to T; Log|s| 3] “Same” or “Different”
T; = 35C
33.75C to 35C 34.36C to - 3.3 5.0x 107* Same
35C
33.75C to 35C 37.5C to 35C Ind Ind Same
33.75C to 35C 38C to 35C Ind Ind Same
33.75C to 35C 39C to 35C Ind Ind Same
33.75C to 35C 40°C to 35C Ind Ind Same
33.75C to 35C 41°C to 35C Ind Ind Same
33.75C to 35C 42.5C to 35C Ind Ind Same
T; = 35C
33.75C to 35C 45C to 35C Ind Ind Same
33.75C to 35C 5C°C to 35C Ind Ind Same
33.75C to 35C 60°C to 35C Ind Ind Same
34.36C to 35C 37.5C to 35C - 35 3.2x 107 Same
34.36C to 35C 38C to 35C - 3.5 3.2x107* Same
34.36C to 35C 3%C to 35C - 35 3.2x 107 Same
34.36C to 35C 40°C to 35C - 35 3.2x107* Same
34.36C to 35C 41°C to 35C - 35 3.2x107* Same
34.36C to 35C 42.5C to 35C - 35 3.2x107* Same
34.36C to 35C 45C to 35C - 35 3.2x 107 Same
34.36C to 35C 5C0°C to 35C - 35 3.2x 107 Same
34.36C to 35C 6C°C to 35C - 35 3.2x107* Same
37.5C to 35C 38C to 35C — 3.6 2.5x 1074 Same
37.5C to 35C 39C to 35C - 3.7 2.0x 107* Same
37.5C to 35C 40°C to 35C — 3.6 2.5x 107* Same
37.5Cto 35C 41°C to 35C - 3.6 2.5x 107* Same
37.5C to 35C 42.5C to 35C - 3.6 2.5x 107 Same
37.5C to 35C 45C to 35C - 3.6 2.5x 107* Same
37.5C to 35C 50°C to 35C - 3.7 2.0x 1074 Same
37.5C to 35C 6C°C to 35C - 35 3.2x107* Same
38°C to 35C 39C to 35C - 3.6 2.5x 107 Same
38°C to 35C 40°C to 35C -33 5.0x 107* Same
38°C to 35C 41°C to 35C - 3.7 2.0x 107* Same
38°C to 35C 42.5C to 35C - 35 3.2x107* Same
38°C to 35C 45C to 35C - 35 3.2x107* Same
38C to 35C 50°C to 35C NA NA Insufficient data
38°C to 35C 60°C to 35C - 3.4 4.0x 10°* Same
39°C to 35C 40°C to 35C -32 6.3x 107* Same
39C to 35C 41°C to 35C - 3.4 4.0x 10°* Same
39°C to 35C 42.5C to 35C -3.3 5.0x 1074 Same
39C to 35C 45C to 35C - 3.3 5.0x 107* Same
39°C to 35C 5C0°C to 35C - 34 4.0x 107* Same
39°C to 35C 6C°C to 35C - 3.2 6.3x 107* Same
40°C to 35C 41°C to 35C - 35 3.2x107* Same
40°C to 35C 42.5C to 35C - 35 3.2x 107 Same
40°C to 35C 45C to 35C - 35 3.2x107* Same
40°C to 35C 5C°C to 35C - 3.7 2.0x107* Same
40°C to 35C 60°C to 35C - 34 4.0x 107 Same
41°C to 35C 42.5C to 35C -3.1 7.9x 107 Same
41°C to 35C 45C to 35C - 3.1 7.9x 1074 Same
41°C to 35C 5C0°C to 35C -3.1 7.9x 1074 Same
41°C to 35C 60°C to 35C -3.2 6.3x 1074 Same
42.5C to 35C 45C to 35C - 3.0 1.0x 1072 Same
42.5C to 35C 5C0°C to 35C - 29 1.3x 1078 Same
42.5C to 35C 6C°C to 35C - 3.2 6.3x 107* Same
45°C to 35C 5C0°C to 35C - 2.9 1.3x 1078 Same
45°C to 35C 60°C to 35C - 3.3 5.0x 107* Same
50°C to 35C 60°C to 35C - 3.3 5.0x 1072 Same
T = 40°C
25°C to 40C 3C°C to 40C — 2.6 2.5x10°° Same
25°C to 40C 32.5C to 40C - 35 3.2x 107 Same
25°C to 40C 35°C to 40C -39 1.3x 1074 Different
25°C to 40C 37.5C to 40C - 41 7.9x 107° Different
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CompareT; to T with T; to T Log|s| 18] “Same” or “Different”
T = 34°C

25°C to 40C 42.5C to 40C - 42 6.3x 10°° Different
25°C to 40C 45C to 40C - 4.1 7.9%x 10°° Different
25°C to 40C 50°C to 40C - 41 7.9x 10°° Different
25°C to 40C 60°C to 40C - 4.1 7.9%x 10°° Different
30°C to 40C 32.5C to 40C - 3.2 6.3x 1074 Same
30°C to 40C 35C to 40C — 3.6 2.5x 1074 Same
30°C to 40C 37.5C to 40C - 41 7.9x 10°° Different
30°C to 40C 42.5C to 40C — 4.2 6.3x 10°° Different
30°C to 40C 45C to 40C -41 7.9x 10°° Different
30°C to 40C 50°C to 40C -4.1 7.9x 1075 Different
30°C to 40C 60°C to 40C - 41 7.9x 107° Different
32.5C to 40C 35C to 40C - 35 3.2x 1074 Same
32.5C to 40C 37.5C to 40C - 3.7 2.0x 1074 Same
32.5C to 40C 42.5C to 40C - 3.9 1.3x 107 Different
32.5C to 40C 45°C to 40C - 3.9 1.3x 1074 Different
32.5C to 40C 50C to 40C - 3.9 1.3x 107 Different
32.5C to 40C 60°C to 40C - 3.9 1.3x 107* Different
35°C to 40C 37.5C to 40C — 4.2 6.3x 107° Different
35°C to 40C 42.5C to 40C - 4.3 5.0x 10°° Different
35°C to 40C 45C to 40C — 4.2 6.3x 107° Different
35°C to 40C 50°C to 40C - 43 5.0x 107° Different
35°C to 40C 60°C to 40C —4.2 6.3x 107° Different
37.5C to 40C 42.5C to 40C - 3.9 1.3x 107* Different
37.5C to 40C 45C to 40C - 3.8 1.6x 107 Different
37.5C to 40C 50°C to 40C - 3.8 1.6x 107* Different
37.5C to 40C 60°C to 40C -39 1.3x 107* Different
42.5C to 40C 45C to 40C - 35 3.2x 1074 Same
42.5C to 40C 50°C to 40C - 35 3.2x 1074 Same
42.5C to 40C 6C0°C to 40C - 3.6 2.5x 1074 Same
45°C to 40C 50°C to 40C - 34 4.0x 107* Same
45°C to 40C 60°C to 40C — 3.6 2.5x 1074 Same
50°C to 40C 60°C to 40C - 3.6 2.5x 1074 Same
T = 37.5C

32.5C to 37.5C 35C to 37.5C - 3.5 32x 1074 Same
32.5C to 37.5C 40C to 37.5C - 3.9 1.3x 107 Different
35°C to 37.5C 40°C to 37.5C - 3.8 1.6x 107 Different
Ty =42.5C

35°C to 42.5C 40C to 42.5C - 3.6 2.5x 1074 Same
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