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Abstract

In 1964 Kovacs (Kovacs, AJ, Transition vitreuse dans les polyme`res amorphes. Etude phe´noménologique. Fortschr Hochpolym-Forsch
1964;3:394–507) published a paper in which he analyzed structural (volume) recovery data in asymmetry of approach experiments. Kovacs
used a parameter referred to ast -effective (teff) which is defined in terms of the volume departure from equilibriumd asteff

21� 2 1/d dd /dt.
In plots of the log(1/teff) vs. d Kovacs observed an apparent paradox in that the values ofteff did not converge to the same point asd
approached zero (i.e. equilibrium). Hence the equilibrium mobility of the structural recovery seemed path dependent. Also, the apparent
paradox was accompanied by a spreading of the curves forteff in the up-jump experiments which has come to be known as the expansion gap.
While it is currently accepted that the paradox itself does not exist because the curves will converge if the measurements are made closer to
d � 0 (Kovacs’ estimates ofteff were made for values as small asd < 1.6 × 1024), the existence of the expansion gap is still a subject of
dispute. This is particularly relevant today because recent models of structural recovery have claimed ‘success’ specifically because the
expansion gap was predicted. Here we take the data Kovacs published in 1964, unpublished data from his notebooks taken at the same time,
as well as more recent data obtained at the Institut Charles Sadron under his tutelage in the late 1960s and early 1980s. We then examine them
using several different statistical analyses to test the following hypothesis: the value ofteff asud u! 1.6× 1024 for a temperature jump fromTi

to T0 is significantly different from the value obtained for the temperature jump fromTj to T0. The temperaturesTi or Tj can be either greater or
less thanT0. If the hypothesis is rejected, theteff-paradox and expansion gap need to be rethought. If the hypothesis is accepted, then the
argument that reproduction of the expansion gap is an important test of structural recovery models is strengthened. Our analysis leads to the
conclusion that the extensive set of data obtained at 408C support the existence of an expansion gap, hence an apparently paradoxical value of
teff, for values ofud u $ 1.6× 1024. However, at smaller values ofud u it appears that the values ofteff are no longer statistically different and, in
fact, the data suggest that asud u! 0 all of theteff values converge. In addition, data for experiments at 358C do not have sufficient accuracy to
support the expansion gap for such small values ofud u because the duration of the experiments is significantly longer than those at 408C.
Consequently the data readings taken at 358C were made at longer time intervals and this leads to dramatically reduced error correlations.
q 1999 Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

In 1964, Kovacs [7] published a paper in which he
analyzed structural recovery data in asymmetry of approach
experiments using a parameter that he referred to ast-effec-
tive (teff). teff was defined in terms of the volume departure

from equilibriumd ast21
eff � �2 1=d�dd=dt. In plots of the

log(1/teff) vs. d , Kovacs observed an apparent paradox in
that the values ofteff did not converge to the same point asd
approached zero (i.e. equilibrium), hence the equilibrium
mobility of the structural recovery seemed path dependent.
Also, the apparent paradox was accompanied by a spreading
of the curves forteff in up-jump experiments which has
come to be known as the expansion gap. While it is
currently accepted that the paradox itself does not exist
because the curves [10] converge if the measurements are
made closer tod � 0 (Kovacs’ estimates ofteff went only to
values ofd � 1:6 × 1024), the existence of the expansion
gap (apparent paradox) is still a subject of dispute
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([12,13,16,19]. This is particularly relevant today because
recent models [8,17] of structural recovery have claimed
‘success’ specifically because the expansion gap is obtained.
Conversely, Struik [19] claims that the Kovacs’ data do not
support the expansion gap (or paradox) because the errors in
the volume measurements propagate such that the errors in
teff become greater than the gap itself at values ofud u # 5 ×
1024. It is interesting to remark that Kovacs and co-workers
in subsequent work [6,22] agonized over the expansion gap/
paradox and the fact that the reduced time models of struc-
tural recovery that they had developed did not seem to
predict it. Struik’s [19] arguments concerning the Kovacs
[7] data would actually support the validity of the simple
reduced time models.

Here we take the data Kovacs published in 1964,
unpublished data of the same era from his notebooks,
and data obtained later (1969–1982) at the Institut
Charles Sadron under his tutelage, and subject them to
a rigorous statistical analysis. We test the following

hypothesis: the value oft eff as ud u ! 1.6 × 1024 for
a temperature jump fromTi to T0 is significantly differ-
ent from the value obtained for the temperature jump
from Tj to T0. The temperaturesTi and Tj can be either
greater or less thanT0. If this hypothesis is rejected, the
t eff-paradox and expansion gap need to be rethought. If
this hypothesis is accepted, then the argument that
reproduction of the expansion gap is an important test
of structural recovery models is strongly supported. We
come to the conclusion that the data taken at 408C
support the existence of an expansion gap: hence, a
paradoxicalt eff when ud u $ 1.6 × 1024. However, at
smaller values ofud u, it appears that the values oft eff

are no longer statistically different and, in fact, the data
suggest that asud u ! 0 all of the t eff values converge.
In addition, data for experiments at 358C do not have
sufficient accuracy to support the expansion gap for
such small values ofud u because the duration of the
experiments is significantly longer than those at 408C
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Fig. 1. Asymmetry of approach data for volume recovery of Poly(vinyl acetate) from Kovacs [7] as well as unpublished data of Kovacs as described in the text.
The final temperatures are (a)Tf � 358C and (b)Tf � 408C and the initial temperaturesTi are as indicated in the drawing.



and the data readingswere made at longer time intervals which
leads to dramatically reduced error correlations.

2. Asymmetry of approach experiments

In an asymmetry of approach experiment, a glass
forming material is equilibrated at some temperature,
T, that is greater than or less than the final temperature
of test, T0, by an amountDT. Subsequent to the equili-
bration a Temperature Jump (T-jump) is performed to
the final temperature and the sample structural recovery
is followed. Kovacs performed many such experiments
for volumetric recovery, and the results of experiments
to final temperatures of 35 and 408C are depicted in
Fig. 1(a) and 1(b) for different values of the initial
temperature (orDT). The asymmetry arises when the
up- and down-jump results for the same value ofDT
are not mirror images of one another. This is clear in
the figures, and one sees that the approach towards
equilibrium for the down-jump results is characterized
by a small initial departure from equilibriumd � (v 2
v∞)/v∞ compared with that for the up-jump experiment.

We note that v is the specific volume at the time of
measurement and v∞ is the value in equilibrium. An
explanation for the behavior seen in Fig. 1 has been
given [7,9,11,14,20] as a structure (volume) dependent
relaxation time. Hence, in the down-jump experiment,
the initial response relaxes very rapidly because the departure
from equilbrium is initially high and subsequently slows as the
volume decreases. In the up-jump experiment, the initial
departure is negative, hence the relaxation is slow initially
and, as the volume increases towards equilibrium, the mobi-
lity increases. Therefore, the approach to equilibrium from
below and above is asymmetric.

The asymmetry of approach experiment is itself relatively
well understood and has been widely interpreted in terms of
either the Tool–Narayanaswamy–Moynihan [11,14,20]
fictive temperature based model of structural recovery or
the mathematically equivalent KAHR [22] model which is
based on the structural departure from equilibrium.
However, the phenomenon described by Kovacs [7] as the
t -effective paradox is not explained within the context of
these models [6]. In the next section we definet-effective
and examine the ‘paradox’, and its precursor the expansion
gap.
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Fig. 2. Originalt -effective plot from Kovacs [7] in which expansion gap and apparentteff -paradox are evidenced. See text for discussion. (Figure courtesy of
A.J. Kovacs.)



3. Definition of t -effective and the Kovacst-effective
paradox

Let d (t)� d0e
2t/t be an exponential decay function. Then

the relaxation timet is determined by taking the logarithmic
derivative ofd(t) with respect to time, i.e.

t21 � 2
1
d

dd
dt
� 2

d�lnudu�
dt

� t21
eff : �1�

For non-exponential decay functions the definition oft
becomes less clear. In volume recovery experiments,
Kovacs [7] defined, as in Eq. (1), an effective rate or retar-
dation time t -effective or teff whose deviations from
constancy should be indicative of the non-exponentiality
of the decay process.

In his studies on the kinetics of structural recovery,
Kovacs performed many types of experiments that
evidenced the nonlinear, non-exponential nature of the
decay process. It is the asymmetry of approach experiment
that interests us here because, in this experiment, Kovacs [7]
observed the so-calledt-effective paradox. Kovacs took
sets of data of the sort depicted in Fig. 1 and calculated
teff. The results that he presented in 1964 are shown in
Fig. 2 as 2 log(teff) vs. d . There are several things to
note from this figure. First, the up-jump results are to the
left of d � 0 (i.e. negative departures from equilibrium) and
the down-jumps are to the right ofd � 0 (i.e. positive
departures from equilibrium). Second, there are data for
final temperatures of 40, 35, 30 and 258C. The latter two
temperatures are for down-jumps only and there are data at
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Fig. 3. teff plot showing calculation from KAHR model showing no expansion gap and merging of theteff values atd � 0. See text for discussion. (Figure from
ref. 22, republished with permission of J. Wiley.)

Fig. 4. Plot of logud u vs.t in T-jump experiments for a final temperatureTf�
408C for the initial temperaturesTi indicated in the figure. Logud u is multi-
plied by the sign ofd in order to separate the up- and down-jump sets of
experiments.



408C only for the up-jumps. The feature of interest in the
figure is the apparent lack of convergence of curves at the
same final temperature asd ! 0. Hence, the family of
curves atT� 408C seems to fan with the order of the results
following the magnitude of the initial temperature 30C)
32.5) 35) 37.58C. Similarly, the data at a final tempera-
ture of 358C follow in sequence for the up-jumps 30)
32.58C and the apparent final value for 308C is different
from the single value seen for all of the down-jump experi-
ments. The behavior seen here is what Kovacs [7] referred
to as thet-effective paradox because the extrapolation of
the curves tod � 0 results in an apparent path dependence
of the equilibrium value ofteff. There has been some work
[10] in which experiments were performed very close to
equilibrium (with, perhaps, an order of magnitude better
accuracy and resolution than seen in the Kovacs [7] data)
which seems to establish that there is no paradox. However,
the observation that the curves do not converge in the range
of d measured by Kovacs and shown in Fig. 2, is still
perceived to be an important observation and has become
known as the expansion gap. (The data of McKenna et al.
[10] were taken over a much smaller range ofd , hence the
expansion gap is not so clearly defined. Further, the data
were obtained for a different reason and hence are not nearly
as complete as those of Kovacs.)

4. The expansion gap

It is very important to establish the existence of the
expansion gap in the Kovacs [7] data for several reasons.

First, the existent Tool–Narayanaswamy–Moynihan and
KAHR models [11,14,20,21] do not seem to give the gap
[6] and a good example of this is shown in Fig. 3 in which
the KAHR model was used to predict data similar to those of
Fig. 2 (note the rapid convergence of the curves). Moreover,
two models have appeared in the literature [8,17] in which
the ability to predict the expansion gap has been taken as
support for the validity of the models. In addition, there
have for a long time been questions, in particular in the
inorganic glass community, about the accuracy and preci-
sion of Kovacs’ 1964 data and their ability to support the
existence of the expansion gap [12,13,16]. Also, Haggerty
[5], in studies of inorganic glass, did not see a significant
expansion gap because of insufficient experimental accu-
racy. Goldstein and Nakonecznyi [4] did not see an expan-
sion gap in ZnCl3 and speculated that polymers might be
exhibiting behavior that differs from inorganic glasses
because they have a broader spectrum of retardation
times. Finally, in a recent paper, Struik [19] has claimed
that the data Kovacs published in 1964 do not support the
existence of the expansion gap and he has put forth a propa-
gation of errors argument to justify his claim.

The purpose of this paper is to examine rigorously the
original Kovacs data. We consider not only the ‘representa-
tive’ data that he published, but also unpublished data taken
at the same time. Further, data using the same dilatometer
were taken later (1969–1982) under Kovacs’ tutelage and
we consider these in our analysis. In the following, we first
describe the experiment of Kovacs and the sources of uncer-
tainty in the measurements. We then perform two types of
analysis on the data to estimate the point at which the value
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Fig. 5. Plot of logud u vs. t in T-jump experiments for a final temperature of
Tf � 408C for the initial temperaturesTi indicated in the figure. The data
have been shifted to intersect atd � 1 × 1024 to emphasize the trend of
increasing slope with increasing initial temperature. Hatched area repre-
sentsd , 3.2 × 1025.

Fig. 6. Plot of logud u vs. t in T-jump experiments for a final temperature of
Tf � 358C for the initial temperatures Ti indicated in figure. The data have
been shifted to intersect atd � 1 × 1024 to emphasize the trend of increas-
ing slope with increasing initial temperature. Hatched area representsd ,

3.2 × 1025.



of teff can no longer be said to be different between experi-
ments run at different values of initial temperature. In the
first data analysis, we analyze the slopes of curves of lnud u
vs. t, which are, in fact,2 teff

21. Secondly, we consider an
analysis using a propagation of errors approach in which we
consider correlated errors – something not considered by
Struik [19]. From these two analyses we come to the conclu-
sion that the expansion gap is real and establish limits on the
minimum value ofd for which this can be said.

5. The Kovacs experiments

A major aspect of the determination of the statistical
validity of the difference between values ofteff for different
starting temperatures is to accurately estimate the sources of
error in the data. Hence we describe these in some detail.

Kovacs performed dilatometry using Bekkedahl-type
dilatometers [1] in which a poly(vinyl acetate) sample of
approximately 1.25 cm3 volume is placed into a glass tube
which is sealed. The tube is attached to a capillary having a
diameter of approximately 0.454 mm. The capillary is grad-
uated by marks engraved at 1 mm intervals. The system is
evacuated and then filled with mercury. Changes in volume
of the sample are measured as changes in the height of the
mercury in the capillary.

One source of error in the measurements is the resolution
of the reading of the mercury height. This was done using a
magnifying device having a low power lens and a reticle
which was attached to the capillary. The mercury level
could be read to within 0.10 mm using this device. This
corresponds to a resolution of 1.6× 1025 cm3, or a resolu-
tion in d of 1.3 × 1025.

A second source of error arises in the temperature

fluctuations which are of the order of 0.015 K over a period
of 100 h. This leads to an uncertainty ind of approximately
1.7 × 1025.

One piece of information to address is the absolute
temperature of the baths atT0. Errors in T0 do not affect
the determination ofteff for a given experiment (i.e. errors
in slope determination). However, they do affect the ‘true’
value of teff,becauseteff is temperature dependent. If the
temperature of a bath was changed, the mercury relay ther-
mometer could not be reset to exactly the same temperature,
hence it is important to have measured the absolute tempera-
ture with some accuracy. The data we have chosen to
analyze are of two sorts. In the earliest experiments the
temperature was measured with a mercury thermometer
that was calibrated by the Bureau International des Poids
et Mesures in Se`vres, France. For data obtained after 1965, a
Hewlett-Packard quartz thermometer was used, and a differ-
ent calibration factor was obtained. Therefore, we have
chosen to compare data at the nominal temperatures related
to the 1950 calculation. Importantly, the temperature depen-
dence ofteff itself is not a major source of error. As one
expectsteff to vary approximately 1 order of magnitude per
38C [23], an error of 0.18C leads to an error of 101/30–1�
0.072 – hence less than 10% which is significantly less than
the size of the expansion gap which can be as much as an
order of magnitude. This can be seen in Fig. 2. Therefore,
this aspect of error is not considered further.

Finally, an important problem in the analysis ofteff is the
fact that this is a derivative in the data, hence the correla-
tions in errors ind have an impact on the actual uncertainty
in teff. We come back to this in more detail when we quan-
titatively estimate the uncertainty using a propagation of
errors analysis. First, however, we examine the data using
a method that allows us to look at them as they are and to
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Fig. 7. As in Figs. 5 and 6 but now forTf � 37.58C.
Fig. 8. As in Figs. 5–7 but now forTf � 42.58C.
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thereby gain some insight into the meaning ofteff, the
expansion gap and the behavior of the volume recovery as
d ! 0. This approach, in fact, implicitly includes the error
correlations.

6. The data

The original Kovacs [7] data represented only a partial set
of the data that Kovacs had taken during the course of his
studies. Further, subsequent work in the Laboratories at the
Institut Charles Sadron (formerly Centre de Recherches sur
les Macromole´cules) was carried out, and we use these data
to improve the statistics for repeat tests – an important
aspect of the data quality because it provides another esti-
mate of reproducibility beyond the within-test estimates of
uncertainty given before. The data obtained from the
Kovacs notebooks was taken down as both mercury height
in the capillary and as a final calculatedd . We treat the data
from the stage ofd as the two are directly related. In any
given experiment, however, we do note that there is some
potential arbitrariness in the value ofd � 0. This is the limit
of accuracy of the measurements as discussed before.
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Fig. 13. Contour plot for error correlations with time between readings for (a) temperature jump fromTi � 308C toTf � 408C. Perfect correlation would follow
the dashed line. (b). Same as (a) except thatTi � 408C andTf � 358C. See text for discussion.

Fig. 14. Plot of log(teff) vs. logud u for T-jumps from 32.58C to different final
temperaturesTf of 37.5 and 408C. Solid lines are mean values and dashed
lines give the 95% confidence limits assuming appropriate error correlation
functions. The vertical line and shading represent the values of logud u below
which one is no longer confident (at the 95% level) that the values of
log(teff) are different. See text for discussion.



We consider up-jump and down-jump experiments to
final temperatures of 35, 37.5, 40 and 42.58C from multiple
initial temperatures at which the samples had been equili-
brated. We also examine down-jump experiments to 308C,
which provide important information about the reproduci-
bility of the data and the error correlation in down-jump
conditions. Table A1, presented in the Appendix, details
the test conditions examined. Table A2, also in the Appen-
dix, summarizes the test conditions. As can be seen, there
are over 90 experiments considered. We note that Kovacs
also performed many other experiments for other thermal
histories than the asymmetry of approach type of experi-
ment that is being examined here.

Finally, for completeness, we note that there were 4
experiments that we do not consider for temperature
jumps to 358C from 35.6, 36.0, 36.2 and 378C because
these were obvious outliers in that they recovered much
too fast into equilibrium for the final temperature of 358C.
All of the other data were included, even when noisy. It is
evident that Kovacs was meticulous in accepting certain
experiments prior to thinking them as high enough quality
for publication. With the exception aforementioned, we do
not make such a judgement here.

7. A logarithmic representation of d vs. t

One potential source of error in the Kovacs calculation of
teff is the determination of the slope of the data from a three
point estimate. Further, plots ofd vs. t or d vs. logt do not
give a direct visualization of the way in whichteff is chan-
ging with time (or d ) throughout an experiment. An
obvious, in retrospect, method of presenting the data is to
plot logud u vs. t. The slope of such a plot gives2 teff

21 to
within a constant. Hence, one can see very dramatically in a

given series of experiments how the slopes of curves vary
as, e.g. the initial temperature is changed. Such a plot is
shown in Fig. 4 for a final temperatureT0 � 408C. Note
that the hatched area corresponds to an uncertainty ind of
2× 1025. The data for the up- and down-jumps are separated
for clarity by multiplying by the sign ofd . We see several
things in the figure. We see clearly that the data for the
down-jumps come into equilibrium very quickly relative
to the up-jumps, and the down-jump experiments seem to
come into the hatched area with about the same slope –
hence the sameteff values. However, the up-jump data do
not come together and the slopes are not obviously all the
same. It is also interesting to note that there is a relatively
long portion of the up-jump data that seems to be linear on
the plot, which would be true for a single relaxation process.

A better depiction of the changes in slope as the initial
temperature changes is seen in Fig. 5 where we have now
shifted all of the curves to intersect atud u� 1024 and we plot
logud u vs. t on an expanded scale, so that the up- and down-
jump data can be directly compared. It is very clear from the
data that, as the initial temperature increases, the slopes of
the curves increase and begin to merge asT0 is approached
and, for values corresponding to the down-jump conditions,
the curves become virtually indistinguishable. Hence, an
implication is that, at least untilud u � 1024, there is a differ-
ence inteff that depends on the initial temperature for up-
jumps and approaches that obtained in the down-jumps as
the magnitude of the jump decreases. This supports the
original interpretation of the data as presented by Kovacs
in 1964 in histeff plots for the data obtained atT0 � 408C.

Figs. 6–8 show similar depictions of logud u vs.t for the final
temperatures of 35, 37.5 and 42.58C. For the 358C data (Fig. 6)
there is a slight trend similar to that seen in the 408C data, but it
is clear that the differences among the curves is slight. The
results do show, strongly, that the final value ofteff seems to
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Fig. 15. Plot of log(teff) vs. logud u for T-jumps fromTi � 37.58C and 358C to
the same final temperatureTf � 408C. Solid lines are mean values and
dashed lines give the 95% confidence limits assuming appropriate error
correlation functions. The vertical line and shading represent the values
of logud u below which one is no longer confident (at the 95% level) that
the values of log(teff) are different. See text for discussion.

Fig. 16. Plot of log(teff) vs. logud u for two up-jumps from initial tempera-
tures of 358C and 37.58C to a final temperatureTf of 408C. Solid lines are
mean values and dashed lines give the 95% confidence limits assuming
appropriate error correlation functions.The vertical line and shading repre-
sent the values of logud u below which one is no longer confident (at the 95%
level) that the values of log(teff) are different. See text for discussion.



become independent of initial temperature for the down-jump
conditions. For the other two temperatures the data are sparse,
but the same trend of increasing slope with increasing intitial
temperature as evident in the 408C data is seen.

It is interesting to note that the differences in slopes
persist more clearly until small values ofd in the T0 �
408C data (Fig. 5) than for the other final temperatures.
There may be other reasons for this, but our feeling is that
the data taken for a final temperature of 408C are “better”
because the equilibration times are relatively short and the
individual data readings were taken relatively close together
in time even asd becomes small. This leads to greater error
correlation between data points taken at small values ofd
and, therefore, to less uncertainty in the slopes of the lines
and corresponding values ofteff. This issue is addressed
directly in a subsequent section.

Although the representations of the data given in Figs. 4–8
are very striking, they do not answer directly the question
whether or not the slopes, i.e.teff, are statistically different
for different initial temperatures, nor do they answer the ques-
tion “at what magnitude ofud u do the values ofteff become
indistinguishable?”. In order to address this question directly
we estimated the uncertainty in the slopes (related toteff

21) by
dividing the data intoud u ranges. This approach assumes that
for small intervals inud u the functions log(ud(t)u) are nearly
linear. We fit a straight line model, with possibly different
slopes for different initial temperatures, and allowing for
different intercepts for each experimental curve. The devia-
tions in the data from the straight line model are assumed to be
Gaussian, with components of variance owing to variability
between curves and within a curve. As replicated curves are
available for several initial temperatures (at each final
temperature), the uncertainties in the slopes (2 teff

21) can be
estimated from the data. From these we determine the uncer-
tainty in 2 log(teff) as a standard error of estimate. In Fig. 9 we
show the data for the estimates in log(teff) and the uncertainties
for four intervals ofud u for the final temperature of 408C. The
results are very intriguing. It can be seen that for the largest
values ofud u there is no doubt that the values of log(teff) differ

with initial temperature. Similar results are shown in Figs. 10
and 11 for the final temperatures of 35 and 37.58C. It is also
seen that asud u decreases, the values of log(teff) become less
dependent on temperature and, in the interval 1.0× 1025 ,
ud u , 5.6 × 1025, the log(teff) values at the different starting
temperatures become indistinguishable – hence showing that
the Kovacs data themselves resolve theteff-paradox. The data
at 408C support the existence of the expansion gap beginning
in the range of values of 5.6× 1025 , ud u , 1.8× 1024 and for
the ranges above this. For the 358C data the results are less
convincing, though there is a definite suggestion of a trend in
the log(teff) values that is similar to that seen in the 408C data.
At 37.58C, the results are consistent with the existence of the
expansion gap.

Examination of the Figs. 9–11 also shows an interesting
feature in that the plots of log(teff) vs.Ti seem to be sigmoi-
dal in shape. At large values ofuDTu (lower temperatures) in
the up-jump experiments the values of log(teff) seem to be
slowly changing until about 28C from the final temperature,
where they rapidly drop to the values observed in the down-
jump experiments. The reasons for this are unclear. The
results do show the kinetics of the structural recovery that
lead to the expansion gap, perhaps simply reflecting the
sensitivity of the up-jump experiment to long time relaxa-
tions [4,18,19] in the structural recovery process, or the
different physics implicit in the constitutive models of
Rendell et al. [17] or Lustig et al. [8] vis a` vis the TNM–
KAHR type models.

8. A propagation of errors analysis

8.1. Importance of the analysis

In a recent paper, Struik [19] used a propagation of errors
analysis to argure that the Kovacs 1964 data do not support
the expansion gap (or apparent paradox inteff). One of the
reasons for our disagreement with Struik’s analysis resides
in his assumption that the errors in the estimation ofd are
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uncorrelated. In the analysis which follows, results similar
to his would be obtained if there were no correlation in the
errors in Kovacs’ measurements. However, simple exami-
nation of the data show that this is untrue, and a more
rigorous analysis allows us to estimate the correlation in
the data. Considering correlation in the data leads to conclu-
sions similar to those discussed before, and not in agreement
with those of Struik [19]. Further, the replication of Kovacs’
experiments improves the statistics and increases our confi-
dence that the expansion gap exists.

What do we mean by uncorrelated and correlated
data? If the data are uncorrelated, this implies that the
uncertainties in measurements made over time are inde-
pendent. Hence, if the errors are uncorrelated, the abso-
lute error in the difference ofd measurements made 1 s
apart are the same as the errors in measuremnts made
10 h apart. More formally, taking a measurement at
time ti followed by one atti11 would have the same
relative error as taking the measurement atti followed by
one att i1n. Clearly, in measurements of the sort described
in the experimental section where readings are taken manu-
ally and in which bath temperature fluctuations are likely to
occur over a relatively long time-scale the errors in the data
will be correlated. The effect on error correlations of the
temperature fluctuation uncertainty is one that is readily
understood. Imagine that the bath temperature fluctuates
as a result of daily temperature cycles as damped by the
thermal mass and control system for the bath temperature.
Then, in the limit thatDt � ti11 2 ti! 0, clearly the error in
the height reading because of the bath temperature being
different from one reading to the next vanishes. In this
case, the estimate ofteff, which comes from the slope of
the height vs. time (logud uvs. t), will be completely as a
result of the change in sample volume, hence will have no
error even though the absolute measurement is somewhat in
error because of the temperature uncertainty. One would
expect that the correlation of the errors would decrease as
the time intervalDt between readings increases. It is more
difficult to define what the source of correlation among
errors arising from the meniscus reading procedure itself
might be, however, it is clear from the data themselves
that such a correlation must exist because even where the
data are changing very slowly (short times in the up-jumps,
see Fig. 1) the data change monotonically. In the following,
we first derive the expression for the error inteff as a func-
tion of the error in the measurement ofd including a term
for the correlation of the errors. We show how the errors in
the estimate ofteff are dramatically larger for the case of
uncorrelated errors than for the case of perfectly correlated
errors. We then analyze data for a set of up-jump and a set of
down-jump experiments for which there is substantial repli-
cation in order to estimate the error correlation as a function
of time between readings. With the appropriate correlation
functions we then estimate the magnitude ofd at which the
values of log(teff) are significantly different with 95% confi-
dence for the Kovacs data discussed before. This analysis

results in similar conclusions to those discussed in the
previous section.

8.2. The error analysis

We consider the divided-difference approximation that
Kovacs likely used to estimateteff

21 [19]. Using a linear
Taylor series approximation, the uncertainty in an estimate
of teff

21 is related to the uncertainties in thed measurements.
Struik [19] provides a conservative a-priori estimate for the
standard deviation of the uncertainty ind . Estimates ofteff

21

can be obtained empirically and plausible measures of the
correlations among thed estimates in the divided difference
approximations toteff

21 can be estimated using replicated
data sets. Taken together, the Taylor series approximation,
and estimates of the correlations amongd estimates taken
close together in time enable one to estimateteff

21 curves as
functions of time along with approximate 95% confidence
bands. By examining these curves in pairs, we can estimate
the smallest values ofd for which teff

21 are statistically
significantly different.

The data from each experiment consist of successive
measurements of relative volume change from equilibrium
(d1, d2,…, dn), and corresponding elapsed times after the
temperature jump (t1, t2,…, tn). We assume that the measure-
ment uncertainty indi’s is much greater than the uncertainty
in the times, so that the error made by treating theti values as
if they are known is negligible. For the measureddi’s, in
contrast, letdi � d i 1 ei, whered i is the ‘true’ value which
one would observe if there were no measurement uncer-
tainty. The ‘errors’ei are assumed to be Gaussian with
mean zero and standard deviationsd.

If Kovacs estimatedteff
21 using a three-point divided

difference method, then one can express the ‘true’ quantity
being estimated as

�t21
eff �i � di11 2 di21

di�ti11 2 ti21� ; �2�

and the estimate as

�t21
eff �i � di11 2 di21

di�ti11 2 ti21� : �3�

We use the propagation of errors approach [2,3] to
approximate the standard deviation ofteff

21, st , in terms of
sd, the ti’s, and thed i’s. Finally, the unknownd i’s are esti-
mated from the measureddi’s. The propagation-of-errors
approximation to the relative uncertainty inteff

21 is then

st=t
21
eff

sd=d

 !
i

<

�������������������������������������������
1 1 2�1 2 ri21;i11� di

di11 2 di21

� �2
s

�4�

where r i21,i11 is the correlation between measurements
made at timesti21 andti11 on the same curve. This correla-
tion is apparently assumed to be zero in the analysis of
Struik [19]; as seen later, for the data here it is non-zero
and often close to one for the time intervals that were typical
of data collection in the Kovacs experiments. From Fig. 12,
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where we present the ratio of Eq. (4) for different values of
the correlation parameterr i21,i11, it is clear that the impact
of r i21,i11 on the estimated value of the uncertainty inteff

21 is
dramatic.

We have given our estimates of the uncertainty in
Kovacs’ data as mentioned previously, they are not greatly
different from those estimated by Struik [19], we use
Struik’s estimate to avoid further confusion. Struik [19]
estimated the ‘uncertainty’ ind to be ^ 2 × 1025. We
take this to represent̂ 2sd. Hence, we estimatesd <
1 × 1025. Of course, the unknown trued i11 and d i21 are
estimated bydi11 and di21, respectively. To estimate the
correlation of the datar i21,i11 we use replicated curves for
the Kovacs experiments forT-jumps from 35 to 408C and
from 40 to 358C. The correlation functions which we esti-
mated using the methods of Ramsey and Silverman [15] are
presented in Fig. 13 and discussed in the following para-
graph. There were only three temperature pairs for which
there is adequate replication of the experiments to estimate
r i21,i11. Those relevant to the current analysis are the 35–
408C data which we used to estimater i21,i11 for all of the
up-jump curves. The 40–358C estimates ofr i21,i11 are used
for all of the down-jump curves. There are 15 data sets for
the jump from 35 to 408C and 11 for the jump from 40 to
358C.

Fig. 13(a) and (b) show the correlation in the deviations
of the Kovacs volume recovery data from a mean line fit to
the replicate sets of data for the 35–408C and the 40–358C
experiments. What can be seen from these data is that in the
up-jump experiments the data correlation is very high
(r i21,i11 $ 0.90) for data points taken up to approximately
600 s apart. For the down-jump case, the high correlation
extends to data readings taken approximately 4500 s apart.
Whether the differences in the times for the correlations to
begin decreasing is a function of the specific experiment, i.e.
down- vs. up-jump, or the final test temperature, is unclear.
The other set of data available to perform such an analysis is
the temperature jump from 40 to 308C, and there the high

correlation is retained for times to approximately 2000 s. In
any event, we used the correlations shown in Fig. 13(a) for
our up-jump calculations and the correlations of Fig. 13(b)
for the down-jump calculations discussed in the following.

8.3. Limiting values ofd for which teff values are different

In the previous sections in which we estimated the limits
for which the values ofteff for temperature jumps to the
same final temperature are different, the analyses did not
explicitly include correlation of errors, although the proce-
dures for taking the slopes of the plots of logud u vs. t
included any such correlations implicitly. Here we take
the error correlations determined before for the ‘representa-
tive’ up- and down-jump experiments and apply them so
that we can compareT-jump results from different starting
temperatures to the same final temperatures. In particular,
how small is the smallest logud u for which we have 95%
confidence that theteff values from two experiments are
different? We examine temperature jumps to 35 and 408C
– the final temperatures originally considered by Kovacs. In
addition, there were sufficient data forT-jumps to 37.5 and
42.58C in the Kovacs notebooks to ask the same question.
From examination of Fig. 2 we argue that the expansion gap
should be significant for temperature jumps from two differ-
ent initial temperatures when theteff values are different
when ud u # 1.6 × 1024 or logud u # 2 3.8. This number
is chosen because it is approximately the value ofd for the
last data point in Fig. 2 for theT-jump from 308C to 358C. It
is also in the region in which the curvature for theT-jump
from 32.58C to 358C is changing into the flat line that looks
as if it were extrapolating into thed � 0 line. It appears to be
the limit for which Kovacs [7] trusted the data. As we go
through the analysis that follows, these are the numbers to
keep in mind.

The analysis of each set of two curves was performed by
recognizing that we can estimate logteff as a function ofd
from the data for each experiment using the divided
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difference approximation (Eq. (2)). The correlation between
di11 anddi21 are then approximated using the correlation for
the 35–408C (up-jump) data, or the corresponding functions
for the 40–358C (down-jump) data. All of these estimates
are then substituted into the propagation of errors formula
(Eq. (4)) in order to estimate the standard error ofteff as a
function ofd . From this one can easily determine the stan-
dard error of logteff.

To estimate the limiting value ofd at which two curves
become statistically indistinguishable we define this limit-
ing value to be the largest value ofd for which the absolute
difference in the corresponding logteff estimates, divided by
the standard error of this difference, is greater than 2. That is
we require that

qi �
u�log�t̂eff��i11 2 �log�t̂eff��i u
��steff

�2i11 1 �steff
�2i �1=2

$ 2 �5�

where the log(tÃeff) refer to the estimated values for logteff.
Eq. (5) is closely related to the well-known two-samplet-
test used to test for a statistically significant difference
between two means. Typically, the largest value ofd for
which q $ 2 will be slightly greater than the largest value
of d for which one of the estimated mean curves is within
the approximate 95% confidence interval for the other mean
curve. This approach is used in the following discussion.

8.4. Temperature jumps to different final temperatures

The first comparison that we make is for two final
temperatures that are close together and for up-jump condi-
tions: Tf � 37.5 and 408C for the sameTi � 32.58C. The
comparison is shown in Fig. 14 and we see that the value of
the departure from equilibrium for which we have 95%
confidence that the logteff values for theTf � 408C differ
from those atTf � 37.58C is at logud u � 2 4.1, (d � 7.9×
1025) which is clearly smaller than the limit that we
described above. This is expected since the values ofteff

should vary with temperature. When the final temperatures

are 40 and 42.58C andTi � 358C we find that the limiting
value of logud u� 2 4.5, (d � 3.2× 1025) as seen in Fig. 15
Here the statistics are undoubtedly better because of the fact
that there are many replicates (N� 15) for the experiment in
which the temperature was changed from 35 to 408C.

8.5. Temperature jumps to 408C

Next we compare the up-jump data for different initial
temperatures for a final temperature of 408C – the data most
extensively analyzed by both Kovacs [7] and Struik [19]. As
there are so many pairs of comparison to be made, we show
three sets and the rest of the results are tabulated in Table
A3. Fig. 16 shows the results from experiments performed
in the up-jump to 408C from initial temperatures that are
close together and close to the final temperature:Ti �
37.58C andTi � 358C. Here it is clear that these two data
sets are different to very small values of logud u � 2 4.2,
(ud u � 6.3 × 1025). However, (Fig. 17), whenTi � 308C is
compared toTi � 358C we find that the curves are different
only when logud u . 2 3.6, (d . 2.5× 1024), which would
suggest that these two curves are not coming in to different
limiting values asud u! 1.6× 1024. This supports the obser-
vation made previously thatteff seems to follow a sigmoidal
response in going from relatively large up-jumps towards
small up-jumps and to the down-jump condition of a
constant value ofteff. In Fig. 18 we depict the comparison
of two down-jumps to 408C: for Ti � 42.5 and 608C. Here
we see that there is no difference over the range of available
data. Finally, upon examination of the data in Table A3 (see
Appendix), we see that the results observed with the
previous analyses in which error correlation is implicit,
rather than explicit as here, the values ofteff are indistin-
guishable for adjacent large up-jumps, which are different
from all of the down-jumps and there is a transition in which
teff changes and becomes indistinguishable between the
small up-jumps and the down-jump experiments: hence,
the existence of an expansion gap is supported by the
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Kovacs data in asymmetry of approach experiments at 408C.
As an additional point, we call the reader’s attention to the
fact that for the comparisons between the large up-jumps
and all of the down-jumps the values ofteff are different at
the 95% confidence level or better based on the aforemen-
tioned criterion.

8.6. Temperature jumps to 358C

Upon examination of Fig. 2 we see that for a final
temperature of 358C, Kovacs only showed results for initial
temperatures of 30 and 32.58C. In addition toteff appearing
different between these two initial temperatures, the data for
the jump from 308C seems to come in to zero departure from
equilibrium at a value ofteff very different from the values
in the down jump experiments from 35, 40 and 508C. Hence,
we can treat the data as in the previous section to ask what is
the limiting value of logud u (or ud u) below which the values
of teff are no longer different. This comparison is shown in
Fig. 19 for the initial temperatures of 30 and 32.58C. Two
things can be seen from this figure. First, the 95% confi-
dence limits are very large and the limiting behavior is for
logud u� 2 3.3, (ud u� 5.0× 1024), a value somewhat larger
than observed for the experiments at 408C. The result is also
affected by the small number of replicate experiments. If,
however, we compare the experiment forTi � 308C with
that for Ti � 408C, for which there are 11 replicates, the
result changes: As shown in Fig. 20, there is a significant
difference betweenteff until logud u � 2 3.7, (d � 2.0 ×
1024). This is, then, similar to what was found above for the
temperature jumps to 408C. When we look at the full set of
results in Table A3, in the Appendix, it is clear that the data
for T-jumps to 358C do not support the existence of an
expansion gap except, perhaps, for the 308C T-jump relative
to some of the down-jumps. The explanation for the differ-
ence here and for the evidence obtained in the experiments
at 408C is that the times required ford to approach zero (or
the value of 1.6× 1024) is at least ten times as long in the
358 C experiments as in the 408C experiments. As a result,

the error correlations when the time intervals between read-
ings are longer decrease dramatically and the data have
greater uncertainty. Of course, this does not mean that the
“expansion gap” does not exist in the 358C experiments, but
that the Kovacs’ 1964 data is insufficiently accurate to deter-
mine whether or not the expansion gap exists. This is impor-
tant, because Rendell et al.[17] used the 358C data, not the
408C data as support for their model.

8.7. Temperature jumps to 37.58C

The data for temperature jumps to 37.58C that are
presented and analyzed here were not reported in the origi-
nal Kovacs [7] work. As shown next, these results uphold
the contention of Kovacs that the data in the up-jump
experiments show an expansion gap to very small values
of d .

In Fig. 21 we depict the curves from initial tempera-
tures of 32.58C and 408C to the final temperature of
37.58C along with the 95% confidence intervals. The
values of logud u at which thet eff are no longer different
occurs when the 95% confidence line for theTi � 32.58C
intersects the mean curve forTi � 408C at logud u � 2
3.9, (ud u � 1.3 × 1024). Similarly, in Fig. 22 the curves
for Ti � 358C andTi � 408C are different until logud u �
2 3.8, (ud u � 1.6 × 1024). Fig. 23 shows the comparison
for the two up-jump experiments. We see that, in this
case, they are different until values below logud u � 2
3.6, (ud u � 2.5 × 1024), which does not support the
existence of the expansion gap. However, because these
two initial temperatures are close together, the results
imply similar behavior to that seen in the 408C data,
i.e. the up-jumps are systematically different from the
down-jumps, hence supporting the gap. However, up-
jump experiments from temperatures close together are
not necessarily going to show a difference at the 95%
confidence limit required here. The experiments of inter-
est, T-jumps from lower temperatures, were not
performed.
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8.8. Temperature jumps to 42.58C

The data for temperature jumps to 42.58C that are
presented and analyzed here were not reported in the
original Kovacs [7] work. In Fig. 24 we depict the curves
from initial temperatures of 35 and 408C to the final
temperature of 42.58C along with the 95% confidence inter-
vals. The values of logud u at which theteff are no longer
different occurs when the 95% confidence line for theTi �
408C interesects the mean curve forTi � 358C at logud u �
23.6, (ud u � 2.5 × 1024). These data are not supportive of
the existence of the expansion gap under the above defined
criterion. However, it should be recalled that there are no
replicate data for these experiments, which would greatly
improve the statistics. Also, there are no down-jump data
here for comparison.

9. Summary and conclusions

In 1964 Kovacs published a set of data from structural
recovery experiments in which he made the observation that
a plot of log(teff) vs.d exhibits an apparentteff -paradox and
an expansion gap. As there is some controversy in the litera-
ture concerning both the apparent paradox and the expan-
sion gap, we have returned to the original Kovacs notebooks
to analyze data that were taken at the same time as the data
published in 1964, as well as subsequent data taken at the
same laboratory under Kovacs’ tutelage. Two different data
analyses have been presented that demonstrate convincingly
that the expansion gap exists to values ofd < 1.6× 1024.
This is true for both analyses in which the final temperature
of test is 408C and for which the data error correlations are
expected to be the greatest. A simple analysis in which plots
of logud u vs. t (slope/ teff) are made, shows very strongly
that there is a systematic trend in the slopes with increasing
initial temperature in the experiments. This supports the
original contention of Kovacs that there exists an expansion
gap or apparentteff -paradox.

In an analysis of the data in which an estimate was made
of the actual correlation of the errors in the experiments the
results are unambiguous for the experiments with a final
temperaure of 408C. This is undoubtedly the best data set
for two reasons. It is very extensive and the time-scale of the
experiments was such that the manual reading procedures
resulted in data being taken at time intervals such that the
error correlation remained high. In contrast, the data at 358C
is far less convincing even though it, too, is an extensive
data set. One reason for this is that the times required for the
experiments were such that the manual reading procedures
lead to long time intervals between data points such that the

error correlations became very weak. The data at 37.58C and
42.58C are a bit ambiguous, with the former supporting the
expansion gap and the latter not doing so at the 95% confi-
dence level. However, neither of these data sets was very
extensive.

The conclusions drawn here disagree with the argument
of Struik [19] who uses a propagation of errors argument in
which the uncertainties are assumed to be uncorrelated.
Importantly, his analysis focused on the 408C data. Our
analysis shows a correlation of the error in the data which
is, first, not unexpected and, second, sufficient to allow a
sophisticated error propagation analysis that includes the
correlation of the uncertainties.

An interesting feature of the up-jump curves in logud u vs.t
is that they remain linear for long stretches in time, which
may have implications for the development of the constitu-
tive models and their description of the expansion gap visi-
ble in the original Kovacs data and the expanded data shown
here.

This brings us to the two final points of the paper. First,
although the data originally published by Kovacs in 1964
does not in its entirety support the existence of the expan-
sion gap (apparentteff-paradox), the analyses presented here
show that it definitely exists for the data obtained at a final
temperature of 408C, and has a strong likelihood of being
found at the other temperatures if data were taken at closer
intervals in time. This is because for data taken at shorter
time intervals the errors would be more strongly correlated
and there would also result more replicate data which would
improve other aspects of the statistics. This being said, then,
there is still a need to explain the expansion gap. Earlier we
alluded to several possibilities for the explanation. One is
the need for better constitutive equations than those of the
Tool–Narayanaswamy–Moynihan et al. [11,14,20,21]
(TNM) or KAHR models. Rendell et al. [17] and Lustig et
al. [8] have suggested such equations. However, it may be
that the expansion gap is merely a manifestation of the long-
est relaxation time processes occurring in the polymer glass.
Goldstein and Nakonecznyj [4] first intimated this possibi-
lity. More recently Schultheisz and McKenna [18] have
explicitly considered this possibility and Struik [19] in his
work questioning the expansion gap also seems to suggest
such a possibility. Clearly, then, the expansion gap is impor-
tant and better measurements of its nature and improved
models to explain and describe it are needed.

Appendix A. Tables A1–A3 describing Kovacs’
experiments and their interpretation

Tables A1–A3
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Table A1
Dilatometric experiments on poly(vinyl acetate) performed in the Laboratories of the Centre de Recherches sur les Macromolecules (now Institut Charles
Sadron) by Kovacs and co-workers between 1959 and 1981 and analyzed in this work. The first column denotes the nominal final temperature of theT-jump
experiment. The second column denotes the nominal initial temperature. The third through fifth columns denote the temperature according to the 1950 Sèvres
calibration, 1965 Se`vres calibration, or quartz thermometer reading respectively. In instances in which the temperatures are italicized, there is no record in the
notebooks of actual reading, only the nominal temperature is given. The final column presents the date of the measurement as day/month/year – followedby
the fill number for the dilatometer used in all of these experiments. Where a Fig. number is indicated, it is known that these data were used in the 1964 Kovacs
paper and the figure number refers to that reference

Final temp. Initial temp. Tleg(1950) Tleg(1968) Quartz thermometer Date of exp – fill #.

42.58C 408C 39.978C to 42.508C 39.978C to 42.508C — 15/02/60 – 1
42.58C 358C 34.97– .998C to 42.388C 34.87– .898C to 42.268C — 16/06/60 – 2
408C 37.58C 37.478C to 408C 37.368C to 408C — 11/01/60 – 1 (Fig. 23)
408C 37.58C 37.5 to 408C 37.5 to 408C — 12/01/60 – 1
408C 358C 35 to 408C 35 to 408C — 11/01/60 – 1 (Fig. 23)
408C 358C 34.84–.968C to 39.958C 34.74–.868C to 39.848C — 08/01/60 – 1
408C 358C 34.94–35.018C to 39.988C 34.84–.918C to 39.878C — 01/06/60 – 2
408C 358C 34.96–.988C to 39.998C 34.86–.888C to 39.888C — 14/06/60 – 2
408C 358C 34.90–.938C to 39.96–.978C 34.80–.838C to 39.85–.868C — 18/10/62 – 3
408C 358C 35.00–.018C to 40.04–.058C 34.90–.918C to 39.93–.948C — 06/12/62 – 3
408C 358C 35.018C to 40.008C 34.868C to 39.898C — 06/12/62 – 3
408C 358C — — 34.97–.998C to

39.94–.958C
24/01/69 – 5

408C 32.58C 32.58C to 408C 32.48C to 408C — 24/12/59 – 1 (Fig. 23)
408C 32.58C 32.468C to 40.058C 32.368C to 40.058C — 06/01/60 – 1
408C 308C 29.94–.988C to 40.00–.018C 29.84–.888C to 39.89–.908C — 03/01/63 – 3 (Fig. 23)
408C 308C 29.95–.988C to 39.978C 29.85–.888C to 39.978C — 15/02/60 – 1
408C 258C (1500

h)
25.008C to 39.988C 24.98C to 39.878C — 25/05/60 – 2

408C‘ 42.58C 42.58C to 40.08C — — 15/02/60 – 1
408C 508C 50.08C to 40.08C — — 11/01/60 – 1
408C 508C — — 49.99–50.008C to

39.948C
23/01/69 – 5

408C 608C 60.15–.188C to 40.08C 59.99–60.028C to 40.08C — 15/02/60 – 1
408C 608C 60.08C to 40.08C — — 17/03/60 – 2
408C 358C — — 35.00–.028C to

40.008C
08/10/80 – 6

408C 358C — — 35.008C to 40.008C 09/10/80 – 6
408C 358C — — 34.99–35.018C to

40.008C
17/10/80 – 6

408C 358C — — 35.008C to 40.008C 22/10/80 – 6
408C 358C — — 35.00–.018C to

40.008C
24/10/80 – 6

408C 358C — — 34.99–35.018C to
40.00–.018C

30/10/80 – 6

408C 358C — — 34.99–35.018C to
40.00–.018C

07/01/81 – 6

408C 458C — — 44.99–45.008C to
40.008C

14/10/80 – 6

408C 508C — — 49.968C to 40.00–
.028C

07/10/80 – 6

408C 608C — — 60.008C to 40.008C 16/10/80 – 6
388C 358C 34.988C to 37.958C 34.888C to 37.848C — 23/06/60 – 2
37.58C 32.58C — — 32.51–.538C to

37.52–.548C
03/06/69 – 5

37.58C 408C 408C to 37.468C 408C to 37.368C — 11/01/60 –1
37.58C 408C 408C to 37.58C 408C to 37.58C — 11/01/60 – 1
37.58C 408C — — 40.008C to 37.48–

.508C
08/10/80 – 6

37.58C 358C — — 35.008C to 37.508C 13/04/81 – 6
37.58C 358C — — 35.008C to 37.508C 14/04/81 – 6
37.58C 32.58C — — 32.48–.508C to

37.47–.498C
27/04/81 – 6

378C 358C 34.97–.998C to 36.95–
37.018C

34.87–.898C to 36.85–.918C — 25/06/60 – 2

358C 32.58C 32.49–.528C to 34.91–.948C 32.39–.428C to 34.81–.848C — 13/06/63 – 4 (Fig. 23)
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Table A1 (continued)

Final temp. Initial temp. Tleg(1950) Tleg(1968) Quartz thermometer Date of exp – fill #.

358C 308C 29.95–.978C to 358C 29.85–.878C to 358C — 04/12/62 – 3 (Fig. 23)
358C 378C 36.96–37.028C to 34.978C 36.85–.918C to 34.878C — 27/06/60 – 2 (Fig. 23)
358C 408C 40.04–.058C to 358C 39.93–.948C to 358C — 06/12/62 – 3 (Fig. 23)
358C 408C 40.038C to 34.87–.898C 39.928C to 34.77–.788C — 30/01/63 – 3 (Fig. 23)
358C 408C 40.058C to 34.93–.968C 40.058C to 34.83–.868C — 07/01/60 – 1
358C 408C 408C to 34.84–.968C 408C to 34.74–.868C — 08/01/60 – 1
358C 408C 39.988C to 34.96–.988C 39.878C to 34.86–.888C — 13/06/60 – 2
358C 408C 39.998C to 34.97–.998C 39.888C to 34.87–.898C — 14/06/60 – 2
358C 408C 39.95–.968C to 34.938C 39.84–.858C to 34.838C — 17/10/62 – 3
358C 408C — — 39.948C to 34.97–

.998C
23/01/69 – 5

358C 508C 508C to 34.968C 508C to 34.868C — 21/06/60 – 2 (Fig. 23)
358C 32.58C — — 32.48–.508C to

35.008C
21/10/80 – 6

358C 308C — — 29.98–30.028C to
35.008C

22/12/80 – 6

358C 37.58C — — 37.48–.508C to
35.008C

08/10/80 – 6

358C 37.58C — — 37.488C to 35.008C 15/10/80 – 6
358C 408C — — 40.00–.018C to

34.99–35.018C
07/10/80 – 6

358C 408C — — 40.008C to 34.99–
35.008C

09/10/80 – 6

358C 408C — — 40.008C to 35.008C 13/04/81 – 6
358C 508C — — 50.008C to 35.008C 10/10/80 – 6
358C 608C — — 60.008C to 35.008C 13/10/80 – 6
358C 42.58C 42.388C to 34.978C 42.268C to 34.878C — 16/06/60 – 2
358C 458C 44.988C to 34.96–978C 44.858C to 34.86–878C — 20/06/60 – 2
358C 418C 40.988C to 34.988C 40.878C to 34.888C — 22/06/60 – 2
358C 398C 38.998C to 34.988C 38.888C to 34.888C — 22/06/60 – 2
358C 388C 37.958C to 34.97–.998C 37.848C to 34.87–.898C — 24/06/60 – 2
358C 388C 37.998C to 34.97–.998C 37.888C to 34.87–.898C — 24/06/60 – 2
358C 378C 36.95–37.018C to 34.978C 36.85–.918C to 34.878C — 27/06/60 – 2
358C 368C 368C to 34.988C 368C to 34.888C — 05/07/60 – 2
358C 33.758C — — 33.758C to 35.008C 31/03/80 – 6
358C 36.28C — — 36.188C to 35.008C 01/04/81 – 6
358C 31.28C — — 31.19–.208C to

35.008C
12/06/81 – 6

358C 34.368C — — 34.35–368C to
35.008C

19/06/81 – 6

358C 35.68C — — 35.62–.638C to
35.008C

29/06/81 – 6

32.58C 408C 39.978C to 32.49–.528C 39.868C to 32.39–.428C — 07/06/63 – 4
32.58C 408C — — 40.008C to 32.49–

.508C
17/10/80 – 6

32.58C 408C — — 40.008C to 32.48–
.508C

16/04/81 – 6

32.58C 37.58C — — 37.49–.528C to
32.49–.538C

16/05/69 – 5

32.58C 37.58C — — 37.52–.548C to
32.50–.538C

04/06/69 – 5

32.58C 37.58C — — 37.528C to 32.52–
.538C

10/06/69 – 5

32.58C 37.58C — — 37.528C to 32.52–
.538C

17/06/69 – 5

308C 608C 59.98C to 29.97–.988C 59.98C to 29.87–.888C — 08/03/60 – 1 (Fig. 23)
308C 408C 39.90–40.008C to 29.938C 39.79–39.898C to 29.838C — 15/12/59 – 1
308C 408C 40.08C to 29.92–.988C 40.08C to 29.82–.888C — 13/01/60 – 1
308C 408C 39.988C to 29.94–.998C 39.878C to 29.84–.898C — 10/03/60 – 1
308C 408C 39.988C to 29.92–.988C 39.878C to 29.82–.888C — 16/10/62 – 3
308C 40C 39.968C to 29.93–.988C 39.858C to 29.83–.888C — 18/10/62 – 3
308C 408C 40.00–.018C to 29.96–.988C 39.89–.908C to 29.86–.888C — 03/01/63 – 3 (Fig. 23)
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Table A1 (continued)

Final temp. Initial temp. Tleg(1950) Tleg(1968) Quartz thermometer Date of exp – fill #.

308C 408C — — 39.94–.958C to
30.02–.088C

24/01/69 – 5

308C 37.58C 37.488C to 29.988C 37.488C to 29.888C — 24/02/60 – 1 (Fig. 23)
308C 358C 34.978C to 29.95–.998C 34.878C to 29.85–.898C — 26/02/60 – 1 (Fig. 23)
308C 358C 34.87–.898C to 29.93–.958C 34.77–.798C to 29.83–.858C — 31/01/63 – 3
308C 32.58C 32.368C to 29.96–30.008C 32.268C to 29.86–.908C — 04/03/60 – 1 (Fig. 23)
308C 408C — — 40.008C to 30.00–

.018C
16/10/80 – 6

308C 408C — — 40.008C to 29.99–
30.018C

22/10/80 – 6

308C 408C — — 40.008C to 29.98–
30.018C

24/10/80 – 6

308C 408C — — 40.00–.018C to
29.99–30.018C

30/10/80 – 6

308C 408C — — 40.008C to 29.98–
30.028C

05/11/80 – 6

308C 408C — — 40.008C to 29.99–
30.018C

06/01/81 – 6

308C 408C — — 40.008C to 29.99–
30.018C

07/01/81 – 6

308C 408C — — 40.008C to 29.99 –
30.008C

22/07/81 – 6

308C 458C — — 45.068C to 30.31–
.328C

24/10/68 – 5

Table A2
Summary of T-jump volume recovery experiments.Ti is the initial
(nominal) temperature of the experiment andTf is the final (nominal)
temperature. Numerals represent number of replicate experiments for
each experimental condition

Ti Tf

308C 358C 378C 37.58C 388C 408C 42.58C

258C 1
30 2 2
31.2 1
32.5 1 2 2 2
33.75 1
34.36 1
35 2 1 2 1 15 1
35.6 1
36 1
36.2 1
37 2
37.5 1 2 2
38 2
39 1
40 15 11 3 1
41 1
42.5 1 1
45 1 1 1
50 2 3
60 1 1 3
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Table A3
Limiting values of logud u andud u for whichteff values are different between two different temperature jumps fromTi to Tf. NA implies curves were different for
all values ofd . Ind implies that the data were indistinguishable over the full range of the experiments. The qualifying column that tells “Same” or “Different” is
our choice to set logud u # 2 3.8 or ud u 1.6× 1024 as the limit at whichteff values from two different experiments are different at the 95% confidence level

CompareTi to Tf with Ti to Tf Logud u ud u “Same” or “Different”

Tf � 308C
32.58C to 308C 358C to 308C 2 3.1 7.9× 1024 Same
32.58C to 308C 37.58C to 308C 2 3.1 7.9× 1024 Same
32.58C to 308C 408C to 308C No overlap No overlap Insufficient data
32.58C to 308C 458C to 308C NA NA Different
32.58C to 308C 608C to 308C 2 3.1 7.9× 1024 Same
358C to 308C 37.58C to 308C 2 2.9 1.3× 1023 Same
358C to 308C 408C to 308C Overlap to 2 2.8 Overlap to 1.6× 1023 Insufficient data
358C to 308C 458C to 308C Data different to2 3.2 Data different to 6.3× 1024 Insufficient data
358C to 308C 608C to 308C 2 2.9 1.3× 1023 Same
37.58C to 308C 408C to 308C Overlap to 2 2.8 Overlap to 1.6× 1023 Insufficient data
37.58C to 308C 458C to 308C 2 3.0 1.0× 1023 Same
37.58C to 308C 608C to 308C 2 2.8 1.6× 1023 Same
408C to 308C 458C to 308C Overlap to 2 2.8 Overlap to 1.6× 1023 Insufficient data
408C to 308C 608C to 308C 2 2.6 2.5× 1023 Same
458C to 308C 608C to 308C 2 2.7 2.0× 1023 Same
Tf � 358C
308C to 358C 31.28C to 358C 2 2.8 1.6× 1023 Same
308C to 358C 32.58C to 358C 2 3.3 5.0× 1024 Same
308C to 358C 33.758C to

358C
2 3.4 4.0× 1024 Same

308C to 358C 34.368C to
358C

2 3.6 2.5× 1024 Same

308C to 358C 37.58C to 358C 2 3.8 1.6× 1024 Different
308C to 358C 388C to 358C NA NA Insufficient data
308C to 358C 398C to 358C 2 3.6 2.5× 1024 Same
308C to 358C 408C to 358C 2 3.7 2.0× 1024 Same
308C to 358C 418C to 358C 2 3.6 2.5× 1024 Same
308C to 358C 42.58C to 358C 2 3.6 2.5× 1024 Same
308C to 358C 458C to 358C 2 3.7 2.0× 1024 Same
308C to 358C 508C to 358C 2 3.6 2.5× 1024 Same
308C to 358C 608C to 358C 2 3.6 2.5× 1024 Same
31.28C to 358C 32.58C to 358C 2 3.2 6.3× 1024 Same
31.28C to 358C 33.758C to

358C
2 3.4 4.0× 1024 Same

31.28C to 358C 34.368C to
358C

2 3.6 2.5× 1024 Same

31.28C to 358C 37.58C to 358C 2 3.7 2.0× 1024 Same
31.28C to 358C 388C to 358C NA NA Insufficient data
31.28C to 358C 398C to 358C 2 3.6 2.5× 1024 Same
31.28C to 358C 408C to 358C 2 3.6 2.5× 1024 Same
31.28C to 358C 418C to 358C 2 3.5 3.2× 1024 Same
31.28C to 358C 42.58C to 358C 2 3.6 2.5× 1024 Same
31.28C to 358C 458C to 358C 2 3.6 2.5× 1024 Same
31.28C to 358C 508C to 358C 2 3.6 2.5× 1024 Same
31.28C to 358C 608C to 358C 2 3.5 3.2× 1024 Same
32.58C to 358C 33.758C to

358C
2 3.3 5.0× 1024 Same

32.58C to 358C 34.368C to
358C

2 3.5 3.2× 1024 Same

32.58C to 358C 37.58C to 358C 2 3.5 3.2× 1024 Same
32.58C to 358C 388C to 358C 2 3.4 4.0× 1024 Same
32.58C to 358C 398C to 358C 2 3.4 4.0× 1024 Same
32.58C to 358C 408C to 358C 2 3.4 4.0× 1024 Same
32.58C to 358C 418C to 358C 2 3.3 5.0× 1024 Same
32.58C to 358C 42.58C to 358C 2 3.3 5.0× 1024 Same
32.58C to 358C 458C to 358C 2 3.3 5.0× 1024 Same
32.58C to 358C 508C to 358C 2 3.3 5.0× 1024 Same
32.58C to 358C 608C to 358C 2 3.4 4.0× 1024 Same
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Table A3 (continued)

CompareTi to Tf with Ti to Tf Logud u ud u “Same” or “Different”

Tf � 358C
33.758C to 358C 34.368C to

358C
2 3.3 5.0× 1024 Same

33.758C to 358C 37.58C to 358C Ind Ind Same
33.758C to 358C 388C to 358C Ind Ind Same
33.758C to 358C 398C to 358C Ind Ind Same
33.758C to 358C 408C to 358C Ind Ind Same
33.758C to 358C 418C to 358C Ind Ind Same
33.758C to 358C 42.58C to 358C Ind Ind Same
Tf � 358C
33.758C to 358C 458C to 358C Ind Ind Same
33.758C to 358C 508C to 358C Ind Ind Same
33.758C to 358C 608C to 358C Ind Ind Same
34.368C to 358C 37.58C to 358C 2 3.5 3.2× 1024 Same
34.368C to 358C 388C to 358C 2 3.5 3.2× 1024 Same
34.368C to 358C 398C to 358C 2 3.5 3.2× 1024 Same
34.368C to 358C 408C to 358C 2 3.5 3.2× 1024 Same
34.368C to 358C 418C to 358C 2 3.5 3.2× 1024 Same
34.368C to 358C 42.58C to 358C 2 3.5 3.2× 1024 Same
34.368C to 358C 458C to 358C 2 3.5 3.2× 1024 Same
34.368C to 358C 508C to 358C 2 3.5 3.2× 1024 Same
34.368C to 358C 608C to 358C 2 3.5 3.2× 1024 Same
37.58C to 358C 388C to 358C 2 3.6 2.5× 1024 Same
37.58C to 358C 398C to 358C 2 3.7 2.0× 1024 Same
37.58C to 358C 408C to 358C 2 3.6 2.5× 1024 Same
37.58C to 358C 418C to 358C 2 3.6 2.5× 1024 Same
37.58C to 358C 42.58C to 358C 2 3.6 2.5× 1024 Same
37.58C to 358C 458C to 358C 2 3.6 2.5× 1024 Same
37.58C to 358C 508C to 358C 2 3.7 2.0× 1024 Same
37.58C to 358C 608C to 358C 2 3.5 3.2× 1024 Same
388C to 358C 398C to 358C 2 3.6 2.5× 1024 Same
388C to 358C 408C to 358C 2 3.3 5.0× 1024 Same
388C to 358C 418C to 358C 2 3.7 2.0× 1024 Same
388C to 358C 42.58C to 358C 2 3.5 3.2× 1024 Same
388C to 358C 458C to 358C 2 3.5 3.2× 1024 Same
388C to 358C 508C to 358C NA NA Insufficient data
388C to 358C 608C to 358C 2 3.4 4.0× 1024 Same
398C to 358C 408C to 358C 2 3.2 6.3× 1024 Same
398C to 358C 418C to 358C 2 3.4 4.0× 1024 Same
398C to 358C 42.58C to 358C 2 3.3 5.0× 1024 Same
398C to 358C 458C to 358C 2 3.3 5.0× 1024 Same
398C to 358C 508C to 358C 2 3.4 4.0× 1024 Same
398C to 358C 608C to 358C 2 3.2 6.3× 1024 Same
408C to 358C 418C to 358C 2 3.5 3.2× 1024 Same
408C to 358C 42.58C to 358C 2 3.5 3.2× 1024 Same
408C to 358C 458C to 358C 2 3.5 3.2× 1024 Same
408C to 358C 508C to 358C 2 3.7 2.0× 1024 Same
408C to 358C 608C to 358C 2 3.4 4.0× 1024 Same
418C to 358C 42.58C to 358C 2 3.1 7.9× 1024 Same
418C to 358C 458C to 358C 2 3.1 7.9× 1024 Same
418C to 358C 508C to 358C 2 3.1 7.9× 1024 Same
418C to 358C 608C to 358C 2 3.2 6.3× 1024 Same
42.58C to 358C 458C to 358C 2 3.0 1.0× 1023 Same
42.58C to 358C 508C to 358C 2 2.9 1.3× 1023 Same
42.58C to 358C 608C to 358C 2 3.2 6.3× 1024 Same
458C to 358C 508C to 358C 2 2.9 1.3× 1023 Same
458C to 358C 608C to 358C 2 3.3 5.0× 1024 Same
508C to 358C 608C to 358C 2 3.3 5.0× 1023 Same
Tf � 408C
258C to 408C 308C to 408C 2 2.6 2.5× 1023 Same
258C to 408C 32.58C to 408C 2 3.5 3.2× 1024 Same
258C to 408C 358C to 408C 2 3.9 1.3× 1024 Different
258C to 408C 37.58C to 408C 2 4.1 7.9× 1025 Different
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