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Time-dependent, four-point density correlation function description
of dynamical heterogeneity and decoupling in supercooled liquids
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Dynamical heterogeneity and the decoupling of diffusion and relaxation in a supercooled liquid is
investigated via a time-dependent, four-point density correlation function. We show that the main
contribution to the corresponding generalized susceptibilityx4(t) in a molecular dynamics
simulation of a Lennard-Jones liquid arises from spatial correlations between temporarily localized
~‘‘caged’’! particles. By comparingx4(t) with a generalized susceptibilityxM(t) related to a
correlation function for the squared particle displacements, we demonstrate a connection between
dynamical heterogeneity and the decoupling of relaxation and diffusion. ©2000 American
Institute of Physics.@S0021-9606~00!52402-7#
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Spatially heterogeneous dynamics~‘‘dynamical hetero-
geneity’’! in otherwise homogeneous supercooled, gla
forming liquids is now well established in experiments1–6

close to the glass transition temperatureTg , and this heter-
geneity is even apparent at higher temperatures above
mode coupling7 temperatureTc in simulations.8–12 For ex-
ample, recent studies9–12 of the dynamics of supercooled
glass-forming polymeric and binary simple liquids in term
of the correlations of monomer or particle displacements
vealed the dynamical heterogeneity of these liquids an
rapidly growing range of correlated motion on cooling t
wardsTc . At the same time, the decoupling of translation
diffusion and relaxation as well as translational and ro
tional diffusion in these fluids is also well-known, and sim
lations show12–15 that this decoupling begins well aboveTc

where dynamical heterogeneity first appears. Several aut
have argued that the decoupling of diffusion and relaxatio
a direct result of dynamical heterogeneity, with the slow
particles dominating structural relaxation and the fastest
ticles dominating diffusion.1,4,5,11,12,16,17

In this letter we use a four-point time correlation fun
tion of the density to probe dynamical heterogeneity in
glass-forming liquid, and elucidate the connection betwe
this heterogeneity and the decoupling of bulk transport p
cesses. This four-point function was first investigated in
supercooled liquid by Dasguptaet al.,18 and recently Donati
et al.19 have demonstrated analytically and computationa
the interesting behavior of the related generalized four-p
susceptibilityx4(t) ~defined below!. As shown in Ref. 19,
x4(t) can be represented in terms of the fluctuations of
‘‘order parameter’’ that is a bilinear, time-dependent prod
of densities. Here we show that the self-part ofx4(t) is di-
rectly related to spatial correlations between temporarily
calized particles, while the distinct-part is related to the c
related motion of particles into positions previously occup
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by neighboring particles. We evaluate these quantities fo
cold Lennard-Jones~LJ! liquid, and show that in this system
x4(t) is dominated by growing spatial correlations betwe
localized particles. We then compare the behavior ofx4(t)
with a generalized time-dependent susceptibility related t
correlation function of squared particle displacements. Fr
these two quantities we find twodifferentcharacteristic time
scales: the time scale on which temporarily localized p
ticles are most spatially correlated scales with tempera
like the structural relaxation time, while the time scale
which the correlation between squared particle displa
ments is strongest scales like the inverse diffusion coe
cient. In this way, we demonstrate that the decoupling
diffusion and relaxation in this model liquid arises from d
namical heterogeneity.

Consider a liquid ofN particles in a volumeV, with
densityr(r ,t)5S i 51

N d(r2r i(t)). The simplest density cor
relation function that contains information on correlated p
ticle motion is fourth-order. We write this function in term
of the deviations ofr(r ,t) from its average value,Dr(r ,t)
5r(r ,t)2r0 , where r05^r&5N/V, and ^¯& denotes an
ensemble average:

F4~r1 ,r2 ,t !5^Dr~r1,0!Dr~r1 ,t !Dr~r2,0!Dr~r2 ,t !&

2^Dr~r1,0!Dr~r1 ,t !&

3^Dr~r2,0!Dr~r2 ,t !&. ~1!

Terms involving one position only are subtracted in Eq.~1!
since they contain no information on spatial correlations
particle motions.F4(r1 ,r2 ,t) can be written,

F4~r1 ,r2 ,t !5G4~r1 ,r2 ,t !1DF4~r1 ,r2 ,t !,

where the two-point, two-time, fourth-order correlation fun
tion of densitiesG4 is defined as18,19

G4~r1 ,r2 ,t ![^r~r1,0!r~r1 ,t !r~r2,0!r~r2 ,t !&

2^r~r1,0!r~r1 ,t !&^r~r2,0!r~r2 ,t !&.
© 2000 American Institute of Physics
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DF4(r1 ,r2 ,t) consists of second- and third-order correlati
functions of density. A straightforward calculation show
that**dr1 dr2DF4(r1 ,r2 ,t) vanishes by symmetry, and as
result, the volume integrals ofF4(r1 ,r2 ,t) andG4(r1 ,r2 ,t)
are equal to each other and correspond to thesamegeneral-
ized susceptibilityx4

0(t).

x4
0~ t !5

bV

N2 E E dr1 dr2G4~r1 ,r2 ,t !.

It is straightforward to show thatx4
0(t) can be written as

x4
0~ t !5

bV

N2 @^Q0
2~ t !&2^Q0~ t !&2#, ~2!

where b51/kBT, and the time-dependent ‘‘order param
eter’’ Q0(t) equals

Q0~ t !5E dr r~r ,0!r~r ,t !5(
i 51

N

(
j 51

N

d~r i~0!2r j~ t !!.

~3!

In a simulation,Q0(t) is numerically ill-defined~for a
finite system! since the probability that particlej exactly re-
places particlei is infinitely small. Following Parisi,20 we
therefore modifyQ0(t) by an ‘‘overlap’’ functionw(r ) that
is unity inside a region of sizea and zero otherwise, wherea
is taken on the order of a particle diameter.19,21This leads to
an a-dependent counterpart toQ0(t),

Q~ t !5E dr1 dr2r~r1,0!r~r2 ,t !w~ ur12r2u!

5(
i 51

N

(
j 51

N E drw~ ur u!d~r1r i~0!2r j~ t !!

5(
i 51

N

(
j 51

N

w~ ur i j 2mW j u!, ~4!

where r i j [r i(0)2r j (0) and mW i[r i(t)2r i(0) is the dis-
placement of particlei during the time interval from zero to
t. We choosea50.3sAA as in Ref. 19.

ReplacingQ0(t) in Eq. ~2! by Q(t) yields

x4~ t !5
bV

N2 @^Q2~ t !&2^Q~ t !&2#, ~5!

which gives the following expression19 for x4(t) in terms of
the four-point correlation functionG4(r1 ,r2 ,r3 ,r4 ,t):

x4~ t !5
bV

N2 E dr1 dr2 dr3 dr4w~ ur12r2u!w~ ur32r4u!

3G4~r1 ,r2 ,r3 ,r4 ,t !, ~6!

where

G4~r1 ,r2 ,r3 ,r4 ,t !5^r~r1,0!r~r2 ,t !r~r3,0!r~r4 ,t !&

2^r~r1,0!r~r2 ,t !&

3^r~r3,0!r~r4 ,t !&. ~7!

We can writeQ in terms of its self and distinct parts
Q5QS1QD . The self partQS corresponds to terms withi
5 j in Eq. ~4!:
Downloaded 25 Apr 2001 to 129.6.154.32. Redistribution subject
QS~ t !5(
i

N E drw~r !d~r1r i~0!2r i~ t !!5(
i

N

w~m i !,

~8!

where m i is the magnitude ofmW i . The distinct partQD is
equal to

QD~ t !5(
i 51

N

(
j 51
j Þ i

N

w~ ur i j 2mW j u!. ~9!

Then x4(t) can be decomposed into self- (xSS), distinct-
(xDD), and interference (xSD) parts: x5xSS1xDD1xSD .
From Eq.~5!, xSS and xDD describe the fluctuations ofQS

and QD , respectively, andxSD describes the cross fluctua
tions: xSS}^QS

2&2^QS&
2, xDD}^QD

2 &2^QD&2, and xSD

}^QSQD&2^QS&^QD&. According to Eq.~8!, QS(t) con-
tains only contributions from small displacements,m i,a,
sincew(m i)50 for m i.a, and thusxSS(t) is the suscepti-
bility of localized particles,22 those which during a time in-
terval @0,t# move less than a distancea. In contrast,QD(t)
contains contributions from particles for whichur i j 2mW j u
,a; that is, particles that are replaced by a neighboring p
ticle.

In Ref. 8, a different generalized susceptibilityxU(t)
was defined in terms of the fluctuations in an ‘‘order para
eter’’ given by the total particle displacementU(t) in a time
interval t: U(t)5S i 51

N m i(t)5*dr u(r ,t), where the dis-
placement density fieldu(r ,t)5S i 51

N m i(t)d(r2r i(0)). Here
we comparex4(t) with xM(t), defined as

xM~ t !5
bV

^M ~ t !&2 @^M2~ t !&2^M ~ t !&2#, ~10!

where M (t)[S i 51
N m i

2(t) ~i.e., M (t) is the sum of the
squared displacements for one system in a time interv
@0,t#!. Like xU(t), xM(t) is proportional to the volume inte
gral of a correlation function of~in this case squared! particle
displacements.9,23 Both the displacement density fieldu(r ,t)
and squared-displacement density fieldm(r ,t) are dominated
by particles with large displacements.

To evaluate these quantities we use data obtained fro
molecular dynamics simulation of a model LJ glass-form
The system is a three-dimensional binary mixture (50:50)
500 particles interacting via LJ interaction parameters.24 We
analyze data from state points at seven different temperat
T approachingTc'0.592 from above25 at a constant density
r'1.3. ~In the remainder of this letter all values are quot
in reduced units.!24 All quantities presented here are eval
ated in theNVEensemble following equilibration of the sys
tem at each state point. Further simulation details may
found in Refs. 25, 26.

In Fig. 1~a! the susceptibilityx4(t) calculated via Eq.~5!
is shown as a function of time for different values ofT. As
found for a different LJ mixture in Ref. 19, for all T,x4(t) is
zero at short time and attains a small constant value at la
 to AIP copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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time, and has a maximum at some intermediate timet4* .
Both t4* and the amplitude of the peak,x4(t4* ), increase
strongly with decreasingT. At the lowest value ofT, the
amplitude ofx4(t) decreases, possibly due to finite size
fects or to the change in dynamics25 near Tc . The inset
shows the self-, distinct-, and cross-terms ofx4(t) for one
value ofT, and we see thatxSS is indeed the dominant term
Thus, x4(t) is dominated by the growing range of spat
correlations betweenlocalizedparticles in this fluid, andt4*
is the time when this correlation is strongest.22 In fact, sev-
eral authors have reported evidence of a growing length s
associated with solid-like behavior in dense fluids.27

Figure 1~b! showsxM(t) calculated from Eq.~10! as a
function of time for different values ofT. We find thatxM(t)
becomes negligable at small and large times and has a m
mum at some intermediate timetM* where the spatial corre
lation of squared particle displacements is strongest. T
behavior is similar to that exhibited byxU(t) calculated in
Ref. 9.

As shown in Fig. 2, bothx4(t4* ) and xM(tM* ) increase
strongly with decreasingT @with the exception ofx4(t4* ) at
the lowest temperature#. Over the limited temperature rang
of our simulations, both functions may be reasonably fit
by power-law functions (T2Tc)

2g with Tc50.592, with the
apparent exponentsg450.8060.07 andgM50.8760.05, as
shown in the figure.~In fitting the power law,Tc is held fixed
to the valueTc50.592 determined in previous work.!25 Of
course, precise determination of the functional form requ
simulations at lower temperatures and larger simulation
reduce any possible finite size effects expected due to
growing range of correlated particle motion and localizat
driving the growth ofxM(t) andx4(t).

FIG. 1. ~a! Time dependence of the susceptibilityx4(t) at various tempera-
tures as indicated in~b!. Inset: Self; distinct, and cross-terms ofx4(t) at T
50.62. ~b! Time-dependence of the ‘‘squared-displacement’’ susceptib
xM(t) at the same values ofT as in ~a!.
Downloaded 25 Apr 2001 to 129.6.154.32. Redistribution subject
-

le

xi-

is

d

s
to
he

Figures 3~a! and ~b! show theT-dependence oft4* and
tM* , respectively, and compare them with both the inve
self-diffusion coefficientD21 and the structural relaxation
time ta . @Here D is calculated from the mean-square d
placement for theB ~small! particles, andta is calculated by
fitting thea-relaxation part of the self-intermediate scatteri
function at the wave vector corresponding to the first peak

FIG. 2. Temperature dependence ofx4(t4* ) and xM(tM* ). The solid and
dashed lines are power law fits to the data as indicated~excluding the lowest
temperature!. The error bars are estimated from deviations between th
independent samples, where for each sample,x4(t) and xM(t) are calcu-
lated by averaging over 128 different time origins.

FIG. 3. ~a! Temperature dependence ofta and the timet4* at whichx4(t)
exhibits a maximum.~b! Temperature dependence of the inverse se
diffusion coefficientD and the timetM* at whichxM(t) exhibits a maximum.
The solid lines are power law fits tota andD21, respectively~excluding the
lowest temperature!, with Tc fixed. Insets: Comparison oft4* and tM* with
both D21 and ta . As plotted, a line of zero slope~dashed line! indicates
proportionality.
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the static structure factor for theA ~large! particles ~not
shown, see Ref. 25! by a stretched exponential function#
Also shown are power law fits toD21 andta excluding the
lowest temperature~see Ref. 25 for details!. Diffusion and
relaxation are found to be ‘‘decoupled’’ in this cold liquid, a
observed in many other real and simulated c
liquids.4,5,12,13,28In the present system, we find that withTc

50.592,gD51.1160.03, andgt51.4160.07. Remarkably,
we find29 that theT-dependence oft4* coincides within our
numerical error with that ofta , while tM* behaves likeD21.
That is, the time scale on which the localized particles
most spatially correlated22 scales with temperature like th
structural relaxation time, and the time scale on which
correlation between squared particle displacements is st
gest scales like the inverse diffusion coefficient. Thus,
data demonstrates that the ‘‘decoupling’’ of diffusion a
relaxation ~or viscosity! may be directly attributed to the
emergence of dynamical heterogeneity, as argued by,
Sillescu and co-workers,4 Ediger and co-workers,5

Stillinger,16 and Douglas.17

Our results demonstrate the importance of tim
dependent higher-order density correlation functions in
characterization of dynamical heterogeneity in supercoo
liquids, and the ramifications of this heterogeneity for t
bulk dynamics. In particular, the increasing amplitude of
generalized time-dependent susceptibilityx4(t) with de-
creasingT, as shown also in Ref. 19, demonstrates an es
tial difference between two- and four-point density corre
tion functions in these fluids. For a glass-forming LJ liqu
we have shown thatx4(t) is dominated by growing spatia
correlations between temporarily localized particles.22 Fi-
nally, we have demonstrated that the decoupling of diffus
and structural relaxation observed in supercooled liquids
lows naturally from dynamical heterogeneity, as discus
by many authors: the time scale for spatial correlations
localized particles to develop governs structural relaxati
while the~different! time scale for the development of spati
correlations of squared particle displacements governs d
sion. We note that it should be possible to determine
four-point functions studied here in colloidal suspensions
ing particle tracking methods.

We thank C. Donati, J. F. Douglas, S. Franz, R.
Mountain, G. Parisi, P. H. Poole, and F. Starr for valua
comments on the manuscript.
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