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Quantifying nonlinear anisotropic elastic material properties of biological tissue by use
of membrane inflation

Jeffrey E. Bischoff a*, Elizabeth S. Drexlerb, Andrew J. Slifkab and Christopher N. McCowanb

aZimmer, Inc., Warsaw, IN, USA; bMaterials Reliability Division, NIST, Boulder, CO, USA

(Received 6 March 2008; final version received 22 September 2008 )

Determination of material parameters for soft tissue frequently involves regression of material parameters for nonlinear,
anisotropic constitutive models against experimental data from heterogeneous tests. Here, parameter estimation based on
membrane inflation is considered. A four parameter nonlinear, anisotropic hyperelastic strain energy function was used to
model the material, in which the parameters are cast in terms of key response features. The experiment was simulated using
finite element (FE) analysis in order to predict the experimental measurements of pressure versus profile strain. Material
parameter regression was automated using inverse FE analysis; parameter values were updated by use of both local and
global techniques, and the ability of these techniques to efficiently converge to a best case was examined. This approach
provides a framework in which additional experimental data, including surface strain measurements or local structural
information, may be incorporated in order to quantify heterogeneous nonlinear material properties.

Keywords: cardiovascular; inflation; parameter regression; material optimisation

1. Introduction

The mechanical properties of many types of soft tissue

(e.g. cardiovascular tissue, tendon/ligament, skin) are

critically important to the physiological function of the

tissue. Cardiovascular tissue in particular is known to be

nonlinear and anisotropic (Humphrey 1995), and these

material characteristics, in addition to residual stress, have

been shown to impact the function of the tissue within the

circulatory system (Delfino et al. 1997). Similarly,

pathology of the tissues is frequently accompanied by

alteration of the mechanical properties due to structural

changes (Beattie et al. 1998), and thus quantification of

material properties can serve as a diagnostic tool. Because

cells within tissues are able to transduce a mechanical

signal into a cellular response, in vitro systems have been

used to explore the evolution of structure and material

properties in response to intermittent or sustained loading

(Gleason et al. 2007), where again quantification of

material properties plays a key role.

Several different modes of deformation have been used

to interrogate the nonlinear, anisotropic properties of

cardiovascular tissue including uniaxial/biaxial extension

(Dixon et al. 2003), suction/aspiration (Ohashi et al. 2005),

inflation (Humphrey et al. 1987; Hsu et al. 1994; Zhang

et al. 2005; Slifka et al. 2006; Drexler et al. 2007),

compression and indentation (Cox et al. 2006). Membrane

inflation has been used by numerous investigators, in

which mechanical loading is decoupled from specimen

gripping and the mechanical integrity of the tissue in the

region of interest is not compromised. Additionally, a

single test is sufficient for interrogating anisotropic

nonlinear properties because of the multiaxial loading

state and the body of strain data that can be measured.

On the other hand, extraction of useful results from the raw

data requires detailed analysis, including finite element

(FE) analysis, and therefore regression of material

parameters from resulting pressure versus deformation

data is more complex than from a homogeneous

deformation mode.

Because of the material complexity of cardiovascular

tissue, experimental data are most effectively reduced by

implementation of a suitable constitutive model whereby

the response is condensed to a discrete set of material

parameters. While nonlinear isotropic strain energy

functions have been used towards this end (Delfino et al.

1997), nonlinear anisotropic formulations are more

consistent with the tissue structure and have had good

success in capturing material data (Demiray and Vito

1991; Dixon et al. 2003; VanBavel et al. 2003). With such

models however, quantification of the material parameters

is not necessarily a straightforward exercise because of the

complexity of both the models and the experiment. Inverse

FE techniques have been used towards this end, whereby

values of the material parameters are varied from analysis

to analysis until a reasonable or best fit to the data is

realised. Various techniques for updating nonlinear
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material parameters for soft tissue characterisation have

been used, from manual iteration (Zhang et al. 2005) to

automated techniques using optimisation methods includ-

ing gradient-based approaches (Kyriacou and Humphrey

1997; Holzapfel et al. 2004; Erdemer et al. 2006; Lei and

Szeri 2007) and genetic algorithms (Nair et al. 2007).

A local best fit can be obtained using automated

techniques, but because of the complexity of the material

models, local optimisation approaches are critically

dependent on an initial guess for the values of the material

parameters. Global techniques, on the other hand, more

fully explore the parameter space, and thus allow greater

confidence that the final set of parameter values truly

represents the best fit. The drawback, however, is that

global exploration is much more computationally

expensive, particularly when dealing with data from

experimental tests that require FE analysis.

The goal of the work here was to explore the ability of

several optimisation approaches for quantifying the material

parameters of vascular tissue through regression against

membrane inflation test data. A computational model for the

test was developed in which the test metrics (pressure and

bubble profile stretch) were predicted by use of a nonlinear

anisotropic constitutive model that has been used with

success on soft tissue. Two different material optimisation

algorithms were used, including a local, gradient-based

technique (Levenberg–Marquardt) and a global technique.

Finally, the computational approach developed here was

applied to a set of data from rat pulmonary arteries, in order

to quantify parameters of the tissue.

2. Methods

This work is principally concerned with computational

modelling of inflation tests of anisotropic membranes (soft

tissue). The motivation derives from membrane inflation

tests on vasculature (Drexler et al. 2003, 2007; Slifka et al.

2006) that were conducted in order to quantify material

changes between health and disease (hypoxia).

The experimental protocol will be discussed briefly, with

appropriate primary references. The bulk of this section

will then be devoted to the mathematical analysis

including computational modelling, underlying constitu-

tive framework and optimisation algorithms.

2.1 Experimental setup

The experimental system has been described in detail

elsewhere (Drexler et al. 2003, 2007). A summary of the

setup will be given here, with reference to schematics

(including bubble test fixture and computer controlled

setup) in Figure 1. Vascular specimens were prepared by

excising arterial tissue, slicing the tissue axially to produce

a rectangular specimen, trimming connective tissue from

the adventitia, and then cutting a roughly 3 mm diameter

circular specimen. The specimen was clamped into the test

system using an O-ring, and then subjected to inflation.

Bubble shape during inflation was imaged using three

cameras plus a rotation stage to obtain images at 308

intervals. These intervals were used to determine the

orientation at which the bubble profile was maximised;

this orientation was reflective of overall material axis

alignment. Representative images of the inflated vessel,

taken from circumferential and longitudinal perspectives,

are shown in Figure 2, illustrating the anisotropy inherent

in the material and which is reflected in the deformed

profiles. From these images, deformed longitudinal (lL)

and circumferential (lC) lengths were measured. These

lengths were then used to calculate overall profile strains,

1L ¼ lnðlL=DÞ and 1C ¼ lnðlC=DÞ, where D ¼ 2.318 mm

is the diameter of the aperture in which the vessel is fixed

and therefore represents the undeformed profile length.

The uncertainty associated with this system has been

previously characterised (Drexler et al. 2007). Measures of

length (lL and lC), from which profile strains are

calculated, were determined to be accurate to within

0.058 mm, and pressure was accurate to within 0.195 kPa.

A representative result is shown in Figure 3, in terms

(a) (b)

Figure 1. Schematics of the experimental inflation setup. (a) Bubble test fixture. (b) Computer controlled system.

J.E. Bischoff et al.2
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of pressure versus profile strain (circumferential and

longitudinal). Note that Figure 3 includes the bounds on

these data as well, according to the previously mentioned

experimental accuracy of the pressure and length

measurements. The response is linear for modest

pressures/strains, but demonstrates sharp locking beha-

viour at larger pressures.

2.2 Computational framework

Simulation of the membrane inflation test is based on an

accurate representation of the material behaviour, as well

as of the boundary value problem. The mathematical

constitutive model and its implementation will be

described in a subsequent section; here, aspects of the

computational boundary value problem will be presented.

All model preparation and analyses were conducted

using Abaqus 6.7.1 Due to typical geometries of the tissues

of interest (thickness less than 0.2 mm, diameters based on

test setup of 2.318 mm), membrane conditions were

assumed. Accordingly, four node quadrilateral membrane

elements (M3D4) were used for all simulations. Nodal

displacements were fully constrained along membrane

edges, but the edges were allowed to freely rotate during

deformation. Note that this is a simplification of the edge

conditions in the experimental model, in which the tissue

extending beyond the aperture diameter is compressed

between the O-ring and fixture, and friction prevents slipping

of the tissue during pressurisation. This is therefore one of

several modelling assumptions invoked here (including

homogeneity of material properties and the governing

constitutive model), which could be reconsidered if model

results do not compare favourably against experimental data.

A uniform pressure loading was applied to one surface

of the membrane; a linear pressure versus time profile was

used, although time is fictitious in this case because an

elastic constitutive model is used. Prior to inflation, a small

perturbation was applied to the central node of the model

to initiate deformation and facilitate convergence under

subsequent pressure loading. A schematic of the FE model

(assuming quarter-plane symmetry) with boundary and

loading conditions is shown in Figure 4, along with a

representative result following pressurisation.

Profile strain was extracted from the simulations based

on the elemental deformations. In particular, given N

elements that are equally spaced along the longitudinal

and circumferential directions, and recalling the logarith-

mic strain 1i ¼ lnðliÞ (where 1i and li represent

logarithmic strain and stretch in a given element,

respectively), the overall profile stretch l is given by

l ¼
1

N

XN
i¼1

expð1iÞ:

Profile strain from the model was then calculated as

1 ¼ lnl:

Circumferential Longitudinal

lC lL
Crown

Edge

0.5 mm 0.5 mm

Figure 2. Representative images of inflation from circumferential and longitudinal viewpoints. Note definitions of bubble crown and
edge. The deformed profile lengths lC and lL are extracted from the images and used to calculate the profile stretches.

Figure 3. Representative data from bubble inflation tests on
vasculature, plotted as applied pressure versus profile strain.
Bounds on the data are also plotted, based on the experimental
accuracy of the pressure and profile length measurements. This
figure is available in colour online.
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In the absence of local measurements of strain, profile

strain can be measured experimentally and compared to

the model calculation above. In particular, the pressure

versus profile strain data measured experimentally were

compared to the pressure versus profile strain response of

the computational model.

Adequate mesh density was established by comparing

the pressure versus profile strain responses along each of

the two directions up to a pressure of 25 kPa, using a

representative set of parameters (Figure 5). Characteristic

element lengths used were r/3, r/6, r/12 and r/24, where

r ¼ 1:16 is the radius (in mm) of the inflation patch. There

is little change in system response when decreasing the

element length from r/12 to r/24, as reflected in the R2

values, and thus a characteristic length no larger than r/12

was used in all simulations here. Final meshes for quarter-

space models contained approximately 135 elements.

Misalignment between material axes and anatomical

(longitudinal/circumferential) axes was taken into account

by rotating material axes relative to the computational

model axes (assumed to align with the anatomical axes).

When these axes were aligned, or misaligned by a factor of

908, symmetry considerations allowed for simulation of a

quarter space model. For all other alignments, a full model

was required. It is expected that in general, material and

anatomic axes are coincident.

2.3 Constitutive model

A variety of membranous tissues including vasculature

(Holzapfel et al. 2000; Zhang et al. 2005), myocardium

(Humphrey et al. 1990) and skin (Fung 1993) are

considered to act as nonlinear anisotropic materials in

the continuum sense. Several nonlinear anisotropic

constitutive models have been proposed for capturing the

elastic response of vasculature in particular (Holzapfel

et al. 2000; Vito and Dixon 2003; Ohashi et al. 2005); here,

the orthotropic eight-chain model is used (Bischoff et al.

2002a) because of its demonstrated ability to capture the

nonlinear orthotropic response of a variety of soft tissues

including vasculature (Zhang et al. 2005; Drexler et al.

2007) using a small number of material parameters.

Vasculature is widely considered to possess ortho-

tropic material symmetry in which the material axes are

aligned with the radial, circumferential and longitudinal

material directions (Humphrey 1995; Holzapfel et al.

2000). Recent work treats the media and adventitia as

independent, fibre-reinforced composites, with the intima

contributing minimally to the overall material response

(Holzapfel et al. 2002). Here, the overall effect of the

alternating layers of the media is modelled using an

orthotropic hyperelastic material model (Bischoff et al.

2002a). While not able to resolve deformation variations

due to alternating classes of fibres, this work endeavours to

predict, in a global sense, the nonlinear orthotropic

material response.

y
xz

p

No displacement,
finite rotation

Symmetry BCs

Figure 4. Computational model setup with boundary and loading conditions (left) and representative model result following
pressurisation (right); contours reflect membrane displacement in the direction (z) of initial pressurisation. Available in colour online.

R2 = 1.0000

R2 = 0.9999

r /3
r /6
r /12
r /24

Figure 5. Effect of mesh refinement on the pressure–strain
response in the circumferential (red) and longitudinal (blue)
directions. The level of mesh resolution is specified by the
characteristic element length as a function of the overall patch
radius. R 2 values reflect the consistency of the r/12 response with
the r/24 response. Available in colour online.

J.E. Bischoff et al.4
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The orthotropic eight-chain model is adapted here for

several reasons:

(1) The original model is cast in terms of material

parameters a, b and c that represent the degree of

fibre alignment along each of the three material axes.

Thevalues of these parameters affect both the degree

of anisotropy as well as the locking stretch in the

tissue. In order to decouple these effects, the

parameter combinations P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c 2

p
=2,

A ¼ a=P, and B ¼ b=P are used here.

The parameters A and B represent in-plane chain

alignment relative to the through-thickness direction

and more clearly affect the in-plane anisotropy of the

material response; parameterP is directly associated

with the amount of crimp in the constituent fibres

and impacts the locking stretch of the material

without affecting in-plane anisotropy.

(2) The original model includes a material parameter n

that represents macromolecularchain density in units

of chain countper unit volume. The initial stiffness of

the model is directly correlated with nkQ where k is

Boltzmann’s constant andQ is absolute temperature.

This parameter is now termed E0 ¼ nkQ, with units

consistent with elastic modulus. Note that this

parameter is related to the initial modulus of the

material, but as the material model is orthotropic the

initial modulus is orientation-specific.

(3) The original model allowed for variable compressi-

bility through a nonlinear bulk modulus strain energy

term. Although for most loading scenarios tissue

behaves as an incompressible material, this model-

ling assumption is useful for computational

implementation. Here, since membrane analysis

will be used, strict incompressibility of thematerial is

enforced.

The governing equations for the constitutive model,

including the elasticity tensor and initial stiffness matrix,

are given in the Appendix.

The material model is thus characterised by four

material parameters, summarised as follows:

E0: Initial material stiffness

A: In-plane fibre alignment along material orientation a

B: In-plane fibre alignment along material orientation b
P: Locking stretch of a constituent fibre.

The impact of each of the four material parameters on

model response to uniaxial tension is shown in Figure 6(a).

The benefit of recasting the original model parameters in

terms ofE0,A,B andP is clearly seen here, as each parameter

has a largely uncoupled effect on uniaxial material response.

Computational implementation of the mathematical

model has been presented elsewhere (Bischoff et al.

2002b). Briefly, the model was incorporated into the

commercial FE code ABAQUS 6.7 via a user subroutine

that requires the first and second derivatives of the strain

energy function (W) with respect to strain (E), ›W=›E and

›2W=›E2, respectively. Though this model lends itself to

analytical differentiation of the strain energy function, as

shown in the Appendix, a more general, numerical

differentiation scheme has been incorporated that allows

for further expansion into inelastic material models

(Bergström et al. 2002; Bischoff et al. 2004).

The sensitivity of the membrane inflation test to the

material parameters is shown in Figure 6(b). The impact of

each of the parameters on material response is not decoupled

as for uniaxial deformation (Figure 6(a)). In particular,

altering the values of A and B affects the pressure–strain

relationship along both directions, although to different

degrees. The impact of adjusting E0 and P is consistent with

what is seen in uniaxial deformation.

Increasing A Increasing B Increasing P

x
y

Circ

Long

Strain

P
re

ss
ur

e

Strain

S
tr

es
s

(a)

(b)

Increasing E0

Figure 6. Sensitivity of the model response to the material parameters: (a) uniaxial deformation along the two in-plane material
directions (x and y); (b) membrane inflation, as reflected by applied pressure versus profile strain (circumferential and longitudinal). This
figure is available in colour online.
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2.4 Optimisation procedures

Accurate estimation of material parameters within structural

models such as the orthotropic model here is facilitated by

the clear relationship between each of the parameters and

important aspects of the mechanical response. As seen

previously (Figure 6), perturbation of each of the four

independent material parameters has a predictable effect on

model response to both basic modes of deformation

(uniaxial tension) and heterogeneous deformations (mem-

brane inflation). With this knowledge, trial and error

estimation of material parameters based on an experimental

data set can proceed fairly quickly; for example, an overall

stiffer response is obtained by increasing E0.

However, for convergence to a set of parameters that

provides a best fit in a quantitative sense, nonlinear

optimisation techniques can be used. Two approaches

were considered here: a gradient-based technique that is

restricted to optimising within a localised region of the

parameter space and is therefore highly dependent on the

initial values of the material parameters; and a global

technique that more fully explores the parameter space but

at the expense of increased computational cost.

2.4.1 Local optimisation

For convergence to a local best set of parameters, the

Levenberg–Marquardt algorithm (Press et al. 1992) has

been implemented within an inverse FE approach, as shown

schematically in Figure 7. This technique is predicated on a

reasonable initial guess of the parameter values. Results

from the first analysis were compared to the experimental

data. In this case, R-squared values were obtained from the

pressure versus strain response in each of the two principal

in-plane directions (R2
long and R2

circ) and summed,

R2
total ¼ R2

long þ R2
circ # 2:

If the fit meets a predefined threshold, or successive

iterations do not yield an improved fit, no subsequent

analyses are required. If the agreement between the model

and data is not suitable, the sensitivity of R2
long and R2

circ

with respect to each of the material parameters

(the vector of material parameters is denoted here as p)

must be evaluated, requiring an additional set of FE analyses

equal to the number of independent material parameters.

The gradient matrix 7R2 ¼ ›R2=›p is formulated,

where R2 ¼ R2
long R2

circ

h i
T
. The Hessian matrix H ¼

ð7R2ÞT·ð7R2Þ is then used to update the parameter vector,

pðnþ1Þ ¼ pðnÞ þ ðHþ aIÞ21 · ð7R2ÞT
1 2 R2

circ

1 2 R2
long

2
4

3
5;

where the value of the factor a is iterated to provide the best

next set of parameter values. Thus, an additional number

of FE simulations is required, depending on the approach for

determining a; each updated set of parameters requires at

least p þ 1 FE solutions of the boundary value problem.

Here, iterations continued until R2
total improved by less than

0.1%.

Python scripting language was used to govern the

inverse procedure, including driving the FE analysis

(generating appropriate input files and submitting jobs),

extracting relevant results from the FE output database,

and adjusting material parameters based on the Leven-

berg–Marquardt algorithm. Calculation of R2
total required

interpolating the model strain predictions to pressure

values for which data exist; interpolation and calculation

of R2
total were achieved using a Matlab script, which also

was driven by Python. Material parameters were initially

estimated by use of a small number of simulations in

which the values were updated sensibly based on the

anticipated behaviour (Figure 6). These values were the

starting points for the optimisation algorithm.

Determination of the starting values is a known critical

step in local optimisation. The benefit of using a

constitutive model in which the material parameters clearly

impact the system response in predictable ways is therefore

apparent, as it expedites the trial-and-error process of

estimating the initial parameters for the optimisation

process. Here, E0 can be adjusted to approximate the initial

stiffness of the response, A and B can be adjusted to

approximate the material anisotropy, and finally P can be

adjusted to approximate the locking stretch.

2.4.2 Global optimisation

For global optimisation, the commercial software HEEDS

(Red Cedar Technology, Inc., East Lansing, MI, USA) was

used. This software utilises the proprietary Sherpa

algorithm, which spans the parameter space while also

achieving local convergence in targeted regions.

The Sherpa algorithm provides updated parameter sets

Initialize
parameters

Solve BVP
using FEA

Evaluate
R2

Calculate
Jacobian

Stop

Update
parameters

Is R2

maximized?

Yes

No
n=1

n=pn≥1

Figure 7. Schematic for material parameter estimation by use of
inverse finite element analysis based on the Levenberg–
Marquardt algorithm. Shaded boxes indicate the number (n) of
FE analyses required at the corresponding step.

J.E. Bischoff et al.6
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based on previous analyses, while the software as a whole

interfaces with the various analysis tools including Abaqus

and the previously developed Python scripts. The solution

approach is shown schematically in Figure 8 in which the

Sherpa algorithm is illustrated as a ‘black box’. Only a

single FE analysis is required per iteration, but many

iterations are needed in order to establish confidence that a

global best fit was achieved. Here, the number of iterations

was set at 150. The global parameter space for exploration

was defined as follows: 0:8 # A # 1:8, 0:8 # B # 1:8,

1:5 # P # 2:5, 5 # E0 # 35 (A, B and P are unitless; E0

has dimensions of kPa). Continuous variation of these

parameters was not utilised during the optimisation

process; rather, parameter discretisation for A, B and P

was set at 0.01, and for E0 at 0.3 kPa.

2.4.3 Sequential optimisation

A third approach was also considered here, intended to

combine the strengths of both the Sherpa algorithm and

gradient-based techniques. Though the Sherpa algorithm is

stated to be a hybrid method that combines global and

local algorithms, it has been found that a local search

following completion of Sherpa improves the final quality

of fit. Additionally, inclusion of the local search ensures a

local best fit. Accordingly, the final parameter values from

the Sherpa process were used as the initial parameter

values for a local process. The resulting parameter

identification sequence is thus fully automated, and other

than user specification of the parameter domain and

optimisation controls (e.g. number of iterations), no trial-

and-error is required.

2.5 Parameter resolution

The result of the optimisation procedures described

above is a single set of material parameters that captures

the experimental data in an objective best sense.

However, it is important to understand that there is a

domain within the parameter space which includes the

optimised parameter set, and that will result in model

predictions that are equivalent within the uncertainty of

the experimental data. Parameter values cannot be

accurately quantified beyond this resolution in a mean-

ingful way.

Here, the resolution of the parameters was established

from a representative data set as follows. First, the

R-squared values for the upper and lower bounds of the data

set shown in Figure 3 were calculated, in both longitudinal

and circumferential directions. The difference between the

smallest of these values and unity was taken as the effect of

experimental accuracy on the R-squared values,

DR 2 ¼ 1 2 min R2
upper;long;R

2
lower;long;R

2
upper;circ;R

2
lower;circ

� �
:

Then, starting from the optimised set of parameters, each

parameter was varied (positively, then negatively) until the

R-squared value of the best fit in either direction was reduced

byDR 2. In particular,A,B andPwere varied in increments of

0.01, and E0 was varied in increments of 0.1 kPa. This

approach does not ensure that the model prediction falls

within the experimental uncertainty for all data points along

the loading curve, but rather determines individual parameter

sensitivities that have an overall effect commensurate with

the experimental uncertainty.

3. Results

Results here include general observations about the

response of anisotropic membranes to inflation, and the

use of computational modelling in conjunction with

experimental data to determine material parameters.

3.1 Anisotropic membrane inflation – general
observations

The goal of membrane inflation analysis is quantification

of material properties, presumed to be homogeneous. Data

from existing experiments include applied pressure and

bubble profile strains versus time. The initial set of results

here is designed to justify the use of these data for accurate

material parameter estimation.

Figure 9(a) shows the crown stress (circumferential)

versus pressure profiles for different values of the initial

stiffness E0. At small strains (low pressures), there is

no dependence of the stress–pressure relationship on

stiffness (or any other material property); however, this

is not true for nonlinear deformations (large pressures).

If the local curvature at large strains is measured at

the crown, stress can again be extracted as a function

of pressure without determination of material properties

Provide
parameter

ranges

Solve BVP
using FEA

Evaluate
R2 Stop

Sherpa: Update
parameters

Set number
of iterations
reached?

Yes

No
n=1

Figure 8. Schematic for global material parameter estimation
based on the Sherpa algorithm provided by HEEDS. Only a
single FE analysis is required per iteration, but a substantially
larger number of iterations is required to establish confidence in
the optimisation algorithm, represented by the green shaded box.
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by use of analytical techniques (Drexler et al. 2007).

Additionally, crown stress versus crown strain

(Figure 9(b)) presents sufficient information for resolution

of material parameters, but such data are predicated on

techniques being available for local measurement of

strain. Towards this end, noninvasive techniques exist for

measurement of local deformation that could be used

within the context of inflation, including digital image

correlation (DIC) based on applied speckle patterns

(Malcolm et al. 2002; Zhang et al. 2002; Sutton et al.

2008) or tagged magnetic resonance imaging (Augenstein

et al. 2005). Use of these systems on the crown would

yield both the local biaxial strain state and the local

curvature. The curvature and applied pressure would

provide the local stress state at the crown; image

correlation would provide the local strain state. Regression

of material parameters would then rely not on inverse FE

analysis of the entire boundary value problem, but rather

solely on homogeneous regression against local biaxial

stress versus strain data.

The bulk of the work here does not assume the

availability of local strain data for the pressurised vessel.

Though local curvature can be estimated from the

orthogonal bubble profiles, local strain cannot be

accurately measured from such profiles. Figure 10 shows

local normal strain (symbols) as a function of initial radial

location, using four different values of E0; an initial radial

location of 0 corresponds to the bubble crown (Figure 2),

whereas an initial radial location of r corresponds to the

bubble edge. Also shown (solid lines) is the overall profile

strain. These results demonstrate that there is variation of

local strain along the profile, deviating by over 17% from

the overall strain at some locations and by over 10%

specifically at the crown. Thus, profile strain can be an

unreliable estimate for local crown strain.

3.2 Determination of material parameters

3.2.1 Local approach

Topology of the parameter space is an important issue for

local optimisation algorithms including the Levenberg–

Marquardt method. Visualisation of the topology is

difficult for more than two independent parameters, but

snapshots are presented here in Figure 11 in the form of

contour plots of R2
total in reference to a characteristic

experimental data set. Unless otherwise indicated in

Figure 11, parameter values are as follows: E0 ¼ 13 kPa,

A ¼ 1.2, B ¼ 1.1 and P ¼ 1.7. The response surfaces are

seen to be smooth in nature, but do not demonstrate well-

defined peaks in R2
total. Because these images are just two-

dimensional snapshots, however, effects from the other

(a) (b)

Figure 9. Effect of initial material stiffness on bubble response at the crown: (a) crown stress versus pressure; (b) crown stress versus
crown strain. Available in colour online.

0 r
Initial position

r /2
0

1

0.5

S
tr

ai
n

E0 =100kPa

E0 = 50kPa

E0 =10kPa

E0 = 5kPa

Figure 10. Local strain as a function of initial radial position
(symbols) for different values of initial stiffness, as well as
overall profile strain (lines).

J.E. Bischoff et al.8
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parameters could lead to precise maxima. Local

optimisation can be used to more fully explore the

topology, starting from a variety of initial parameter sets.

Four separate sets of initial parameter values were used

to test the algorithm. Parameter values are summarised in

Table 1, as well as details about the convergence process

(including final parameter values). The pressure versus

strain predictions using the initial starting values are

indicated in Figure 12 (left), all demonstrating good fits

throughout the pressurisation, particularly in light of

experimental uncertainty and modelling assumptions.

Also shown in Figure 12 (right) is the difference between

the experimental strain and model strain as a function of

pressure, in order to draw out differences in the final model

predictions. As seen in this figure, the fits are qualitatively

different, under- or over-predicting during pressurisation,

but rarely missing the data by more than 5% strain. It can

thus be concluded that each set of initial parameter values

produces a local ‘best fit’ to the experimental data, all of

which may be sufficiently accurate in light of the test

configuration and overall modelling framework. However,

because of the extreme sensitivity of the final result on the

initial set of parameters, an overall best-fit can only be

obtained by sampling many different sets of parameters.

3.2.2 Global approach

Results from a representative global optimisation process

are shown in Figures 13 and 14. The progression of the

overall uncertainty estimates (R2
long, R2

circ and R2
total) is

shown in Figure 13; the progression of the material

parameters is shown in Figure 14. Progression of each of

the material parameters is plotted over the pre-defined

range of the respective parameter. For this particular data

set, an initial optimisation run predicted the value of P to

lie on the lower edge of the parameter domain (P ¼ 1:5).

For this reason, the domain was reset from 1:5 # P # 2:5
to 1:0 # P # 2:0, and the optimisation performed again;

results from this run are shown in the figures. Increasing

the allowable number of iterations (150) would be justified

if the final best-fit was not yet satisfactory. However, both

the uncertainty estimate (R2
total ¼ 1:995) and the apparent

quality of the best fit (Figure 13, inset) suggest that

continued iterations are not justified.

Taken together, these preliminary results using local

and global approaches motivate a process that establishes

confidence that the parameter domain is satisfactorily

explored while ensuring that material parameters are

accurately resolved. In particular, the global approach is

initially used to hone in on a subdomain within the

parameter space in which a best fit is anticipated; a local

approach is then used to drive the solution to the best set of

parameters in that subdomain. Results from this approach

will be presented in the next section.

3.3 Comparison to experimental data

Figure 15 shows experimental inflation data from the right

pulmonary artery (n ¼ 6), left pulmonary artery (n ¼ 7),

and arterial trunk (n ¼ 7) of normotensive rats, as well as

the model fits. All model results were obtained by use of

the global optimisation described previously followed

Table 1. Summary of initial and final parameter values used during four distinct local optimisation runs.

Initial parameter values Following local optimisation

A B P E0 (kPa) A B P E0 (kPa) N R2
total

Init1 1.10 1.00 1.60 13.0 1.16 1.06 1.68 12.88 3 1.950
Init2 1.30 1.10 1.60 10.0 1.14 1.06 1.58 9.91 11 1.974
Init3 1.20 1.10 1.70 15.0 1.46 1.36 2.42 14.86 11 1.974
Init4 1.30 1.20 1.80 13.0 1.34 1.24 2.02 12.88 6 1.984

Also included are the number of optimisation iterations (N) and the final quality of fit (R2
total).

B A A

1.8

1.6

P

Constant A Constant B Constant P

R2
total

1.8

1.6

P

1.2

1

B

1.21 1.31.1 1.31.1

Figure 11. Two-dimensional snapshots of the topology of the parameter space. Available in colour online.
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by a local optimisation process; the local process was

initialised with the parameter values obtained during the

global search. The quality of agreement between model

and data can be seen when viewed section by section;

when viewed together (lower right pane), trends in the

mechanical response between sections can be seen. In

particular, the left pulmonary artery is visibly the most

compliant of the three sections. It is difficult to distinguish

the locking behaviour or the degree of anisotropy between

the samples. Examination of the material parameters from

the constitutive model is useful for these purposes.

The first group of columns in Table 2 summarises the

measured thicknesses (t), the values of the material

parameters (A, B, P, E0) following the global optimisation

routine, and the accuracy of the fits (R2
total). Among the 20

samples, the value of one parameter for two samples

(parameter P for T3, parameter E0 for R5) settled on the

edge of the parameter domain used. For these samples, an

additional set of 150 optimisation iterations was conducted

with an altered parameter domain (from 1:5 # P # 2:5 to

1:0 # P # 2:0 for T3; from 5 # E0 # 35 to 20 # E0 #

50 for R5; other parameter ranges unchanged), to ensure

the parameter domain did not impose an artificial and

impactful constraint on the process. The results from these

iterations are shown in the table. Also note that excellent

Figure 12. Final predictions resulting from local optimisation based on four different sets of initial parameter values. (left) Pressure
versus strain data (symbols) and model fits (lines); (right) difference in strain (experimental strain–model strain) versus pressure.
Different parameter sets are indicated with different line styles. Available in colour online.

Figure 13. Progression of the solution during a globaloptimisation
run as reflected in R 2. Symbols indicate iterations at which a new
best-fit was found. Optimisation was predefined to run for 150
iterations. (Inset) Final fit (data: symbols; model predictions: solid
lines) to the pressure versus strain data. Available in colour online.

Figure 14. Evolution of material parameters corresponding to
the solution progression shown in Figure 12. Ordinate axis ranges
are dictated by the allowable range of the corresponding material
parameter during optimisation. Because an earlier optimisation
run had predicted the optimal value of P to be on the lower edge
of the domain (1.5), the domain for P was reset (1 , P , 2) and
the optimisation was performed again. Optimised values for the
other parameters are in the interior of their respective domains.

J.E. Bischoff et al.10
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agreement was obtained for all data sets, as the worst-case

fit (T6, R2
total ¼ 1:952) is still quite good. This process was

followed with a local optimisation routine for each sample,

using the best case from the global optimisation as the

starting point. Results from this process are also shown in

Table 2, in the right group of columns. As expected, the

local routine always resulted in a better fit to the

experimental data. Note that results for the sample (L2)

used to generate the results previously shown in Table 1

are better than the results obtained using solely local

techniques, suggesting that the initial global search is an

effective method for identifying the parameter subdomain.

Charts of the averaged parameter values from the

combined global/local process are shown in Figure 16, along

with thickness and an effective membrane stiffness (E0·t).

The membrane stiffness is termed ‘effective’ for several

reasons. First, to be rigorous the anisotropy of the material

must be considered when evaluating membrane stiffness.

Secondly, the true initial stiffness from the material model

should be used, which is proportional to E0·t but dependent

on other factors as well (see Appendix). However, the

quantity used here is a simple way for taking into account

both geometric and material effects. Figure 16 illustrates the

consistency among sections of the parameters A, B and P.

More significant trends are seen for E0, and even more so

for membrane stiffness E0·t. These results indicate that the

left pulmonary artery is the most compliant section of the

vessel, consistent with trends noted from Figure 15, and

additionally that this effect is due primarily to material

differences, not geometric differences.

3.4 Parameter resolution

The R 2 values associated with the upper and lower bounds

on the experimental data shown in Figure 3 are as follows:

R2
upper; long ¼ 0:9857, R2

lower; long ¼ 0:9804, R2
upper; circ ¼

0:9885 and R2
lower;circ ¼ 0:9853. The acceptable reduction

in the quality of the fit when quantifying resolution of the

parameters is therefore DR 2 ¼ 0:02.

Right Left

Trunk

Figure 15. Experimental inflation data (symbols) and model fits (lines) from the right pulmonary artery (upper left), left pulmonary
artery (upper right), and arterial trunk (lower left) of rats. (Lower right) All results are plotted together for direct visual comparison.
Available in colour online.
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Table 2. Summary of results following global optimisation, and following a subsequent local optimisation.

ID t

Following global optimisation Following global and local optimisation

A B P E0 R2
total A B P E0 R2

total

Left
L1 0.1695 1.06 1.21 2.18 10.7 1.978 1.01 1.41 2.33 10.7 1.986
L2 0.1514 1.32 1.26 1.98 15.8 1.987 1.32 1.24 1.97 15.8 1.987
L3 0.1168 1.43 1.11 1.79 13.4 1.981 1.29 1.02 1.60 13.4 1.983
L4 0.1422 1.45 1.23 1.98 13.4 1.994 1.31 1.16 1.78 13.4 1.997
L5 0.0875 1.28 1.31 1.86 20.0 1.959 1.39 1.15 1.83 20.0 1.995
L6 0.1547 1.16 1.25 1.89 12.8 1.962 1.33 1.26 2.05 12.8 1.971
L7 0.1573 1.22 1.26 1.92 13.4 1.992 1.31 1.27 2.02 13.3 1.997
Avg (SD) 0.140 (0.028) 1.27 (0.14) 1.23 (0.06) 1.94 (0.12) 14.2 (3.0) 1.979 (0.014) 1.28 (0.12) 1.22 (0.12) 1.94 (0.23) 14.2 (3.0) 1.988 (0.009)

Right
R1 0.0827 1.19 1.20 2.03 30.8 1.968 1.36 1.13 2.13 30.8 1.981
R2 0.1180 1.29 1.20 2.18 23.3 1.973 1.23 1.30 2.24 23.3 1.985
R3 0.1780 1.43 1.02 1.96 12.5 1.974 1.43 1.07 2.01 12.5 1.978
R4 0.1299 1.35 1.36 2.04 26.9 1.992 1.40 1.28 2.01 26.9 1.995
R5 0.0688 1.19 1.26 1.99 38.9 1.986 1.11 1.35 2.01 38.9 1.992
R6 0.0859 1.28 1.01 1.53 31.7 1.995 1.29 1.04 1.56 31.7 1.996
Avg (SD) 0.111 (0.040) 1.29 (0.09) 1.18 (0.14) 1.96 (0.22) 27.4 (9.0) 1.981 (0.011) 1.30 (0.12) 1.20 (0.13) 1.99 (0.23) 27.4 (9.0) 1.988 (0.008)

Trunk
T1 0.1255 1.25 1.28 2.05 23.0 1.971 1.35 0.93 1.78 22.9 1.976
T2 0.2620 1.41 1.34 2.01 14.0 1.968 1.56 1.25 2.06 13.9 1.982
T3 0.1600 1.37 1.00 1.53 16.4 1.997 1.36 1.00 1.53 16.4 1.997
T4 0.1930 1.00 1.25 1.73 13.1 1.972 1.27 1.25 2.01 13.1 1.991
T5 0.1340 1.22 1.21 1.80 21.2 1.980 1.22 1.21 1.80 21.2 1.981
T6 0.1475 1.64 1.07 2.15 32.9 1.952 1.66 1.12 2.11 32.9 1.956
T7 0.1247 1.40 1.05 1.64 27.8 1.986 1.51 1.10 1.76 27.8 1.991
Avg (SD) 0.164 (0.049) 1.33 (0.20) 1.17 (0.13) 1.84 (0.23) 21.2 (7.4) 1.975 (0.014) 1.42 (0.16) 1.12 (0.12) 1.86 (0.21) 21.2 (7.4) 1.982 (0.014)

Results include final parameter values and overall quality of fit. Also included are the measured vessel thicknesses (t). Values are dimensionless except thickness (mm) and initial stiffness E0 (kPa).
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Sample L5 (Table 2) was selected as the sample data

set to quantify the resolution of the material parameters;

these data were previously shown in Figure 3 and were

used to establish the experimental uncertainty.

The resulting bounds on the material parameters are as

follows, with the previously determined best fit values

indicated parenthetically:

1:32 # Að1:39Þ # 1:45 1:08 # Bð1:15Þ # 1:21

1:77 # Pð1:83Þ # 1:91

17:4 kPa # E0ð20:0 kPaÞ # 23:0 kPa

Note that these bounds are roughly symmetric, and thus

the fitted parameters can be conservatively expressed as

A ¼ 1:39 ^ 0:07, B ¼ 1:15 ^ 0:07, P ¼ 1:83 ^ 0:08 and

E0 ¼ 20:0 ^ 3:0 kPa. These results indicate that the level

of discretisation of the parameters that was predefined for

the optimisation (0.1 for A, B and P, and 0.3 kPa for E0)

was sufficient for accurate parameter estimation. These

results also suggest that though the quality of fit is

improved in an absolute sense when the global search is

followed with local optimisation (Table 2), the effect of the

local process on the parameter values and the quality of fit

is not significant when considering the experimental

uncertainty.

To further explore the issue of global convergence and

parameter uniqueness, again using sample L5 as a test

case, the global search process was repeated using a larger

number of iterations (1000). The objective of the search

remained the same, namely maximising the value of R2
total.

However, a domain for acceptable fits was predefined and

all parameter combinations that achieved this quality of fit

were preserved. Recognising that the best case for L5 had

R-squared values of R2
total ¼ 1:995 (Table 2), R2

long ¼ 0:999

and R2
circ ¼ 0:996 (not previously reported), and allowing

for a tolerance on R2
long and R2

circ of DR 2 ¼ 0:02, all

parameter sets that generated fits in which R2
long $ 0:979

and R2
circ $ 0:976 were deemed acceptable.

Results from this analysis are shown in Figure 17,

represented as a parallel plot in which parameters and R 2

values for a given simulation are threaded together. Each

unique thread represents an acceptable result from the

optimisation process; a total of 243 threads are presented.

By design, the R 2 values for each thread meet the specified

tolerances. Parameter components of the threads are

plotted according to the domain of the parameter space; R 2

values are plotted over the acceptable range. In addition to

the threads, the best-case results from the initial global

search (filled blue circles), the best-case results from the

expanded search utilising 1000 iterations (solid blue line),

and the resolution of the material parameters from the

previous univariate approach (blue diamonds) are plotted.

4. Discussion

The goal of this study was to establish the computational

formalism for estimating material parameters of nonlinear

anisotropic soft tissue, including vasculature, by use of

membrane inflation. This entails selection of an appro-

priate constitutive model, development of a computational

model for the physical experiment, and use of inverse FE

procedures for regressing material parameters against

Figure 16. Optimisation results grouped by sample source
(R: right pulmonary artery; L: left pulmonary artery; T: arterial
trunk). Also included is the sample thickness (t) and effective
membrane stiffness (E0·t).

A B P E0

1.8 1.8 2.5 35 1 1

0.8 0.8 1.5 5 0.979 0.976

R2
circR2

long

Figure 17. Parallel plot of all parameter sets that achieved
agreement with the data (L5) within the experimental accuracy.
Lower bounds on the R-squared values represent the minimum
threshold values; bounds on the material parameters are as
indicated in the figure, and represent the domain of the parameter
space. Filled blue circles represent values for the best fit
following the initial global search; solid blue line represents
values for the best fit following the expanded global search; and
blue diamonds represent range of parameter values determined
using previous univariate approach. Available in colour online.
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experimental data. A full statistical analysis of optimis-

ation results, both on the healthy tissue summarised here

and on hypoxic tissue, and implications on the

biomechanics of the vessel, are reported in a companion

paper (Drexler et al. 2008). Subject to the assumption of

homogeneous material properties, several structural

material models are available in the literature, which in

general require fewer material parameters than phenom-

enological models and behave physiologically over a wide

range of deformation states. Additionally, orientation of

the constituent fibres in such models can be derived from

histological information (Holzapfel et al. 2002). Here, the

four parameter model of Bischoff et al. (2002a), with

parameters that correlate directly with anisotropy,

nonlinearity and initial stiffness of the material response,

was used.

Membrane inflation is a useful methodology for

measuring constitutive information for anisotropic soft

tissue, and as shown here, is conducive to inverse FE

analysis for material parameter regression. While not

homogeneous, the experiment can be simulated by use of a

small FE model (Figure 4). For simulation of the entire

domain, less than 500 elements were required, and for

those tests in which the material axes aligned with the

recorded profile strains, the model size was further

reduced. All analyses here assumed pressure and profile

strain to be the experimental data; parameter regression

would be affected by inclusion of other data, including

structural information through histology as well as local

(crown) strains through DIC. Two-dimensional DIC has

been used historically to quantify heterogeneous strain

fields in cardiovascular tissue undergoing planar (2D)

deformations (Beattie et al. 1998; Zhang et al. 2002), but

2D DIC does not lend itself well to curved surfaces. More

recently, the methodology was advanced to enable

measurement of heterogeneous, out-of-plane deformations

on fully 3D specimens (Sutton et al. 2008). This technique

could be applied to measure the local strain in the tissue

during membrane inflation, and therefore relax the need to

use global measures of strain. These techniques would be

particularly relevant if assuming material homogeneity

was not sufficient, for example when dealing with local

altered mechanical properties due to atherosclerosis.

In cases of material heterogeneity, when local strain

data are available using 2D or 3D DIC and material

parameters must therefore be determined locally, the

procedure outlined and incorporated here can be easily

adapted. The FE model can be set up in a similar fashion,

but rather than extracting profile strain to regress

parameters, predictions of strain across the bubble surface

can be used. Inclusion of these data will significantly

compound the computational analysis, however. When

using a local (gradient-based) optimisation routine, in

which the number of FE simulations required per iteration

is on the order of the number of free parameters, allowance

for heterogeneity would cost on the order of hundreds of

simulations per iteration. For a global routine, the number

of distinct parameter sets required to confidently explore

the parameter space would similarly be quite large. Thus,

determination of local material properties through other

means, such as histology, would result in significant

savings computationally.

Several different approaches were used here for

parametric regression, including local and global optim-

isation. Local optimisation is limited because of the

complex topology of the parameter space (Figure 11).

Accurate fits were obtained by use of different initial

parameter values (Figure 12), but a unique set of

parameters was not converged upon; this result might be

anticipated from the effects that material parameter

perturbation has on the measured pressure versus strain

results (Figure 6(b)). There is thus important sensitivity of

model predictions on the initial parameter values, which

can later impact statistical analysis of the results. This

sensitivity could be mediated by reducing the number of

free parameters (for example, fixing the value of E0) –

however, realisation of a unique solution in this case could

be compromised by a lesser quality of fit.

Global optimisation techniques in general do not rely

on an initial guess, but do require a large number of

simulations in order to have confidence that the parameter

space is fully explored. Within the context of the

membrane inflation boundary value problem, in which a

single iteration is not too computationally demanding, an

increased number of simulations for global optimisation is

not unwieldy. For this reason, global optimisation was

used to estimate parameter values for data obtained from

sections of rat vasculature, and the results are able to

quantify differences seen qualitatively in the experimental

data (Figure 16). However, as a consequence of using this

global approach, a ‘best-fit’ solution cannot be guaranteed

because the global parameter space is never completely

explored. By allowing for more iterations per data set, the

parameter space would necessarily be more fully

interrogated and therefore confidence in the final

parameter set would be increased. Here, 150 iterations

were permitted; this was deemed sufficient because there

were rarely significant changes in the values of the best-fit

parameters, relative to the resolution of the parameters,

beyond approximately 100 iterations. Additionally, the

quality of the fits, as reflected in the R2
total values, was quite

good across data sets. Invoking a local optimisation

process after the global search generated better fits across

all data sets (Table 2), but in all cases the improvement in

R2
total did not exceed the estimated uncertainty in the raw

data. Thus, in practice this local search is not justified.

Taking into account the complexity of the response

surface, the computational cost of a single FE analysis of

membrane inflation, the overall quality of fit that can be

obtained with the orthotropic hyperelastic model used

J.E. Bischoff et al.14
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here, and the uncertainty in the experimental data, this

study suggests that material parameters can be estimated

most efficiently using global optimisation, in this case the

Sherpa algorithm. Confidence in the uniqueness of the final

parameter set will increase with the number of iterations

performed, but cannot be guaranteed in an absolute sense

because of the nonlinear nature of the problem. Inclusion

of data from additional modes of deformation, such as

planar biaxial deformation, could also be used to increase

confidence in the converged material parameters, in

addition to establishing the predictive capabilities of

the mathematical model. Acquisition of such data is beyond

the scope of this study, but should be considered in

future work.

Uniqueness of material parameters is a key issue within

any parametric regression process, and can be difficult to

address conclusively as computational and experimental

models increase in complexity. Several steps here, applied to

a representative data set (L5), suggest that the optimisation

path utilised here, in conjunction with the material model and

experimental data sets, gives rise to a unique set of

parameters within a margin of uncertainty. In particular, by

perturbing each parameter systematically until the exper-

imental uncertainty was exceeded (termed here the

univariate approach, as coupling between parameters is not

considered), and by performing a global search with an

increased number of iterations (termed here the multivariate

approach), the resolution of the material parameters was

roughly quantified. The global search (Figure 17) produced

acceptable parameter sets that were outside the bounds

established through the univariate approach. This is likely a

reflection of coupling between the parameters in terms of the

system response. In any case, the absolute thresholds in

parameter resolution from the global search, permitting 1000

iterations as compared to 150 iterations in the earlier

analysis, are generally no more than a factor of two greater

than from the systematic search, with better agreement

obtained for parameters A and E0. More importantly, the

threads suggest that there is a single connected domain

within the parameter space that yields adequate results. Thus,

the domain can be considered unique, with an objective best

fit lying within that domain.

There are several limitations to the work here,

associated with the choice of material model and

experimental data set. Inelastic material response,

particularly time-dependency (viscoelasticity), is not

represented in the experimental data and therefore not

included in the constitutive model. Additionally, both the

experimental measurements and modelling approach

assume material homogeneity. Finally, material testing

and computational modelling both assume an initial state

that lacks residual stress, whereas physiological pres-

tresses are known to exist in cardiovascular tissue. More

complex measurement techniques can be used to draw out

each of these effects, and therefore motivate use of more

advanced material models; the coupling between data and

model could then proceed as presented here, namely by

examining parameter sensitivity, selecting an optimisation

approach and performing the inverse analysis.

In summary, a protocol for global optimisation of

material parameters from a four parameter nonlinear

anisotropic constitutive model using inverse FE analysis

based on membrane inflation has been established. This

procedure has been applied to a baseline set of

experimental data, and can be used to quantify differences

in mechanical response due to disease, sample location, or

other variables. With this framework in place, expansion

to include additional experimental data (local surface

strain or histology) or more complex constitutive models

(such as viscoelasticity) can be achieved in order to more

fully understand vessel biomechanics.
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Appendix

The constitutive model is a mathematical representation of
the tissue structure idealisation shown (in two dimensions) in
Figure A1. Original derivation of the model can be found
elsewhere (Bischoff et al. 2002a); here, it is reformulated in
terms of a different set of independent material parameters that
each have a clearer effect on the predicted material response
(Figure 3).

The strain energy function for the material is given by

W ¼W0 þ
E0

4
P 2
X4

i¼1

r ðiÞ

P 2
b ðiÞ þ ln

b ðiÞ

sinhb ðiÞ

� �"

2
bP

P
ln lA

2P 2

a lB
2P 2

b lC
2P 2

c

 !#
;

where r ðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðiÞT·C·PðiÞ

p
, la ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT·C·a

p
, lb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bT·C·b

p
,

lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cT·C·c

p
, b ðiÞ ¼ L21 r ðiÞ=P 2

� �
, and C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 2 A 2 2 B 2

p
.

The second PK stress tensor S ¼ ›W=›E is

S ¼
E0

4

X4

i¼1

PðiÞ^PðiÞ

r ðiÞ
b ðiÞ

� �"

2bPP
A 2

l2
a

a^aþ
B 2

l2
b

b^bþ
C 2

l2
c

c^c

 !#
:

The elasticity tensor H ¼ ›2W=›E2 is

H¼
E0

4

X4

i¼1

1

r ðiÞ
� �

3
r ðiÞ ›b

›r

����
r¼r ið Þ

 !
2b ðiÞ

" #
PðiÞ^PðiÞ^PðiÞ^PðiÞ

 !

þ
E0bPP

2

A 2

l4
a

a^a^a^aþ
B 2

l4
b

b^b^b^bþ
C 2

l4
c

c^c^c^c

� �
;

where

›b

›r
¼

1

P 2
1 2 coth2bþ

1

b 2

� �21

:

The elasticity tensor at zero deformation reduces to

H0¼E0P
0 A 4a^a^a^aþB 4b^b^b^bþC 4c^c^c^c
	 


þ
E0bPP

2
A 2a^a^a^aþB 2b^b^b^bþC 2c^c^c^c
	 


þE0P
0A 2B 2 a^a^b^bþb^b^a^aþa^b^ b^aþa^bð Þ½

þb^a^ a^bþb^að Þ�þE0P
0A 2C 2 a^a^c^cþc^c^a^a½

þa^c^ c^aþa^cð Þþc^a^ a^cþc^að Þ�

þE0P
0B 2C 2 b^b^c^cþc^c^b^bþb^c^ c^bþb^cð Þ½

þc^b^ b^cþc^bð Þ�;

where

P 0 ;
P

16
P
›b

›r

����
r¼P

2bP

 !
:

This fourth-order tensorial equation can be cast in terms of a two-
dimensional stiffness matrix in the (a, b, c) coordinate system,

H ¼ E0

P 0A 4 þ bPP
2
A 2 P 0A 2B 2 P 0A 2C 2 0 0 0

P 0A 2B 2 P 0B 4 þ bPP
2
B 2 P 0B 2C 2 0 0 0

P 0A 2C 2 P 0B 2C 2 P 0C 4 þ bPP
2
C 2 0 0 0

0 0 0 P 0A 2B 2 0 0

0 0 0 0 P 0A 2C 2 0

0 0 0 0 0 P 0B 2C 2

2
666666666664

3
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:
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Figure A1. Two-dimensional representation of the structural
basis for the orthotropic constitutive model used here. Parameters
A and B reflect fibre alignment along the circumferential and
longitudinal directions, respectively; P reflects the amount of
fibre crimp; and E0 reflects the initial stiffness of the unit cell.
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