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Molecular-dynamics and Monte Carlo simulations have been used to compute the crystal-melt interface
stress �f� in a model Lennard-Jones �LJ� binary alloy system, as well as for elemental Si and Ni modeled by
many-body Stillinger-Weber and embedded-atom-method �EAM� potentials, respectively. For the LJ alloys the
interface stress in the �100� orientation was found to be negative and the f vs composition behavior exhibits a
slight negative deviation from linearity. For Stillinger-Weber Si, a positive interface stress was found for both
�100� and �111� interfaces: f100= �380±30� mJ/m2 and f111= �300±10� mJ/m2. The Si �100� and �111� interface
stresses are roughly 80 and 65% of the value of the interfacial free energy ���, respectively. In EAM Ni we
obtained f100= �22±74� mJ/m2, which is an order of magnitude lower than �. A qualitative explanation for the
trends in f is discussed.
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I. INTRODUCTION

For fluid-fluid or fluid-vacuum systems the reversible
work required to form a unit area of interface is given by the
interfacial free energy �. An additional work term must be
considered for interfaces where one or both phases is solid
�1–3�. The quantity Afijd�ij represents the reversible work
required to elastically stretch an interface of area A. The 2
�2 tensor f ij is known as the surface �or interface� stress and
�ij is the surface strain. In a Lagrangian reference frame the
interface stress is related to the interfacial free energy by the
relation f ij =��ij +�� /��ij �where �ij is the Kronecker delta�.
For interfaces that display a threefold or higher axis of sym-
metry, the interface stress reduces to a scalar denoted as f .

In recent years several phenomena in which surface stress
plays a pivotal role have been identified. Examples include
surface reconstruction �4�, the initial compressive stress dur-
ing Volmer-Weber growth of thin films �5–8�, warping and
curling of free standing thin films �9�, stabilization of small
quantum-dot islands in heteroepitaxial growth �10–12�, cur-
vature and residual stress in multilayer films �7�, plastic
yielding �13� and structural phase transformations �14� in Au
nanowires, nucleation in binary mixtures of hard spherical
colloids �15�, misfit dislocation generation in epitaxial thin
films �16�, and formation of stress-domain patterns on crys-
talline surfaces �17–20�.

For crystal-vacuum and crystal-crystal interfaces, values
of the interface stress for several systems have been reported.
Atomistic simulations using first-principles techniques �e.g.,

Refs. �21–26�� and empirical potentials �e.g., Refs. �27–29��
have yielded the surface stress for a number of metal and
insulating surfaces, whereas the interface stress has been
measured from curvature experiments on various multilayer
thin film systems �30–34�. In the case of crystal-liquid inter-
faces, however, very little is known. Using molecular dy-
namics �MD� simulation, Broughton and Gilmer �35� inte-
grated the pressure profiles across the crystal-melt interface
in the Lennard-Jones �LJ� system and found f =−0.8±0.1 �in
reduced LJ units� for the �111� interface and f =0.0±0.1 for
�100�. In a detailed study of the structure and properties of
the crystal-melt interface in the hard sphere system, David-
chack and Laird �36� reported the following values for the
interface stress: f111=−0.71±0.13 and f100=−0.17±0.06.
The results from these model systems are noteworthy for two
reasons. First, in contrast to most computations of solid-
vacuum surface stresses, f is negative. A negative stress im-
plies the interface is in a state of compression and the
crystal-melt system can lower its interfacial free energy by
stretching the interface. Second, for the �111� crystal face the
absolute value of f is quite large. For LJ the magnitude of
f111 is greater than twice the interfacial free energy ��
�0.35 �37–39�� and in the hard sphere system f111 is roughly
15% higher than � �40�. The hard sphere and LJ systems are
characterized by central force pair potentials and it is unclear
whether the observed trends in f will hold for more realistic,
many-body potentials.

In a recent MD study of a binary LJ alloy, Becker et al.
�41� computed the orientationally averaged solid-liquid free
energy as the temperature and composition were varied along
the two-phase region of the lens-type phase diagram. They
noted significant deviation from a linear interpolation of �
between the pure species. In addition the authors demon-
strated that the variation with composition of the fourfold
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and sixfold anisotropy parameters was strong enough to in-
duce changes in dendrite tip orientations. Given the impor-
tant effects of concentration on the interfacial free energy, it
is of interest to investigate whether solute partitioning and
the equilibrium concentration profile across the crystal-melt
interface significantly affect the interface stress. Thus, the
purpose of the present work is twofold. First, we employ
atomistic simulations to examine the variation of f with al-
loying additions for the same LJ system studied by Becker
et al. Second, we extend the interface stress computations to
two additional interatomic potential schemes: the three-body
potential developed by Stillinger and Weber �42� to model Si
and a multibody embedded atom potential for pure Ni �43�.

II. NUMERICAL PROCEDURES

An extensive survey of phase equilibria in binary LJ al-
loys has been performed by Hitchcock and Hall �44�. In their
notation a given alloy is specified by two ratios: �=�11/�22
and �=�11/�22 where �ii denotes the energy of interaction
and �ii is the atomic size of species i. The cross-species
interactions are given by the Lorentz-Berthelot mixing rules,
that is, �12=��11�22 and �12= ��11+�22� /2. In this work, as in
the study of Ref. �41�, we choose �=1, meaning the two
atomic species have the same bond length, and �=0.75.

In order to compare solid-liquid interface properties with
previous studies, an interatomic potential truncation scheme
introduced by Broughton and Gilmer �37� was used for all
the LJ simulations. The phase diagram for the �=1,�=0.75
LJ system is shown in Fig. 1, where T is the temperature in
LJ units and x2 is the concentration of species 2. As de-
scribed in more detail in Ref. �45�, the phase-diagram results
were obtained employing thermodynamic integration meth-
ods based on the use of canonical and semi-grand-canonical
Monte Carlo �MC� simulations �46�. Aside from a shift in the
temperature scale arising from the use of a different
potential-truncation scheme, the results plotted in Fig. 1
agree very well with those published for the same system by
Hitchcock and Hall.

To compute interface stresses for the Lennard-Jones al-
loys use was made of Monte Carlo simulations for systems
containing coexisting solid and liquid phases separated by
�100�-oriented crystal-melt interfaces. The technique for
equilibrating these solid-liquid systems followed closely the
procedure discussed in detail in Ref. �45�. Specifically, simu-

lation cells were created from pure-solid samples measuring
7�7�22 unit cells, where the latter dimension is the direc-
tion normal to the solid-liquid interface. Half of the system
was melted and the dimensions and composition in the simu-
lation cell adjusted to give rise to a system containing
roughly equal volume fractions of solid and liquid phases
with compositions and volumes given from the phase-
diagram calculations at zero pressure. All systems were
equilibrated in semi-grand-canonical MC simulations for at
least 2�106 MC steps per atom, employing both atom-
displacement and type-swap moves, with the imposed
chemical-potential difference fixed at the coexistence values
derived from the thermodynamic-integration calculations. In
these equilibration runs the cross-sectional area parallel to
the interfaces was held fixed at the value given by the zero-
pressure lattice parameter of the crystal phase, while the pe-
riodic length normal to the interfaces was set to give the
correct volumes �phase fractions� of solid and liquid. After
equilibration, stress profiles and interface-stress values were
derived from MC simulations lasting between 107 to 108

Monte Carlo steps, employing both atom-displacement and
type-swap moves holding all periodic lengths fixed. For the
purpose of deriving statistical uncertainties, these simula-
tions were divided into between 90 and 190 independent
subaverages. In the next section, results are presented show-
ing stress profiles across the crystal-melt interfaces. These
results were derived employing a filtering scheme as follows.
Snapshots from the MC simulations were divided into bins
parallel to the interface and the instantaneous stress compo-
nents in each bin derived from the usual virial expressions;
the resulting stress profiles were then “smoothed” using a
Gaussian finite-impulse-response �FIR� filtering scheme as in
Refs. �36,45�, and the resulting smoothed profiles where then
averaged over snapshots. The values of the filtering param-
eters employed in this analysis were the same as those used
to compute density profiles in Ref. �45�.

For elemental silicon, crystal-melt interface stress values
were obtained by employing molecular-dynamics simula-
tions based on the three-body potential developed by Still-
inger and Weber �42�. Initially a bulk Si crystal was prepared
and equilibrated at a temperature just below the known melt-
ing point for the potential �47–50� �TM =1678 K� at zero
pressure. A system with the same cross-sectional area A was
melted, equilibrated at TM and brought in contact with the
crystal. The resulting two-phase cell was then equilibrated
for 500 ps in the NAPzzT ensemble, where z refers to the
direction normal to the crystal-melt boundary. In the final
equilibration step, as in the coexistence technique described
in Ref. �50�, the system will approach the bulk melting tem-
perature. Although the z dimension was allowed to vary �un-
der zero imposed stress� during the equilibration, it was
found to be convenient to periodically scale the normal di-
mension in order to achieve a very low value of the zz pres-
sure. Statistics for the interface stress were collected every
100 MD time steps �1 time step=1 fs� in an NVE ensemble;
statistically independent stress values, used to compute the
uncertainties on f , were derived every 500 time steps. Two
interface orientations for Si were investigated. The �111� cell
contained a total of 59250 atoms and the �100� geometry
consisted of 72 900 atoms.
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FIG. 1. The temperature-composition �x2� phase diagram for the
�=0.75, �=1 LJ alloy.
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Molecular-dynamics simulations of pure Ni utilized the
embedded atom method interatomic potential developed by
Foiles, Baskes, and Daw �43� for which the melting tempera-
ture �1710 K� is well established �51�. A cell dimension of
20�20�40 unit cells �64 000 atoms� with a �100� orienta-
tion was employed. After melting one half of the simulation
cell at an elevated temperature, the system was equilibrated
using an NAPzzT ensemble. Statistics for the interface stress
were collected every 20 ps �time step=2 fs� in an NVE
ensemble.

III. RESULTS

In calculations of the surface stress �i.e., the surface ten-
sion� for liquid-vapor surfaces the following expression is
commonly employed �see e.g., Ref. �52��:

f =
1

2
�

0

Lz

�P��z� − P��z��dz , �1�

where P� and P� are the normal and transverse components
of the virial pressure, the integral is performed over the en-
tire length of the system Lz, and the factor of 1 /2 accounts
for the presence of two surfaces in periodic simulation cells.
For interface simulations containing at least one crystalline
phase, Eq. �1� is not strictly valid due to the nonhydrostatic
nature of the stress tensor in a crystal. Nevertheless, Eq. �1�
can be used to derive an accurate estimate of f provided that
the so-called crystal stress �36� is very small. The crystal
stress is obtained by integrating �P��z�− P��z�� over the
bulk-crystalline region of the simulation cell, and it repre-
sents the residual nonhydrostatic component of the stress re-
maining in the solid after equilibration of the two-phase sys-
tem. �We note that for each of the systems considered in this
work care was taken to equilibrate the simulations to achieve
as low a value of the normal stress as possible, and, thus Eq.
�1� reduces in this case to an integral of −P��z� normal to the
interfaces.�

The upper panel of Fig. 2 shows the quantity P�− P� in
reduced units of �22/�22

3 versus the z position normal to the
interface for the LJ binary system. Six temperatures, corre-
sponding to the six alloy phase boundaries in Fig. 1, are
depicted. The two large negative spikes in the data occur at
the positions of the two crystal-melt interfaces and the area
contained within these peaks represents the interface stress.
The relatively flat portions of the P�− P� curves located in
the middle of the system, i.e., in the vicinity of z=20, corre-
spond to the residual crystal stress referred to above. Values
of the crystal stress are small relative to the sharp peaks at
the interfaces; nevertheless, in order to observe subtle
changes in f with composition, the crystal stress contribution
has been subtracted in the results to follow. Finally, in the
outside portions of the system, which represent the liquid
phase, the pressure difference P�− P� is nearly zero as ex-
pected.

The bottom panel of Fig. 2 plots P� �=Pzz� versus z po-
sition. In a well equilibrated MD system the normal compo-
nent of the pressure should be zero, and as is shown in Fig.
2 the normal pressure is indeed quite low. We do, however,

observe a nonuniform behavior of Pzz in the vicinity of the
interface for all temperatures. A similar trend is apparent in
the stress profiles reported for hard spheres by Davidchack
and Laird �36�, although the nonuniform nature of the Pzz
profiles is less pronounced in their results, relative to the
present work. The nonconstant normal pressure likely arises
due to atomic structure changes in the vicinity of the inter-
face, and may be somewhat amplified by the choice of filter-
ing parameters which were not optimized specifically to
smooth these profiles. Overall, the amplitudes of the varia-
tions in Pzz are relatively small and the integrals of these
profiles over z are nearly zero.

Figure 3 shows the �100� interface stress in units of
�22/�22

2 versus the alloy composition x2, where the error bars
represent estimated standard statistical uncertainties. The
dashed line in the figure is constructed by assuming the in-
terface stress is a composition-weighted average of the two
pure systems �the slope of the line is fixed by the parameter
�=�11/�22=0.75�. The data of Fig. 3 suggest a negative de-
viation from the ideal mixing line; however, the magnitude
of the deviation is difficult to assess precisely due to the
considerable scatter and relatively large statistical uncertain-
ties associated with the simulation data. It is interesting to
note, however, that the interfacial free energy for this LJ
binary alloy exhibits the opposite trend, i.e., a positive de-
viation from linearity. For the four temperatures where both
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FIG. 2. Top: the normal pressure minus the transverse pressure
in units of �22/�22

3 vs the distance normal to the crystal-melt inter-
face. Data for six temperatures, corresponding to the six composi-
tions shown in Fig. 1, are shown. The large negative peaks occur at
the positions of the two interfaces in the periodic cell. Bottom: the
normal pressure Pzz vs position along the z direction.
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the interface stress f and the interfacial free energy � �Ref.
�41�� were calculated for the �100� interfaces �T=0.479,
0.5025, 0.539, and 0.603�, the magnitudes of the ratio of f /�
are in the range of 0.24 to 0.53.

It is noteworthy that the dashed line in Fig. 3 leads to a
prediction for the value of f100 for the pure element �given by
x2=1� which is approximately equal to −0.19 in LJ units.
Due to the fact that this estimate is based on an extroplation
of data that shows a clear deviation from linearity, the uncer-
tainties in this value are relatively high. However, it is clear
that the data in Fig. 3 suggests a pure-element value for f100
which is considerably larger in magnitude than the estimate
of f100=0.0±0.1 reported by Broughton and Gilmer �35�.
This apparent discrepancy may reflect higher than reported
uncertainties in their calculated stresses due the smaller sys-
tems and more limited statistics available to the authors in
this early work. We note that the sign and appreciable mag-
nitude of f100 estimated from the previous calculations is
qualitatively similar to the results for the hard-sphere system
�36�. Using the current estimate of f100�−0.19, the magni-
tudes of f /� for the pure elements are consistent with those
of the alloys reported in the previous paragraph.

As mentioned in the Introduction, a striking feature of the
crystal-melt interface stresses in the LJ and hard-sphere sys-
tems is the large negative values reported, particularly for
�111�-oriented interfaces. A possible, qualitative explanation
for the f �0 result is as follows. In the LJ and hard-sphere
models the density of the liquid is less than that of the crys-
tal, meaning the average interatomic spacing is larger in the
liquid phase. When the liquid with a smaller packing fraction
is placed in contact with a more closely packed solid a com-
pressive stress �f �0� at the interface results as the less dense
liquid tends to stretch the interface. This simplistic picture of
the interface stress is supported by the fact that the more
close-packed �111� interface stress is more negative than f100
for both LJ and hard-sphere systems �35,36�.

To further test this qualitative explanation for the ob-
served behavior of f in the LJ system, consider the case of

Si. Here the density in the liquid is higher than that of the
crystal and thus one would expect the sign of f to be re-
versed. For the Stillinger-Weber system we obtain a �100�
crystal-melt interface stress of f100= �380±30� mJ/m2,
whereas for the �111� orientation we find f111
= �300±10� mJ/m2. These values were not corrected for the
crystal stress, the contribution of which was estimated to be
roughly equivalent to the uncertainty, i.e., �10 mJ/m2. It is
instructive to compare the interface stress with the interfacial
free energy. Maximum undercooling nucleation experiments
have produced three estimates of � for Si: Stiffler et al. �53�
reported a value of �=340 mJ/m2 at a temperature of T
=1180 K, Shao and Spaepen �54� found �=355 mJ/m2 at
1335 K and Liu et al. �55� obtained �=400 mJ/m2 at
1335 K. Ujihara et al. �56� proposed a model for the tem-
perature dependence of the solid-liquid interfacial free en-
ergy that agrees well with the experimental results; the au-
thors find �=463 mJ/m2 at the melting point. Thus, the
relative magnitudes of the �100� interface stress and � for Si
are similar to those found in LJ, but positive. Also, the �111�
interface stress for Si is positive, but the ratio f /� is smaller
in magnitude than the LJ result. However, the comparison in
the case of �111� is complicated by the fact that in Si the
�111� crystal-melt interface is faceted rather than rough �47�.

The LJ interaction energy is of the pair-potential type,
meaning the energy of an atom depends only on the distance
of separation of all of its neighbors. In order to capture the
tetrahedral bonding of the diamond cubic structure, the
Stillinger-Weber potential employs a three-body term that
depends on the angles and interatomic distances in triplets of
Si atoms. In contrast, the embedded atom method model of
interatomic bonding in a metallic system incorporates multi-
body effects through a term that depends nonlinearly on the
local electron density. For many bulk and surface properties
in metals the multibody form of the EAM represents a sig-
nificant improvement over pair-potential schemes �57�. For
example, the correct sign of the change in surface interlayer
spacing for several late transition metals is captured using
the EAM formalism �58�. In light of the qualitative discus-
sion of f presented above, it is of interest to predict how the
EAM model will alter the sign and magnitude of the crystal-
melt interface stress. In pure Ni the density of the liquid is
less than the solid and, from the point of view of the quali-
tative argument offered above it might be expected that as in
the case of the LJ system, the crystal-melt interface will be
able to lower its free energy by stretching. On the other hand,
the EAM form for the interatomic potential is known to give
rise to shorter, more stiff, bonds in lower-density configura-
tions �57�. Thus, from this standpoint it might be expected
that the EAM multibody terms give rise to a tensile compo-
nent to the interface stress. If these competing compressive
and tensile effects are of comparable magnitude, a very low
value of f may result. Indeed, for EAM Ni in the �100�
orientation we find f = �22±74� mJ/m2, a value that is over a
factor of ten lower than the interfacial free energy ��
=285 mJ/m2� computed from the capillary fluctuation
method �51,59�.

IV. DISCUSSION

As noted by Spaepen �7� the interface stress in multilayer
thin films is usually large and negative. For example, in
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FIG. 3. Crystal-melt interface stress for the �=0.75, �=1 LJ
alloy vs the composition x2. The dashed line represents a linear
interpolation of the stresses for the two pure components.
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�111� textured Ag/Cu films f = �−3190±430� mJ/m2 �31�
and for �111� textured Ag/Ni films two values of f
have been reported: f = �−2270±670� mJ/m2 �30� and
f = �−2240±210� mJ/m2 �32�. However, an EAM atomistic
study by Gumbsch and Daw �28� has found a positive
f =320 mJ/m2 for both systems. Given the sensitivity of the
magnitude and sign of the interface stress on the details of
the interatomic potential as found in this study, the discrep-
ancy between experiment and the EAM result is perhaps not
surprising. In particular, the Gumbsch and Daw study em-
ployed an alloy interaction that was derived from a mixing
rule �43� for the repulsive part of the pure component poten-
tials. It would be of interest to repeat the calculation of in-
terface stress in these systems using an interatomic potential
that is fit directly to alloy properties.

Jiang et al. �60� have proposed a phenomenological
model for the interface stress by examining the elastic strain
imposed on a small solid immersed in a fluid of the same
composition and defining a small particle diameter D0 where
the sphere becomes indistinguishable from the fluid. In terms
of an atomic diameter h the quantity D0 for a sphere can be
approximated as D0=3h. The final expression obtained by
the authors is given by

f = ± ��3�0D0�/�8���1/2, �2�

where �0 refers to the solid-liquid interfacial free energy for
an infinitely large particle and � is the compressibility of the
solid. Although a negative f is predicted for the case of
multilayer films, consistent with experimental findings, the
interface stress appears to be positive for crystal-melt sys-
tems. Therefore, the model is unable to explain the f �0
results found for both the hard sphere and LJ systems. In
addition, Eq. �2� overestimates the magnitude of the interface
stress. The authors note that the predicted f is roughly one
order of magnitude higher than �, but the results for
Stillinger-Weber Si show that f is at most 0.82� whereas the
MD prediction for EAM Ni demonstrates that the interface
stress is an order of magnitude less than �, and the prediction
for Lennard-Jones depends on orientation and composition
with f no more than approximately twice � �35�. Finally,
Jiang et al. apply their model to the case of solid-vacuum
interfaces and obtain reasonable agreement with computed
values of f . However, direct application of the crystal-melt
model in Eq. �2� to the case of crystal-vacuum surfaces relies
on the assumption that the fluid has no effect on the surface
strain of solids. The MD results suggest that the fluid plays a
dominant role in setting the strain at the crystal surface and
we propose that the density difference between solid and
liquid gives rise to the negative f values seen in pair poten-
tial models.

For nonzero values of f , it has been shown �61� from a
continuum elasticity analysis of an unstressed crystal that the
interface is morphologically unstable for fluctuations with
wavelengths below some critical size. However, as pointed
out by Grilhe, if the interface stress is of the same order or
smaller than the interfacial free energy, as is observed here,
the critical wavelength becomes on the order of a few atomic
spacings and at this small length scale the validity of the
continuum approximation breaks down. In the capillary fluc-
tuation analysis of the LJ system �41� we have observed no
contribution of the roughness due to stretching of the inter-
face and we conclude that the interface stress contribution to
the interface morphology must be small relative to capillary
fluctuations.

V. CONCLUSIONS

The crystal-melt interface stress in the �100� orientation is
found to be negative for a series of LJ alloys. In addition, the
f vs x2 behavior exhibits a slight negative deviation from a
linear extrapolation of the two pure systems. The LJ results
stand in stark contrast to the interface stresses computed for
Stillinger-Weber Si. In Si, f100 and f111, when normalized by
the interfacial free energy �, are similar in magnitude to the
LJ alloy system, but are positive. We propose that the change
in the sign of f can be qualitatively understood by the differ-
ent sign associated with the density change on melting in the
LJ versus Stillinger-Weber Si systems. For LJ, with a lower
density liquid, the fluid phase imparts a tensile strain on the
crystal �f �0�, whereas in Si the liquid density is higher than
that of the crystal and the opposite trend is observed. In
EAM Ni, the tendency of the less-dense liquid to stretch the
crystal surface is offset by the increased bond strength result-
ing from the density dependent interaction energy. Hence the
�100� interface stress in Ni is over an order of magnitude less
than �.
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