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This paper describes an analysis technique that integrates high-resolution topographical imaging and
rigorous matrix-based three-dimensional characterization methods. We employ scanning confocal
laser microscopy to obtain topographic images of the surface of an aluminum alloy subjected to
various levels of uniaxial plastic strain. These images are discretized into a square array of pixels,
each of which is then assigned a numerical value corresponding to the deviation of surface height
relative to an averaged background. The result is a set of real, non-Hermitian n�n matrices, which
are diagonalized to produce a collection of spectra, each of which consists of n complex
eigenvalues. These eigenvalue spectra are observed to change systematically as the degree of plastic
strain is varied. Because this approach is based solely on the behavior of the eigenvalue spectra, it
eliminates the need for the a priori assumptions about surface character used in conventional
topographic analyses. The information contained within an eigenvalue spectrum is distilled into a
scalar measure of topographic disorder, referred to as the “spectral entropy.” The spectral entropy is
observed to decrease monotonically with increasing plastic strain. This behavior is consistent with
the observed topographical changes induced by plastic strain. In addition, the spectral entropy can
be decomposed into a constant term that is independent of all spatial correlations that occur in the
surface roughness and a term that incorporates these correlations at all levels of complexity.

INTRODUCTION

A plastically deformed free surface is a complex three-
dimensional structure. It is, therefore, essential that such a
structure be characterized in three dimensions to maximize
the fidelity with the original topography. However, analysis
of these highly complex topographies presents a significant
challenge because many of the accepted two-dimensional ap-
proaches and analytical tools do not straightforwardly trans-
late to a three-dimensional format.1 This is particularly true
for spatial characterizations of surface roughness.

Topographic analysis of rough surfaces incorporates as-
pects of geometry and multivariate statistics. The statistical
aspect typically involves data condensation via a variety of
projection and ensemble-averaging techniques. The principal
requirement for these analyses is that the property of trans-
lationally invariant statistics �i.e., statistical stationarity or
spatial homogeneity� exists. In this context, the translational
invariance condition ensures that all the statistical properties,
such as n-point surface height correlation functions, are in-
variant with respect to the location of the origin on the sur-
face. More generally, this implies that a change in the loca-
tion of a measurement does not affect the information
contained within that measurement. A violation of this sta-
tionarity condition directly disputes the validity of the fun-
damental postulate that serves as the basis for all surface
roughness analyses, namely, that a surface profile is repre-
sentative of the intrinsic character of the overall surface. If
this principle does not hold, then a roughness profile or any
other surface statistical measure cannot reflect any inherent

property of the surface from which it was taken, thereby
implying that the commonly used methods to interpret sur-
face roughness are not meaningful. It is generally recognized
that the assumption of translationally invariant statistics is
only approximately valid for rough surfaces, and that, in gen-
eral, it must break down for systems that are too small or for
correlation functions of sufficiently high order.2 The exis-
tence of translational invariance is almost always tacitly as-
sumed since most statistical characterizations of surface
roughness utilize conventional time series analysis methods
to some degree. While this assumption of statistical station-
arity allows for a straightforward mathematical analysis, the
literature does not provide a firm foundation to support such
an ansatz. In fact, the literature clearly shows that the appro-
priate statistical tools must be determined by the character of
the surface.3 The statistical character of the surface can usu-
ally be determined with a classification scheme such as the
one put forth by Nayak.4

The geometric aspect of surface roughness analysis typi-
cally involves smoothing or interpolation between neighbor-
ing measurement locations as a precursor to fitting a height
profile to some analytic function. It is known that this pro-
cess introduces short-range or high frequency artifacts into
the mathematical expressions used to represent the original
surface and depending on how the original surface is
sampled, this interpolation could have a significant influence
on the accuracy of the analysis.5,6 Another geometric aspect
of surface topography involves pattern recognition in a noisy
environment.7,8 For example, one might postulate the exis-
tence of a correlation between linelike surface features and
grain boundaries. An appropriate filter or algorithm is thena�Electronic mail: stoudt@nist.gov
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applied to the image matrix in order to emphasize or enhance
this type of feature. Thus, analysis techniques that minimize
the significance of implicit or ad hoc statistical and geometri-
cal assumptions �i.e., do not depend on the existence of sta-
tionarity, the interpolation of topographical data, or postu-
lates about pattern recognition� are needed in order to
improve the fidelity of the analysis of the measurement with
respect to the original surface.

This work explores the efficacy of a representation-
independent, noninterpolated measurement protocol that
does not require the assumption of stationarity or the use of
projected statistical quantities such as linear profiles. Further-
more, this technique does not incorporate the mathematical
artifacts usually encountered in the description of finite-sized
systems, such as boundary discontinuities or periodic ex-
trapolations. The foundation of this protocol is a set of real-
valued, non-Hermitian or nonsymmetric numeric matrices
derived from topographic images of the surface of an alumi-
num alloy that is subjected to various levels of uniaxial plas-
tic strain.9 The images were obtained through high-resolution
scanning laser confocal microscopy �SLCM�. The topogra-
phies were digitized and then transformed into square arrays
of numerical values that directly correspond to measured sur-
face heights. These matrices were then diagonalized to pro-
duce a collection of spectra, each of which consisted of n
complex eigenvalues, where n is the rank of the transformed
image matrix. Such eigenvalue spectra are commonly em-
ployed for pattern recognition algorithms.10

We observed a systematic correspondence between the
changes in the eigenvalue spectra and the magnitude of the
plastic strain associated with the image matrix. When the
spatial correlations existing in the individual image matrices
were destroyed by a randomization operation, the eigenval-
ues migrated towards the interior of a disc centered at the
origin in the complex plane. Moreover, the radius of this disc
closely corresponded to the standard deviation of the surface
height probability density function ���. The standard devia-
tion of the surface height probability density function ���
also defines the root mean squared �rms� surface roughness
�Rq�, which is a universal mean roughness parameter used
throughout the surface roughness literature.11 This result is in
close accord with Geman’s12 asymptotic theorem on the
spectral radius of large, non-Gaussian, random matrices.
Based on the high degree of conformity with this theorem,
we hypothesize that certain changes in the eigenvalue spectra
are due to changes in the spatial correlations within the to-
pographies induced by the plastic strain. We will validate this
hypothesis through numerical analyses and visual compari-
sons of the eigenvalue spectra associated with various strain
states.

METALLIC SURFACE TOPOGRAPHY AND MATRICES

Aluminum alloy AA6022 in the T4 heat treatment was
selected for this study because this alloy demonstrates good
overall formability, it is commercially available, and the me-
chanical properties of this alloy in this condition are of par-
ticular interest to the automotive community. Metallographic
examination revealed that the grain size ranged between ap-

proximately 10 and 90 �m. A single flat-sheet, tensile speci-
men was punched from 1.0 mm thick sheet stock with the
tensile axis in a parallel orientation to the sheet rolling direc-
tion. The gauge section was mechanically polished to a
1 �m diamond finish using standard metallographic
practice13 and electropolished in perchloric acid to produce a
strain-free surface. The tensile specimen was pulled itera-
tively in uniaxial tension to four nominal true plastic strain
levels: 1%, 4%, 8%, and 12%. The specimen was strained at
a constant crosshead displacement rate of 1.0 mm/s using a
closed loop-controlled universal tensile machine. The speci-
men was removed from the grips for analysis after each de-
sired strain level was achieved.

The changes in the surface morphology were quantified
by examination in the SLCM. All of the SLCM images in
this analysis were created with a 635 nm laser source. Typi-
cal imaging conditions consisted of a 10� objective lens and
a nominal total z-scan depth of approximately 20 �m. These
parameters generated a 640 pixel�512 pixel intensity image
with 12 bit resolution �i.e., 4096 sampling levels�. The cor-
responding nominal physical dimensions �x, y, z� of these
images were 1000�800�20 �m3. The spacing between
sampling points in the x, y planes was 1.56 �m, and the
spacing between the individual focal planes within each im-
age was approximately 100 nm.

Topographic maps were generated from the intensity im-
ages with the controlling software. The SLCM stores topo-
graphic image data as a raw depth map in tagged image file
format �TIFF� with each output file containing the full set of
binary pixel values and the imaging parameters. A computer
code that utilizes the TIFF image standards was developed to
convert the individual bit values stored in the image file into
a numeric matrix of surface height values. This matrix was
then trimmed to a square 512�512 form. The height matri-
ces were corrected for offset effects produced by specimen
tilt or other mechanical influences. This “leveling” operation
was performed by first computing the optimal multiple re-
gression equation for the Euclidean plane of the image and
then subtracting each point from the planar regression. The
Euclidean leveling operation produced a matrix A having
elements ai,j such that �i,jai,j =0. Thus, an immediate conse-
quence of leveling is that the Euclidean or Frobenius matrix
norm of this array ��A�� is directly related to Rq by14,15

�1

n
�A�� = Rq, �1a�

such that

�A� = ��
i,j

�ai,j�2	1/2
�1b�

and

ai,j � A , �1c�

with

�
i,j

ai,j = 0, �1d�

where n is the rank �e.g., 512� of the matrix A. Furthermore,
it follows from elementary matrix algebra that the spectral
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radius of the matrix ��1/n�A� or the magnitude �modulus� of
the largest eigenvalue of that matrix, �max, satisfies the
inequality14,15

�max of the matrix�1

n
A� � Rq. �2�

With the exception of trivial examples, this upper bound is
weak and certainly not useful in surface analysis. However, it
is also well known that if each of the elements of A are
chosen independently from a single, zero-mean, or centered
Gaussian distribution having the width Rq, then the following
asymptotic equality holds:16

lim
n→�

�max� 1

n

A� � Rq. �3�

In addition, it is known that the eigenvalues of ��1/
n�A�
tend to be uniformly distributed within the interior of a disc
centered at the origin in the complex plane, and that the
radius of this disc approaches Rq as n tends to infinity. What
is not so well known is that it has been proven by Geman12

that the asymptotic equality shown as Eq. �3� holds even for
non-Gaussian distributions of matrix elements, provided that
certain constraints on the higher moments of these distribu-
tions are satisfied. Given these rather abstract mathematical
facts, along with certain conclusions gleaned from past and
current studies of rough metallic surfaces, we infer that the
concomitant patterns of eigenvalues are useful in the topo-
graphic analysis of such surfaces for the following three rea-
sons: �1� A previous study of the height distributions of the
surface of a steel alloy subjected to various intensities of
strain indicated that these distributions were only approxi-
mately Gaussian.17 As will be shown in the following sec-
tion, this approximate Gaussian character also holds for the
strained aluminum alloy in this study. Therefore, Geman’s
argument that Eq. �3� should be valid for “pseudo” as well as
for “pure” Gaussian distributions has practical significance
for surface roughness analysis. �2� The word “single” used in
reference to the Gaussian distribution from which the ele-
ments used for Eq. �3� are selected implies statistical station-
arity, so numerical conformity to these predictions can be
used as a test of this important property. Therefore, it is not
necessary to postulate the property of stationary statistics
a priori. �3� Choosing elements “independently” from a
single Gaussian distribution ensures the absence of any spa-
tial correlations. Thus, analyzing the deviations from the pre-
diction of Eq. �3� in conjunction with the deviations of the
entire eigenvalue spectrum from a uniform distribution en-
closed by a disc of radius Rq establishes a tool for probing
surface height correlations of arbitrary complexity. That is, it
is not necessary to restrict the analysis to correlations of low
order, such as those at the two or three point level. Stated
more generally, these eigenvalue spectra serve as minimally
biased “fingerprints” that are independent of implicit or ad
hoc statistical or geometric assumptions, as well as being
independent of any particular mathematical form, i.e., eigen-
vector representation, chosen to characterize the surface to-
pography.

MOMENTS OF THE HEIGHT DISTRIBUTION AND
SURFACE AREA

Figure 1 shows the topographies of the aluminum alloy
at the four levels of uniaxial plastic strain. The lighter re-
gions correspond to elevations relative to the average level
plane, while the darker features correspond to depressions.
Note that the height correlations tend to be more prominent
at the higher strain levels. Surface height probability density
profiles for the four levels of strain are presented in Fig. 2.
Note that the height distributions are approximately Gaussian
in shape, and that they exhibit a pronounced broadening with
increasing strain.

The first four statistical moments of the height distribu-
tions are given in Table I. The values shown were calculated
directly from the normalized frequency histograms consist-
ing of all 262 144 elements in the image matrix; i.e., every
element of A is sampled and included in each calculation. As
expected, the surface means are effectively zero; hence, a
matrix norm algorithm based on Eq. �1� can be used to cal-
culate the standard deviation �i.e., Rq�. Note that Rq grows
monotonically with increasing strain, and that the third mo-
ments are small and negative so that, in general, valleys of a
given depth are slightly more probable than peaks of that
same height. In accordance with a previous study,17 the nor-
malized fourth moments are quite a bit larger than the Gauss-
ian value of 3 for low strain levels and narrow probability
distributions, which implies that under these conditions sur-
face roughness is composed of artifacts introduced by the
polishing and etching operations. However, these moments
appear to approach the Gaussian value at the highest strains.
For this reason, we hypothesize that this approximate confor-
mity to the central limit theorem of statistics reflects the
emergence of multiple independent deformation components
�e.g., primary slip, secondary slip, grain rotation, etc.� at high
strain levels.17

The estimated surface area values, relative to a perfectly
flat plane, were computed via a pixel-based code that tessel-
lates the surface with triangles, each having various orienta-
tions with respect to the planar normal.18 While the surface
areas shown in Table I are resolution-dependent quantities,
they do not vary at low strains and they increase moderately
at high strain.

EIGENVALUE SPECTRA AND SPATIAL
CORRELATIONS

As a concrete illustration of the general method outlined
in the previous section, Fig. 3 shows all 512 “normalized”
complex eigenvalues of the image matrix A, i.e.,
����1/
n�A�� for the four degrees of uniaxial plastic strain.
A careful inspection of the numeric data indicates the follow-
ing: �a� no two eigenvalues are identical; �b� no eigenvalue is
purely imaginary or zero; and �c� the largest eigenvalues tend
to be real. Note that the eigenvalues appear in complex con-
jugate pairs, and that there is a clear correlation between
strain intensity and the location of the largest eigenvalues.
Furthermore, as shown in Table II, the magnitude of the larg-
est eigenvalue �max �i.e., the spectral radius� always exceeds
the standard deviation of the height distribution, � �column
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five in Table I�. Therefore, the relationship shown in Eq. �3�
is not satisfied. It can be demonstrated that the spatial corre-
lations between elements within the image matrix are re-
sponsible for this discrepancy by implementing a code that
divides A into submatrices of size 2m�2m �where m ranges
from 3 to 9�. This code then randomly permutes, or
scrambles, all of the elements contained within each subma-
trix. The effects of progressive scrambling on the spectra for
the 1% and 12% strain states are presented in Figs. 4 and 5
and in Table III. The solid oval lines in Figs. 4 and 5 are the
boundaries that separate eigenvalues whose moduli are less
than Rq from those eigenvalues whose moduli are greater
than Rq. In these figures, �max exceeds Rq up to the value of
m=7. This implies the existence of long range, albeit weak,
spatial correlations. However, scrambling the entire image
matrix �i.e., m=9� brings �max into near identity with Rq, in
accordance with Eq. �3�. A comparison between Tables II and
IV indicates that the standard deviations in the eigenvalue
moduli are drastically reduced by randomizing the elements
of A. This compaction of the distribution is due primarily to
the reduction of the moduli of the largest eigenvalues.

The eigenvalue moduli can also be presented in an alter-
native manner. Figures 6 and 7 are log plots showing the
moduli associated with the fully randomized and the corre-

FIG. 1. The topographies of the de-
formed surfaces of AA6022 produced
by uniaxial tension. These images
were acquired with scanning laser
confocal microscopy. �a� With 1%
plastic strain, �b� with 4% plastic
strain, �c� with 8% plastic strain, and
�d� with 12% plastic strain.

FIG. 2. �Color online� The normalized surface roughness probability histo-
grams for the four strain intensities shown in Fig. 1.
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lated image matrices plotted against the eigenvalue number
�1-512�. Note that in each figure, the largest magnitude cor-
responds to the first eigenvalue �1�. There are two principal
advantages of representing the eigenvalues in this fashion:
First, the plot of the randomized image matrix eigenvalues
�Fig. 7� eliminates any influence of spatial correlations from
the overall behavior of the distribution. This enables direct
assessments of how an increase in plastic strain affects the
overall eigenvalue distributions for the four individual strain
states. While the overall shapes of the distributions shown in
Fig. 6 are quite similar, the height or magnitude of a distri-
bution increases with plastic strain. As expected, this behav-
ior is consistent with the changes observed in the range of
probable heights shown in Fig. 2. The second advantage of
the log plot is clearly exhibited in Fig. 7. As shown, the
overall shapes of the four distributions are largely similar to
those shown in Fig. 6 for the larger eigenvalue indices. How-
ever, the spatial correlations present in these data sets in-
duced pronounced deviations at the low eigenvalue numbers
�i.e., from eigenvalues 1 through approximately 30�. The
magnitudes of these deviations appear to scale proportionally
with plastic strain.

Because we have isolated the effect of an increase in
plastic strain �Fig. 6� on the eigenvalue distribution from the
changes in correlation produced by the increase �Fig. 7�, we
are able to examine the influence of plastic strain on the
eigenvalue distribution. In addition, the first eigenvalues
shown in Fig. 6 now closely match Rq, in accordance with
the prediction of Eq. �3�; the implications of this congruence
will be considered in the following section.

SPECTRAL MOMENTS AND SPECTRAL ENTROPY

We now compare low-order statistical moments of the
full non-Hermitian spectra of the image matrices with those
of their Hermitian projections for each strain level, as shown
in Tables II and V. We also list the two largest eigenvalues,
which happen to be real, for the four strains. Note that the
full spectral mean or average is, in each case, close to zero,
whereas the average eigenvalue magnitude increases mono-
tonically with strain. This behavior reflects the near-exact
symmetry of the eigenvalue pattern with respect to reflection
through the origin, in contrast with the positive-definite
asymmetry of its Hermitian projection. However, the stan-

TABLE I. Statistical properties of height distributions derived from correlated topographies.

Strain
level �%�

Surface area
��m2�

Mean �1

��m�
Variance
�2 ��m2�

Std. dev. �
��m�

Skew �3

��m3�
Kurtosis
�4 ��m4�

1 6.593E+05 4.61E−10 0.1588 0.3985 −0.9030 27.9526
4 6.572E+05 −3.99E−09 0.1807 0.4251 −0.6235 14.0182
8 6.865E+05 −2.61E−08 0.6510 0.8068 −0.1385 5.6557
12 7.115E+05 1.66E−08 0.9489 0.9741 −0.2750 3.4438

FIG. 3. �Color online� Plots of the lo-
cations of all 512 complex eigenvalues
associated with the fully correlated
image matrices for 1% strain in A, 4%
strain in B, 8% strain in C, and 12%
strain in D.
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dard deviations of the complex spectra correlate rather well
with those of the corresponding moduli. As might be ex-
pected, the higher moments, which are not listed, vary mark-
edly from one another and they correlate poorly with the
degree of strain.

As seen in Figs. 3–5, the eigenvalue spectra can be char-
acterized as compact, disc-shaped clouds of points centered
at the origin in the complex plane; these discs are surrounded
by sparsely distributed halos of eigenvalues having relatively
large moduli. This description can be made quantitative by
disregarding the phases and focusing on the total number of
eigenvalues residing within the discs of continually increas-
ing radii. As shown in Fig. 8, the behavior of the number of
enclosed eigenvalues is sensitive to whether the elements in
the image matrix are correlated or fully randomized. For the
randomized case, the number enclosed for the smallest 500
eigenvalues closely follows a parabolic r2 profile, which in-
dicates a uniform distribution. This observation is in excel-
lent conformity with certain mathematical theorems on large
random matrices.12 In contrast, the number of enclosed ei-
genvalues associated with the correlated image matrix has a

profile varying approximately as r1/2. The key point is that
the entire eigenvalue spectrum, and not just the satellite ei-
genvalues, is quite sensitive to the presence of any spatial
correlations within the image matrix.

Motivated by concepts usually associated with informa-
tion theory,19–23 we construct a discrete probability measure
that is based on the eigenvalue moduli. By considering an
ensemble of n�n image matrices along with their associated
eigenvalue spectra ��1 ,�2 , . . . ,�n
, we can define the prob-
ability p���i�� for the “occurrence” of the ith magnitude as

p���i�� = � ��i�

�
i=i

n

��i�� , �4�

where n=512, and thereby ensure the normalization,

�
i=1

n

p���i�� = 1. �5�

We now use this set of probabilities to define “spectral en-
tropy” �SE� as

SE = − ��
i=1

n

p���i��ln p���i��	 , �6�

where SE�0. A plot of SE versus strain is shown Fig. 9. For
the correlated image matrices, SE decreases monotonically
with strain, whereas it is virtually independent of strain for
the fully randomized matrices. This invariance is remarkable
in consideration of the fact that, as shown in Fig 2, surface
height probability densities vary markedly with plastic strain.

TABLE II. Statistical properties of eigenvalue moduli derived from corre-
lated topographies.

Strain level
�%� �max ��m�

2nd largest
� ��m�

Mean �

��m�
Std. deviation

�� ��m�

1 3.3221 3.1696 0.2634 0.2247
4 3.7089 3.5150 0.2821 0.2504
8 6.9435 6.6674 0.5364 0.4972
12 6.2790 5.6008 0.6458 0.5631

FIG. 4. Plots of the locations of all
512 complex eigenvalues associated
with the progressively randomized im-
age matrices for the 1% plastic strain
level. Note that each figure exhibits a
random permutation of all matrix ele-
ments with blocks of 2m where m is
equal to 3 in A, 4 in B, 7 in C, and 9 in
D.
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The decrease in the entropy with increasing strain exhibited
in Fig. 9 indicates a decrease in the effective number of
topographic degrees of freedom. That is, the surface topog-
raphy tends to become more ordered or correlated with
strain. It should also be noted that the constant spectral en-
tropy associated with the randomized topographies is not a
maximum. The “ideal” or maximally random value shown as
the line in Fig. 9 is given by ln�512�=6.2383. This corre-
sponds to eigenvalues distributed on the circumference of a
circle centered at the origin in the complex � plane. Given
our definition of SE �Eq. �6��, these maximally disordered
spectra are then associated with the class of “unitary” topo-
graphic image matrices.14,15,24 In a future publication, we
will show how the implementation of a computational algo-
rithm for the “relative spectral entropy”25 or the “Kullback-
Leibler divergence”26,27 can be used to quantify differences
among the eigenvalue spectra associated with a set of topo-
graphic images.

FIG. 5. Plots of the locations of all
512 complex eigenvalues associated
with the progressively randomized im-
age matrices for the 12% plastic strain
level. Note that each figure exhibits a
random permutation of all matrix ele-
ments with blocks of 2m where m is
equal to 3 in A, 4 in B, 5 in C, 6 in D,
7 in E, and 9 in F.

TABLE III. The influence of progressive scrambling on the eigenvalue be-
havior.

Strain level
�%�

Scramble index
m

Incremental
surface area

��m2�
�max

��m�

1 0 6.593E+05 3.3221
1 3 6.749E+05 3.3199
1 4 6.765E+05 3.3112
1 5 6.779E+05 3.2926
1 6 6.803E+05 3.2129
1 7 6.874E+05 2.8830
1 9 7.033E+05 0.4215

12 0 7.115E+05 6.2790
12 3 7.747E+05 6.2538
12 4 7.966E+05 6.2659
12 5 8.300E+05 6.3306
12 6 8.760E+05 5.9674
12 7 9.187E+05 5.5879
12 9 9.711E+05 0.9879
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TABLE IV. Statistical properties of eigenvalue moduli derived from ran-
domized topographies.

Strain level
�%� �max ��m�

2nd largest
� ��m�

Mean �

��m�
Std. deviation

�� ��m�

1 0.4215 0.4055 0.2634 0.0943
4 0.4392 0.4347 0.2821 0.1010
8 0.8152 0.8003 0.5364 0.1916
12 0.9879 0.9802 0.6458 0.2300

FIG. 6. �Color online� Log plot of the
eigenvalue modulus vs the ordered ei-
genvalue number associated with the
fully randomized image matrices for
the four plastic strain intensities.

FIG. 7. �Color online� Log plot of the
eigenvalue modulus vs the ordered ei-
genvalue number associated with the
fully correlated image matrices for the
four plastic strain intensities.

TABLE V. Statistical properties of complex eigenvalues derived from cor-
related topographies

Strain level
�%� �max ��m�

2nd largest
� ��m�

Mean �

��m�
Std. deviation

�� ��m�

1 −3.3221 3.1696 −0.0009 0.2800
4 3.7089 −3.5150 −0.0009 0.2999
8 −6.9435 6.6674 −0.0007 0.5701
12 6.2790 −5.6008 −0.0020 0.6861
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DISCUSSION

A central issue in our analysis is the convergence or
stability of the normalized eigenvalue distributions as n be-
comes large. We have dissected our 512�512 matrices into
sets of smaller square matrices down to the 8�8 level to
address this point. Although the eigenvalue spectra for the
smaller matrices are quite variable from one another, we be-
gin to observe a pronounced regularity at n=128. This is
approximately the size at which our block randomization al-

gorithm begins to generate uniform eigenvalue patterns.
These patterns are contained within a disc that has a radius
that is equal to Rq. While we cannot rule out the asymptotic
notion that Geman’s spectral radius theorem should hold for
any “pseudo-Gaussian” random matrix of sufficiently large
rank with “short range correlations” between individual ele-
ments, we conclude that n must be considerably larger than
512 for this to occur. Not surprisingly, this implies that the
eigenvalue spectra of our image matrices must depend on the
degree of spatial resolution. In any case, this conundrum il-
lustrates the intrinsic ambiguity associated with any compari-
son between the statistical properties of finite-size disordered
systems and the convergence to asymptotic limits.

The surface topography eigenvalue spectra are character-
ized by a relatively compact, disc-shaped core centered at the
origin in the complex plane; this core is enveloped by a
sparse halo of satellite eigenvalues, and the eigenvalue with
the largest magnitude �the spectral radius� tends to lie on the
real axis. The destruction of spatial correlations in the sur-
face roughness at the two-points and all higher order levels is
achieved by block randomization of the locations of all ma-
trix elements in 2m�2m blocks, with m varying from 3 to 9.
This set of transformations results in the migration of the
satellite eigenvalues towards the origin, along with a ten-
dency for the smaller eigenvalues to increase their magni-
tudes to uniformly fill a disc of radius Rq.

It must be emphasized that, in general, no relationship,
either observed or postulated, between surface topography
and plastic strain can be regarded as unique. This is a result
of both surface structure and bulk plastic deformation being
path dependent rather than state-dependent parameters. In the
case of uniaxial strain, the deformation trajectory is linear,
which implies that some, though not all, ambiguity has been
removed. A measurement and description of topography in
terms of a state-dependent tensor quantity such as local sur-
face stress is beyond the scope of this particular investiga-
tion.

CONCLUSIONS

This paper presents an eigenvalue-based analysis of
roughened metallic surfaces that possesses the following ad-
vantages over conventional approaches: �1� The assumption
of translationally invariant statistics is not required. �2� Inter-
polation or smoothing of the raw data is avoided. �3� The
original three-dimensional surface is not represented by pro-
jections of two-dimensional profiles. �4� Each element of the
analysis is based on the entire image data set. �5� This tech-
nique does not introduce mathematical artifacts such as
boundary discontinuities or periodic extrapolations. Al-
though this eigenvalue-based approach requires mathemati-
cal abstractions that differ from what are employed in con-
ventional topographic analysis, these advantages justify its
use to assess changes in the spatial correlations that occur as
a function of the plastic deformation.

The information contained within an eigenvalue spec-
trum is distilled into a scalar measure of topographic disor-
der, referred to as the “spectral entropy” �SE�. This entropy,
whose form is virtually identical to that encountered in in-

FIG. 8. The total number of eigenvalues enclosed within discs of various
radii for the 12% strain topography. Each disc is centered at the origin of the
complex plane.

FIG. 9. A plot of the �p ln�p� spectral entropy vs plastic strain for the four
strain conditions. The entropy associated with the randomized topographies
is insensitive to strain whereas the entropy associated with the correlated
topographies decreases monotonically with strain. The maximum spectral
entropy is given by ln�512� or 6.2383.
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formation theory and statistical physics, is observed to de-
crease monotonically with increasing plastic strain. This be-
havior appears to be consistent with the observed
topographical changes induced by plastic strain. Moreover,
the SE can be decomposed into a constant term that is inde-
pendent of all spatial correlations that occur in surface
roughness and a term that incorporates these correlations at
all levels of complexity.

It should be emphasized that this is a preliminary study.
We do not attempt to address issues such as the possible
connections between eigenvalue spectra, eigenvalue migra-
tion trajectories, and various surface roughening mecha-
nisms. Additional studies to address these issues are in de-
velopment.
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