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The clustering of nanoparticles �NPs� in solutions and polymer melts depends sensitively on the
strength and directionality of the NP interactions involved, as well as the molecular geometry and
interactions of the dispersing fluids. Since clustering can strongly influence the properties of
polymer-NP materials, we aim to better elucidate the mechanism of reversible self-assembly of
highly symmetric NPs into clusters under equilibrium conditions. Our results are based on
molecular dynamics simulations of icosahedral NP with a long-ranged interaction intended to mimic
the polymer-mediated interactions of a polymer-melt matrix. To distinguish effects of
polymer-mediated interactions from bare NP interactions, we compare the NP assembly in our
coarse-grained model to the case where the NP interactions are purely short ranged. For the
“control” case of NPs with short-ranged interactions and no polymer matrix, we find that the
particles exhibit ordinary phase separation. By incorporating physically plausible long-ranged
interactions, we suppress phase separation and qualitatively reproduce the thermally reversible
cluster formation found previously in computations for NPs with short-ranged interactions in an
explicit polymer-melt matrix. We further characterize the assembly process by evaluating the cluster
properties and the location of the self-assembly transition. Our findings are consistent with a
theoretical model for equilibrium clustering when the particle association is subject to a constraint.
In particular, the density dependence of the average cluster mass exhibits a linear concentration
dependence, in contrast to the square root dependence found in freely associating systems. The
coarse-grained model we use to simulate NP in a polymer matrix shares many features of potentials
used to model colloidal systems. The model should be practically valuable for exploring factors that
control the dispersion of NP in polymer matrices where explicit simulation of the polymer matrix is
too time consuming. © 2008 American Institute of Physics. �DOI: 10.1063/1.2815809�

I. INTRODUCTION

The addition of nanoparticle �NP� fillers to polymeric
materials to form polymer nanocomposites often leads to
greatly improved material properties. This has led to much
excitement about the possible applications of these nanopar-
ticles in many materials science applications.1–7 Though the
quantitative understanding of the mechanisms behind these
property improvements is still developing, it is well accepted
that the surface area of NP in contact with the polymer ma-
trix plays a pivotal role.2 Moreover, the amount of NP sur-
face area in contact with polymers depends on NP disper-
sion, and thus the problem of ensuring a stable NP dispersion
has been a preoccupation with these materials.8

Computer simulations have been a useful tool for explor-
ing the effect of various thermodynamic factors on NP dis-
persion and the properties of the resulting nanocomposite
materials. Pryamitsyn and Ganesan have provided a recent
review of theoretical efforts and their relation to experimen-
tal studies.9 The present paper describes computer simula-

tions of the self-assembly of nanoparticles into equilibrium
clusters. Our results emphasize the role played by long-
ranged polymeric interactions and the identification of the
appropriate theoretical description of the underlying assem-
bly process.10–13 The mechanism of cluster assembly is par-
ticularly relevant to polymer-NP composites, but has poten-
tial relevance for many fields, such as biological systems
where molecular assembly often occurs in the “crowded”
intracellular and extracellular environments.14,15

Our study builds upon the observations made in an ear-
lier study16 on the factors controlling NP dispersion in poly-
mer melts. From Ref. 16 it was found that the NP underwent
a thermally reversible transition to a clustered state upon
cooling, in lieu of ordinary phase separation from the poly-
mer matrix. The clustering had characteristics similar to
those of equilibrium polymerization10–13,17,18 and micelle
formation.19,20 Such assembly without the intervention of
phase separation is recognized to occur when there are
highly directional interactions that limit the coordination
number and that inhibit the formation of close-packed
clusters.21 However, such strongly directional interactions
were not present for the icosahedral NP studied in Ref. 16;a�Electronic mail: fstarr@wesleyan.edu.
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thus, the emergence of such equilibrium clustering without
phase separation was somewhat surprising. In Ref. 16 it was
hypothesized that the lack of phase separation might be a
result of the fact that the range of the attraction of the NP
was rather small compared to their diameter, similar to col-
loidal systems.22 If this is the origin of clustering in the nano-
composite, such clustering without intervening phase separa-
tion should also be apparent even if the NPs are not
embedded in a polymer matrix. This is the basis of the first
part of our work: We examine the phase behavior of a system
of NP identical to those used in Ref. 16, but in the absence of
the polymer matrix. Since we find that the particles in the
absence of a polymer solvent phase separate rather than form
thermally reversible clusters, our results indicate that there
must be some other explanation for the clustering in the
nanocomposite system.

An essential clue to understand the clustering of NP in a
polymer matrix was provided by simulations of colloidlike
particles having a short-ranged attraction and a weak, long-
ranged repulsive interaction potential.23–25 Sciortino et al.
found a surprising result that particles with such isotropic
interactions cluster in a similar fashion to particles with di-
rectional interactions.23 In the present work, we argue that
long-ranged interactions between NPs can arise from the
polymeric matrix. In particular, we find that the thermally
reversible NP clustering in a polymer matrix observed in
Ref. 16 can be understood as a result of an effective long-
ranged repulsive interaction between the NPs. From the per-
spective of characterizing nanoparticle dispersion in polymer
melts, this finding is particularly relevant, as it suggests that
a significant change in experimental protocol is needed to
quantify nanoparticle clustering arising from dynamic asso-
ciation. Additionally, we compare our results with theoretical
models of cluster formation at equilibrium to better under-
stand the nature of this clustering transition.

The model we develop to address NP clustering in poly-
mer melts involves coarse graining the polymer degrees of
freedom to explore other aspects of NP clustering that would
not be practical to simulate in a model that explicitly in-
cludes the polymeric component. We should be clear that our
approach differs from that of a potential of mean force
�PMF� approach. In the PMF approach, the aim is to derive a
two-body potential directly from correlations between pairs
of particles that can only quantitatively reproduce the behav-
ior of a given thermodynamic state point. The PMF approach
is not adequate to capture many-body interactions that are
known to promote clustering in colloidal mixtures and poly-
mer solutions.26 Moreover, it is known that these many-body
effects are especially large when the particle size is compa-
rable to the polymer size, i.e., nanoparticles.26 At the present
time, we are aware of no general strategy to systematically
derive an effective potential that accounts for the nonlocal
many-body effects of the polymer fluid.

As a result, we adopt a pragmatic approach based on
plausible physical arguments about the expected form of the
effective potential involved that will effectively mimic the
explicit polymer-nanocomposite system over a range of ther-
modynamic conditions. We check the consistency of this pro-
posed potential by comparison with previous simulations

where the polymer molecules are explicitly incorporated.16

This semiempirical approach is in the spirit of recent model-
ing efforts to capture water mediated interactions by intro-
ducing effective polymer potentials.27,28 In both cases, these
approximations are motivated by the desire to reduce the
computational problem to manageable proportions.

The manuscript is organized as follows. In Sec. II we
describe the key details of the model and simulation proto-
col. Section III describes the results of the NP with only
short-ranged interactions. Section IV discussed the modifica-
tion to the model to mimic polymeric interactions, the result-
ing assembly properties, and the relationship of our findings
to recent theoretical models for particle clustering. This is
followed by a brief conclusion to summarize our findings.

II. MODEL AND SIMULATIONS

We perform molecular dynamics simulations of 200
icosahedral NP with a constant number of particles N, con-
stant volume V, and constant temperature T �NVT�. Each NP
contains 13 particles—12 of which are located at the vertices
of an icosahedron and another at the center of the icosahe-
dron, as described in Ref. 16. Hence the total number of
force sites is 2600. In the simplest case, all particles interact
via a 12-6 force-shifted Lennard-Jones �LJ� potential,29,30

ULJ
sf �rij�

= �ULJ�rij� − ULJ�rc� − �dULJ�rc�
drij

��rij − rc� , rij � rc

0, rij � rc,
�
�1�

where ULJ is the standard LJ potential, and we use “reduced
units” such that the LJ energy parameter �=1 and the length
parameter �=1, and the particle mass m=1. The only differ-
ence in the potential from Ref. 16 is that in Ref. 16 they used
�=2, shifting by a factor of 2 the units of temperature. In
these reduced units, time is in units of �	m /�, temperature is
in units � /kB, where kB is the Boltzmann constant, and pres-
sure is in units of � /�3.

To maintain the icosahedral shape of a NP, adjacent par-
ticles within a NP interact via a harmonic spring potential,

Uharm�r� = �
r0

2

2

 r

r0
− 1�2

, �2�

where �=90 and r0 is the preferred bond length. For particles
at the vertices that are directly connected along an edge, r0 is
given by the distance of the minimum of uLJ

sf . The center
particle is bonded to all the vertex particles to provide sta-
bility to the NP. The preferred bond length between the core
and vertex particles is r0

c =1 /4�10+2	5�1/2r0, which is the
radius of sphere that circumscribes the vertices of an icosa-
hedron with edge length r0. In some cases, we will introduce
size dispersity to avoid crystallization, or we will add a long-
ranged interaction. We will discuss these modifications as
they become relevant.

We integrate the equations of motions using the velocity
Verlet version of the reversible reference system propagator
algorithm �rRESPA�.31 We separate our forces into bonded
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�fast� and nonbonded �slow� components, where one update
of the nonbonded forces occurs for every three updates of the
bonded force. We use a time step �t=0.002 for bond forces.
We use the Nose-Hoover thermostat29,30 to deterministically
control the temperature. The “mass” of the thermostat Q
=6NT /�2, where �=234.09 is the frequency of the cubic LJ
lattice.32

III. PURE NANOPARTICLES WITH ONLY SHORT-
RANGE ATTRACTION

In spite of the highly symmetric form of the NP studied
in Ref. 16, the NPs were found to reversibly cluster rather
than phase separate when embedded in a polymer melt.33 Of
course, the discrete force sites imply that the potential is not
spherically symmetric, but for systems with �12 sticky spots
in three dimensions, recent work suggests that the phase
boundaries are nearly coincident with those of the corre-
sponding spherically symmetric potential.21,34 However, if
the range of attraction � relative to the size � of the NP is
small �� /��0.3�, the critical temperature for phase separa-
tion can be greatly reduced also for spherically symmetric
potentials, as in colloidal systems.22 The size � can be esti-
mated from a pair distribution function, but the estimation of
� is less clear. Depending on the estimate for �, the ratio � /�
is in the range 0.25�� /��0.5, so that the importance of
these size ratio effects on phase separation is uncertain in our
calculations.

Thus, our first objective is to quantify the effect of the
patchiness and range of the potential on phase separation, so
that we may separate these effects from polymeric interac-
tions when the NPs are embedded in a polymer matrix. We
simulate pure NPs over a range 1.55�T�1.9 �in intervals
	T=0.05�, with many densities for each T, and determine the
mean pressure P to construct the P-V phase diagram shown
in Fig. 1�a�. The presence of a “loop” in the isotherms—a
region of positive slope—is indicative of the presence of a
first order phase transition. Figure 2 shows snapshots of our
system at state points corresponding to the various phases of
our system. We attribute the negative pressures that we ob-
serve at T�1.7 to the ability of the network of NPs to sus-
tain a tension in metastable states.35 To obtain smooth esti-
mates of the P-V isotherms, we fit the data from the
simulations along isochores to a fourth order polynomial,
and the data along isotherms to a fifth order polynomial. The
resulting combined expression allows us to estimate P-V
data anywhere in the region simulated.

We use these fits to estimate the coexistence and spin-
odal lines of the transition, which we determine using the
Maxwell construction �i.e., the equal area/equal free energy
condition�. We also use the information from the P-V phase
diagram to construct the more common P-T phase diagram
�Fig. 1�b��. Figure 1 shows that the critical point occurs at
Tc�1.8, Vc /N�38.2, and Pc�0.013. For comparison, a
simple LJ system with interactions truncated at the same
distance, Tc=1.1876±0.0003,36 considerably below the Tc

for our system. This can be understood from the fact that
there are 13 force sites in a single nanoparticle, and thus the
magnitude of attraction between NP is significantly greater.

Based on this, one might expect the value of Tc we observe
to be much higher than that for the simple LJ system, but the
relatively small � /� ratio serves to reduce Tc, and hence the
overall change in the critical temperature is not nearly so
substantial. To compare directly with the simulations of the
same particles in a polymer matrix,16 where no phase sepa-
ration was observed for T�1, the value of Tc must be
doubled, since in that work we chose �=2 for the interactions
between the nanoparticles. In the current dimensionless vari-
ables, the phase separation in the prior simulation was sup-
pressed to at least T
0.5, a temperature well below where
we find phase separation. Evidently, there is some aspect of
the polymer-nanoparticle dispersion that is responsible for
the suppression of phase separation. The obvious possibility
is that many-body interactions generated by chain connectiv-
ity alter the nature of the thermodynamic transition govern-
ing the particle dispersion, changing this process from phase
separation to self-assembly where the solvent is replaced by
a polymeric one.

FIG. 1. �Color online� Equation of state for coarse-grained nanoparticle
dispersion model. �a� The P-V phase diagram for pure NPs. The inset is a
blowup of the region close to the critical point to emphasize the shapes of
the coexistence �heavy solid black line� and spinodal �heavy dashed black
line� lines. We show sample data for P �symbols� that were used to deter-
mine the isotherms �in solid lines�, and the coexistence �red dashed line� and
spinodal lines �dashed blue line�. See text for the fitting procedure used to
obtain these lines. �b� P-T phase diagram showing the coexistence line
�solid line� and the spinodal line �dashed line�, from which we get the
critical point Tc�3.60, V /Nc�2.94, and Pc�0.026.
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IV. MIMICKING POLYMERIC EFFECTS ON
NANOPARTICLE BEHAVIOR

A. Effective polymeric interactions

Since the phase separation observed in the previous sec-
tion is absent in the corresponding nanocomposite system,16

we must modify the potential of the pure NP system to
mimic the behavior of the nanocomposite, as well as inves-
tigate the general properties of assembly. First, we know that
our pseudopotential should at least retain the explicit short-
ranged LJ interaction between NP. At a coarse-grained level,
we can view the polymer chains as soft segmental clouds
represented by “soft spheres,”37 which naturally leads to a
mean field model where the long-ranged contribution to the
effective potential is identified with the average segmental
density of a polymer chain. Along similar lines, Hooper and

Schweizer38 describe polymers as “cushions” that provide a
soft repulsion between NP. Hence we need to include a sec-
ond term in the potential that involves a weak, long-ranged
repulsion. A symmetric potential should be adequate since
Refs. 39–43 argue that the secondary fluctuations are not
necessary to reproduce NP interactions in the polymer ma-
trix.

The question is as follows: What form should we choose
for the long-ranged repulsion? Recent theoretical work44 in-
dicates that chain connectivity in polymer melts can generate
Casmir-like interactions between particles in polymer melts
where segmental density fluctuations induce interactions at
long distance that are repulsive, rather than attractive, as in
ordinary Casmir interactions where vacuum fluctuations are
involved. In this case, the long-ranged repulsion has an ex-
ponential decay that is on the scale of the chain radius of

FIG. 2. �Color� Snapshots illustrating the particle dispersion under different thermodynamic conditions: �a� a gas phase system at T=3.3, V /N=50.0; �b� a
gas-liquid phase system at T=3.3, V /N=10.0; and �c� a liquid phase system at T=3.3, V /N=2.5.
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gyration. A similar exponential weak repulsion arises from
screening effects in semidilute polymer solutions,45 where
the repulsions can be modeled by a Yukawa potential,

UY�r� = A
exp�− r/��

�r/��
, �3�

where A is the overall strength of the potential, and � is the
parameter that determines its range. Such a potential fulfills
the physical criteria described above for a polymer-NP mix-
ture. Since the segmental density of the polymer should be
responsible for the repulsive potential, the parameter � must
have a scale somewhere between a segment size and the
radius of gyration of a chain. When the Yukawa interaction is
combined with the direct LJ interactions, the overall poten-
tial is dominated by LJ terms at short and intermediate dis-
tances, and the effect of the Yukawa potential contributes to
the particle interactions at large distances.

The relevance of the Yukawa potential for polymer-
induced nanoparticle interactions potential is further sup-
ported by Refs. 23–25. In those works, it was shown that
particles with an attractive short-ranged potential in combi-
nation with a long-ranged repulsive Yukawa interaction in-
deed undergo self-assembly rather than phase separation for
certain choices of the potential parameters. These findings
give us confidence that our pseudopotential may contain
enough of the essential physics of polymer melts to under-
stand the former nanoparticle self-assembly observations in
polymer melts.16

Given the long-range nature of repulsive part of poten-
tial, it is natural and computationally expedient to further
approximate the collective effect of all the individual
Yukawa potentials on each atomic site of the nanoparticle by
a single effective Yukawa potential UY

c acting between the
centers of nanoparticles. The coupling strength of this poten-
tial is taken to be equal to the number of force sites in the
nanoparticle times that of an individual atom UY, so that
effective long-ranged potential interaction has an equal con-
tribution from each force site of the nanoparticle. This is
reasonable approximation since the separations at which the
Yukawa potential plays an important role are large compared
to the distance between the NP center and vertices. This ap-
proximation reduces dramatically the computational time
needed, while preserving essential aspects of the more de-
tailed potential.

Since our approach to arrive at the Yukawa potential is
based on physical arguments, rather than direct approaches
such as the PMF, the appropriate parameters of the potential
are not immediately clear. The primary concern is that the
choice for A and � should reproduce the essential physics
that is known about nanoparticle clustering in the polymer
matrix—and that � is in the range between the segmental size
and chain radius of gyration. Based on the studies of Mossa
et al.24 and preliminary test simulations, we found that if A
=0.15 and �=2 this yields significant particle clustering,
while strongly suppressing phase separation, and satisfies the
size constraints on �. However, our preliminary calculations
showed that the clusters formed by our icosahedral NP have
a quasicrystalline structure. To generate amorphous clusters,
we further introduce dispersity in the nanoparticle size,

thereby frustrating this ordering. �Alternatively, we could
take � to be a variable among the NP.� For half of the NP, we
reduce the overall NP size by 20% by assigning a force site
of diameter �ss=0.8, where the subscript ss denotes pairs of
smaller force sites. We use a subscript ll, i.e., �ll=1, for pairs
with unchanged size, which we refer to as large. For the
mixed interactions between small and large force sites we
choose �ls=0.9. In addition to changing the size of the force
sites, we also decrease the bond lengths �see Eq. �2�� be-
tween small force sites by 20% so that the NPs with the
smaller force sites are also overall smaller by 20% than the
original NP. We find that an equal mixture of NP of these
sizes suppresses the quasicrystalline structure of the clusters
and yields the desired amorphous clusters. We simulate this
modified potential over a range 0.008�N /V�0.4 and 0.1
�T�1.9, and report the results in the following.

B. Basic thermodynamic and cluster properties

We first evaluate the pressure along isotherms to verify
that adding the long-range interactions is effective in sup-
pressing phase separation. The P-V plot of the system with
Yukawa interactions in Fig. 3 does not exhibit a van der
Waals loop �as found in Fig. 1� in the range of T and V
investigated, and thus there is no apparent phase separation
for T�0.1. This temperature is well below Tc for the system
with attraction only. Hence, as in the nanocomposite system
of Ref. 16, phase separation is suppressed while significant
equilibrium particle clustering can occur in its place. In this
system, the particles cluster due to short-ranged attraction,
but the cluster size is limited �and hence infinite phases can-
not develop� by the long-range repulsion.23,24

As discussed in the Introduction, Refs. 23 and 24 have
shown that a combination of short-range attraction and repul-
sive Yukawa potentials can result in reversible equilibrium
particle clustering. Here we expand on those calculations,
and we particularly focus on calculating properties relevant

FIG. 3. �Color online� Isotherms of P vs V /N for the modified NP with the
Yukawa potential. The lack of a “loop” indicatives that the long-ranged
repulsion suppresses phase separation down to at least T
0.1. Each iso-
therm is separated by 0.2 in temperature, and curves are progressively
shifted by a factor of 1.5 on the pressure axis for clarity. The lines are
intended as a guide for the eye.
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to nanoparticle clustering in polymer melts and to connecting
the clustering behavior with an existing theoretical model for
particle clustering.

We first quantify the assembly by defining clusters as
collections of neighboring NP. We consider NPs to be nearest
neighbors if their center atoms are within r*, the distance of
the first minimum in the center-center NP pair distribution
function g�r� �Fig. 4�. Since our system is bidisperse, we
have three values defining first neighbors for the three pos-
sible pairings of NP: rll

*=3.44, rss
* =2.58, and rls

* =2.96.
The overall amount of clustering can be characterized by

calculating the fraction 
 of NPs that are in clusters, i.e.,


 =
1

N



clusters
n , �4�

where n is the number of NPs in a cluster and N is the total
number of NP in the system. This is analogous to the “extent
of polymerization” discussed elsewhere.10–12 We plot 
 as a
function of T in Fig. 5, which shows a crossover to a pre-
dominantly clustered state at low T, as found before for bare
particles within a polymer matrix.16 The results in Fig. 5
establish that the NP assembly follows a classic pattern for
self-assembling systems, not previously explored in Refs. 23
and 24.

To estimate the crossover temperature governing this
self-assembly transition, previous works have often utilized
the inflection point of 
�T� to define this
temperature.10–13,46,47 Unfortunately, our data are not suffi-
ciently detailed to make an accurate estimation of the inflec-
tion point of 
, and so we rely on an approximate method
using the cluster mass that has been found to be useful.47 The
average cluster mass L is defined as

L = �n� . �5�

We plot L as function of T in Fig. 6�a�, which shows that
L increases as T decreases and, correspondingly, 
 increases.

These are the normal trends for a system exhibiting dynamic
clustering at equilibrium.10–13 Investigating the clustering in
a dipolar system, Van Workum and co-workers,47,48 found
that L for a clustering dipolar fluid could be collapsed to a
single master plot by scaling the temperature axis by the
temperature where L�2. Similar scaling has been found us-
ing the predictions of the Wertheim theory.49,50 The L�2
condition seems to be a common property of thermally re-
versible associating particle systems exhibiting a broad par-
ticle clustering transition. Accordingly, we take T*�T�L
=2� a definition for the self-assembly transition temperature.

We scale the T by T* and find that we can collapse our L
data to a master curve �Fig. 6�b��, consistent with an appro-
priate definition of the clustering transition temperature.
Thus, the condition L�2, i.e., the formation of dimers �on
average�, is indicative of a crossover from an unclustered to
a clustered state. Moreover, the existence of a master curve

FIG. 4. �Color online� The pair distribution function g�r� between the cen-
ters of NP. We separate g�r� into the contributions between pairs of small or
large NP, and also the cross correlations between small and large NPs. We
define particles to be nearest neighbors if r
r*, where r* is the location of
the minimum of g�r�. �Inset� An expanded view of g�r� near r*. The arrows
show the locations of the r* for the three possible pairs.

FIG. 5. �Color online� Fraction 
 of clustered NP as a function of T. At low
T we observe that most NPs are in a clustered state. As we increase T, the
system becomes dispersed, except for large density �low V /N� where clus-
ters are unavoidable. The lines are only intended as a guide to the eye, and
are the results of spline fits to the data.

FIG. 6. �Color online� �a� Average cluster mass L as a function of T along
isochores. �b� The same data with a reduced temperature scale, where T is
normalized by T*�T�L=2�, show that the data collapse to a single master
curve.
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indicates that the T dependence of cluster mass is indepen-
dent of the thermodynamic details. We can also scale our
data for 
 by T*, and we obtain an approximate collapse of
the data, although the quality of the collapse is not as good as
the reduction found for L. This type of reduction shows the
potential for equation of state reasoning for organizing ob-
servations relating to cluster dispersion, analogous to the
“corresponding states” descriptions of phase stability. We
have also examined the distribution of cluster sizes P�L� �not
shown� which collapse to a master curve when scaled. We
find that P�L� has a power-law dependence on L, with an
exponent in the range of 2.2–2.6. Such power-law depen-
dence is consistent with branched polymers or percolation
clusters.51 In contrast, the assembly of linear chain clusters
leads to an exponential dependence of P�L�.

Previously, the specific heat cv has been used as a mea-
sure to distinguish the crossover between dispersed and clus-
tered states.10–12,16,52 Typically, both dispersed states and
clustered states are relatively stable, and thus have relatively
low energy fluctuations. Since cv is a measure of such fluc-
tuations, the crossover between clustered and dispersed states
can be expected to be accompanied by a maximum in cv. To
check for the equivalence of this measure, we evaluate the
specific heat,

cv = 
 �u

�T
�

V
, �6�

where u is the nonbonded �LJ� component of the potential
energy per particle. We determine cv from the derivatives of
splines of u�T�. We find that for each density there is a weak
maximum in cv �not shown� at a temperature we call Tmax.
This provides an estimate of the crossover to a clustered state
based on a bulk thermodynamic property that we can com-
pare with T*.

We plot the density �=N /V dependence Tmax and T* in
Fig. 7 to compare the crossover measured via these different
approaches. We find that T* has the expected dependence,

that is, T* increases with �, since at larger density it will be
easier to form clusters. The same is true for Tmax for �
�0.04; however, we find that Tmax decreases for ��0.04, in
contradiction to the expected monotonic behavior found for
other associating fluids.10,11,16,52 This behavior suggests that
the maximum in cv is not necessarily a good indicator of the
location of the clustering transition.

Frequently, the crossover T* to an assembled state can be
described by the Dainton-Ivin equation of equilibrium poly-
merization theory,53 which is given by the simple “Arrhen-
ius” form.10–12,16

� � exp�− E/kBT*� , �7�

where E is the enthalpy of association. We plot 1 /T* as
function of � in the inset of Fig. 7 and just find such a
relationship with E=2.7. This provides an estimate of the
thermodynamic activation energy associated with the physi-
cal bonds formed between NP. Hence, we conclude that our
system undergoes processes similar to associating systems
generally.46 When we combine the results of the masterplot
in Fig. 6 and the Arrhenius property in Fig. 7, we conclude
that T* is of greater relevance than Tmax for analyzing clus-
tering behavior in our system.

Lastly, we turn our attention to the � dependence of L,
which has not been examined computationally in this class of
associating fluids. It has been found that L scales as L
��1/2 in many freely associating �FA� clustering
systems.13,17,18,32 We might also expect that nanoparticles in
our system are also freely associating, but Fig. 8 shows that
L has an approximately linear � dependence. This observa-
tion has some precedence in previous experimental and com-
putational studies. For example, a linear dependence has
been observed in systems such as wormlike micelles54 and
the Stockmayer fluid,47 where long-ranged interactions also
play an important role. This variation has also recently been
reported55 for colloid and protein solutions, where matrix

FIG. 7. �Color online� A comparison between the particle clustering transi-
tion temperatures T* and Tmax estimated from L and cv, respectively. The
nonmonotonic behavior of Tmax suggests that cv is not a good measure of the
assembly transition temperature for this system. The inset shows that T*

conforms reasonably well to an Arrhenius relation, as expected from simple
theoretical models of equilibrium particle assembly. The black line indicates
the best fit of Eq. �7�; the red dotted line is only a guide for the eye.

FIG. 8. �Color online� The average cluster mass L as a function of density �
for various T. Note that ��L for our system, similar to the behavior of
wormlike micelles, colloidal fluids, protein suspensions, and dipolar fluids
�Refs. 47, 54, and 55�. The lines simply connect data points.

024902-7 Nanoparticle assembly J. Chem. Phys. 128, 024902 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



mediated interactions and screened Coulomb interaction are
plausibly present.

Dudowicz et al.13 found that linear concentration depen-
dence of L is a generic phenomenon in equilibrium associat-
ing systems that are subject to constraints, thus limiting the
assembly process. In particular, Dudowicz et al.13 demon-
strated this effect in the context of equilibrium polymeriza-
tion subject to the constraint of chemical initiation or thermal
activation. For example, simply constraining the number of
particles that are required before a cluster can form linearizes
L���.58 The results of Ref. 56 support these general argu-
ments by showing that a change in L��� occurs with the
introduction of a ring-formation constraint into a model of
otherwise freely associating chains. The observation of a
near linear dependence of L��� in the present model strongly
suggests the existence of a constraint, but its specific form is
not yet established. We suggest that the high functionality
�number of contacts� of the particle associations may create a
steric bottleneck in the assembly process, providing a candi-
date for this constraint. We also note that the introduction of
constraints into the self-assembly process also tends to make
the thermodynamic transition sharper �i.e., less rounded�.12,57

Taking these constraints to extreme limits can make the self-
assembly transition a true second-order phase transition.58

This is an aspect of the assembly process that merits inves-
tigation in future work.

V. CONCLUSION

Recently, there has been much interest in understanding
self-assembly from a more fundamental perspective due to
the relevance of self-assembly for nanofabrication applica-
tions. There have also been many computational and experi-
mental studies aimed at controlling nanoparticle dispersions
because of the commercial potential of these materials. The
present work touches on both of these basic fields. In par-
ticular, we find that a simple long-range interaction can be
used to represent the polymeric effects that qualitatively alter
the type of thermodynamic transition governing particle dis-
persion in the polymer matrix. In particular, the presence of
the polymers changes the phase separation process into a
thermally reversible self-assembly transition. Moreover, we
find that this assembly is consistent with the theoretical de-
scription of association with constraints.13 This finding
means that characterizing nanoparticle association in a poly-
mer matrix is not just a problem of phase stability, but in-
volves a significant change in experimental protocol to quan-
tify nanoparticle interactions. Such solvent-induced effects
are not limited to polymeric systems. For example, fullerene
particles have been observed to form different types of clus-
ters, depending on the solvent in which the fullerenes are
dispersed.59,60 The solvent has also been found to play an
important role in the supramolecular assembly of conjugated
molecules into nanofibers.61 The interaction of nanoparticles
with biological materials is an important situation where this
effect arises. Hence, the general problem of how the medium
in which such particles are placed generates effective inter-
particle interactions merits further investigation.

Given the complexity and time consuming nature of

fully explicit molecular dynamics simulations of dispersions
of NP in polymer matrices, it is very encouraging that some
of the essential physics of NP association in a polymer melt
can be recovered from a simple coarse-grained pseudopoten-
tial model. Moreover, our simple model of the interparticle
interactions generated by the polymer fluid helps us under-
stand the physical origin of the clustering transition that we
observed previously.16 The existence of long-ranged effec-
tive interactions is expected to be a general feature of poly-
mer melts, where the interactions are derived from long-
ranged density correlations associated with chain
connectivity.45 Coarse-grained models of the effective nano-
particle interactions offer the potential to treat problems that
are essentially impossible to treat by atomistic or even a
bead-spring-like description of the polymer matrix.
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APPENDIX: THE PHASE BOUNDARY “SHADOW”

For the system with Yukawa interactions, we do not find
explicit phase separation, but we do find at least a precursor
to separation in the potential energy of the system U=ULJ

+UY �neglecting the contribution from the bonds, which is
nearly constant�. For a system where temperature and density
are the control parameters, the appropriate free energy is the
Helmholtz free energy A=K+U−TS, where K is the total
kinetic energy, U is the total potential energy, and S is the
entropy.62 Phase separation in such system results in a
“double-well” shape of A as a function of �. Since we do not
have information on S, we cannot plot A, but we can exam-
ine the contribution from U.

Figure 9 shows that a single-well structure appears in U

FIG. 9. �Color online� Potential energy as a function of density, showing a
double-well structure in the potential energy. If there were phase separation,
the free energy F=K+U−TS would have a double-well dependence on den-
sity; thus the density dependence of the entropy must be responsible for the
lack of phase separation. The lines simply linearly interpolate between
points.
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for T�1.5 and ��0.04. Additionally, when � is larger than
that shown in Fig. 9, U must increase due to a short-ranged
repulsion, and hence there will be a second well. Therefore,
the contribution of U to A already has the characteristic
shape for phase separation, but A must not have this shape,
since no phase separation is present. Given that the contribu-
tions from K and S must be monotonically decreasing as the
system cools, and assuming the behavior of U is unchanged,
we would expect that A eventually does in fact develop a
double-well structure, and hence there would be phase sepa-
ration at sufficiently small T. In this sense, we say that phase
separation is suppressed due to the entropic term.
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