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The elution of spheres and rods in field-flow fractionation (FFF) is studied using a Brownian dynamics
method. The particle motions for spheres are governed by a familiar Langevin equation which models drag
force and diffusion. The rods are modeled as prolate ellipsoids and the particle motions are governed by
a similar but orientation dependent Langevin equation, and the Jeffrey equation with rotational diffusion.
Modeling of particle elution for spheres from 10 to 1000nm was examined. The simulation captures the
steric transition, and results for mean elution time are in good agreement with the steric inversion theory
of Giddings [Giddings, J.C., 2000. In: Field-Flow Fractionation Handbook, Wiley-Interscience; Giddings, J.C.,
1978. Separation Science and Technology 13, 241; Giddings, J.C., Myers, M.N., 1978. Separation Science
and Technology 13, 637]. The sphere simulations are compared with simulations for rods of equal dif-
fusivity, as under “normal mode” conditions (i.e., diffusion controlled) such particles should elute at the
same rate. The results for rods show that nanotube size particles elute by a normal mode mechanism up
to a size of about 500nm (based on a particle diameter of 1nm). At larger sizes, the rods begin to deviate
from normal mode theory, but less strongly and in the opposite sense as for spheres. While the steric
effect for spheres causes larger spheres to elute faster than predicted by normal mode theory, an inverse
steric effect occurs for rods in which larger rods move increasingly slower than predicted by theory. The
difference is attributed to the fact that the speed up observed for spheres is dictated by size exclusion
of the particles at the boundary, while rods slow down due to increasing alignment at the boundary.
Spheres and rods of equivalent diffusivity elute at the same rate up to a sphere size of approximately
90nm (500nm rods), at which point there are increasingly greater differences in mean elution times.
While this affects the calibration of such operations, it also indicates that length based separations for
nanotubes are not bound by the same limitation as occurs for spheres due to steric inversion.

Published by Elsevier Ltd.

1. Introduction

Field-flow fractionation (FFF) (Giddings, 1993, 2000; Janca, 1987)
is a technique for separating colloidal, macromolecular, and particu-
late materials ranging from 10−3 to 102 �m in size and has recently
been applied to the separation of nanotubes (Chen and Selegue, 2002;
Moon et al., 2004; Selegue et al., 2001; Tagmatarchis et al., 2005;
Peng et al., 2006; Liu et al., 1998; Chun et al., 2008). In FFF, a mix-
ture to be separated is driven through a channel while a field force
is applied perpendicular to the streamwise flow. The perpendicular
field may be a second flow field, an electric field, or a temperature
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gradient, amongst a number of possibilities. The field is chosen so
that the interaction between the field and the streamwise parabolic
velocity profile promotes a separation of components based on their
relative mobility in the field.

Rectangular frit inlet symmetrical, FFF (RSF4), one of the vari-
ations of classical flow-FFF, is shown in Fig. 1. The mixture to
be separated is injected into the channel and a cross flow is im-
posed upon the throughput flow driving the particulates towards
the lower boundary (called accumulation wall). The cross flow is
achieved through the use of porous membranes that allow solvent
flow, but which are impermeable to the particles. The flow rates
in the throughput and cross flow directions are independently
varied by means of pressure controllers to manipulate the rate at
which particles traverse the system, and to control how closely
particles of different size approach the accumulation wall (without
embedding). Separation is achieved due to the different residence
times of the particles based upon their average equilibrium position
in the parabolic velocity profile. Particles that travel on average
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Fig. 1. (a) Side view and (b) top view, of frit inlet symmetrical, field-flow fractionation
(RSF4). The device has a length L, thickness H, and width W. The flowrates in the
x- and y-directions are independently controlled.

closer to the center elute more quickly than those that travel more
closely to the wall. In practice, the length, L, of the flow channel is
much greater than the gap width, H. Gap widths on the order of
100–500�m are typically used although gaps as small as 10�m have
also been reported (Giddings, 1993). The process may be optimized
in a number of ways. The throughput channel may be tapered in
the third direction to further accelerate faster moving particles in a
configuration called trapezoidal FFF (TAF4). Programmable cross flow
rates can go to zero through a ramp or step function to allow slower
moving particles to elute more quickly once fast movers have exited.
The accumulation wall may be constructed of different materials to
influence the separation by promoting different types of interactions
with the particles (Song et al., 2003).

A number of different mechanisms can be exploited to achieve
separation in flow-FFF (Giddings, 1993, 2000; Janca, 1987). What
is termed “normal mode” separation applies to particles that are
small enough to undergo significant Brownian motion and whose
size is negligible compared to the thickness of the channel. Be-
cause the solutions are dilute (i.e., hydrodynamic interactions are
negligible), the main forces acting on the particles are the viscous
drag force and the Brownian force. Under these conditions, smaller
particles which are more diffusive, travel with an average position
closer to the centerline and elute more quickly than larger parti-
cles, as depicted in the upper part of Fig. 2a. For an ensemble of
particles, the competition between advection and diffusion in the
cross flow direction drives particles of different sizes to distinct av-
erage positions. The particle “clouds” are characterized by their aver-
age horizontal spread along the throughput direction, �x, and their
average position from the accumulation wall, �y, as depicted in
Fig. 2a. Clean separation between different components is achieved
when particle clouds of different type do not overlap, and hence, a
separation distance d is achieved between the horizontal positions
of the layers.

A second mechanism for separation in flow-FFF is called “steric
mode” and is driven by size exclusion at the boundary. Steric mode
occurs when the particle layer in FFF is strongly compressed to a
thin layer at or right above the accumulation wall, as depicted in
Fig. 2b. This occurs when diffusion is either negligible (based on size)
or strongly suppressed by a high cross flow. In this case, larger parti-
cles are more highly entrained by the throughput flow than smaller

ones (see the upper part of Fig. 2b), and thus, in steric mode large
particles elute more quickly. Because diffusion effects are suppressed
in steric mode separations, the horizontal spread of the particles is
less than that seen in normal mode and the separation peaks are
sharper. The process by which normal mode FFF begins to change
over to steric mode FFF due to increasing particle diameter is called
steric inversion. Steric inversion is identified by a maximum in the
average elution time vs. particle size plots.

The separation process in flow-FFF is characterized by the theo-
retical variable called the retention, R, which is given by

R = U
ū

= 〈c(y)u(y)〉
〈c(y)〉〈u(y)〉 (1.1)

where U is the average streamwise velocity of the solute, c is the
concentration of the solute, ū is the average streamwise velocity of
the carrier fluid, and the brackets 〈. . .〉 represent the integral average
over the flow cross section. The retention is a dimensionless variable
whose value is bounded in the range 0 < R < 1. The significance of
the retention is that it represents the ratio of the average residence
time of non-retained tracers, t0, to the average retention time of the
particles, tr , viz.

tr
t0

= 1
R

(1.2)

where t0 =L/ū and L is the device length in the throughput direction.
In the limit R = 0, particles are trapped on the accumulation wall,
and this corresponds to the case of zero elution. As R increases, the
average speed at which particles elute also increases approaching
the solvent time t0 at R = 1. Thus, the ability to separate particles can
be compared based on the relative retention values of the different
particles dispersed in the solution.

A number of analytical expressions for the retention have been
developed in the literature. For RSF4, under normal mode conditions,
the competition between advection and diffusion in the cross flow
direction leads particles to an equilibrium concentration profile in
the gap direction given by (Giddings, 1993, 2000; Janca, 1987)

c
c0

= exp
(

−y
�

)
(1.3)

where c0 is the concentration of the particles at the accumulation
wall, � is a characteristic length given by

� = D
|vc| (1.4)

vc is the cross flow velocity and D is the diffusion coefficient of the
particle in the cross flow direction. Assuming a parabolic velocity
profile for flow in the throughput direction and that the value for |vc|
is constant, Eq. (1.1) can be integrated to yield an analytical relation
for the retention given by

R = 6�
[
coth

(
1
2�

)
− 2�

]
(1.5)

where � is an inverse Peclet Number (Pe) given by

� = D
|vc|H = 1

Pe
(1.6)

For �>1, the retention has the asymptotic value

lim
�→0

R = 6� (1.7)

Because the only specific particle property the retention depends
on is the diffusion coefficient, Eq. (1.5) indicates that particles of
different shape but equal diffusivity should elute at the same rate.
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Fig. 2. (a) Normal mode separation in flow-FFF. (b) Steric mode separation in flow-FFF. In each case, the upper portion of the figure illustrates single particle behavior, and
the lower portion illustrates the ensemble behavior.

A retention model which takes into account both normal mode
diffusion and steric effects for spheres in RSF4 was derived by
Giddings (1978, 2000) and Giddings and Myers (1978)

R = 6(� − �2) + 6�(1 − 2�)
[
coth

(
1 − 2�
2�

)
− 2�

1 − 2�

]
(1.8)

where � is the ratio of the particle radius to gap thickness

� = r
H

(1.9)

Eq. (1.8) reduces to Eq. (1.5) at small values of �. A comparison of
the elution time behavior predicted by Eqs. (1.5) and (1.8) is shown
in Fig. 3. The curve for normal mode elution shows a characteristic
power law behavior on the log–log scale plot. However, the curve
for Eq. (1.8) shows a distinct maximum in the elution time which
occurs as approximately �/r = 1 (Phelan and Bauer, 2009). The max-
imum is called the steric transition and represents the point where

large particles begin to elute more quickly than smaller ones. In gen-
eral, the steric transition point shifts downward (to smaller particle
size) with increasing cross flow rate. It is instructive to look at the
asymptotic behavior for �?�. Under these conditions, Eq. (1.8) has
the limiting value

lim
�?�

R = 6� · (1 − �) (1.10)

and thus, depends only on the size of the particles. The absence of
diffusion in Eq. (1.10) indicates that the physics of the separation
under steric conditions is controlled by a completely different mech-
anism than normal mode separation, and that the specific shape of
the particle becomes important.

Measurements obtained for spheres often serve as a basis for
calibrating the device for separations of more complex materials
such as nanotubes under the assumption that particles of equal
diffusivities elute at the same rate. However, the steric transition
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Fig. 3. Comparison normal mode and steric inversion elution time behavior in
flow-FFF. The steric transition point shifts towards smaller particle size with in-
creasing flow rate.

observed in flow-FFF with spheres is dictated by the interaction of
the particle with the boundary, and thus, particle shape is bound to
sharply influence the nature of this interaction. This means that un-
der some conditions spheres and nanotubes of equivalent diffusivity
may not elute at the same rate, and in this case calibration between
the two based on this criterion would give erroneous results. This is
bound to have important implications for understanding the sepa-
rations of these materials, and we explore this here through the use
of a simulation developed for flow-FFF. Nanotubes are of particular
importance in the present study as we are investigating the length
separation of singe wall carbon nanotubes (SWNTs) in flow-FFF
experimentally (Chun et al., 2008), and understanding the elution
mechanism is critical for interpreting the results.

In what follows, modeling of particle separation for spheres and
rods of equal diffusivity is compared under conditions in which the
sphere size spans the steric transition. The goal of this is to deter-
mine if, and under what conditions, the differences in particle shape
becomes a significant factor in the elution behavior of the two dif-
ferent particle types, and to gain an understanding of the behavior
of rods under conditions where the particles are highly retained. The
paper is organized as follows. In the modeling section, we review the
equations for the advection of spheres and rods in viscous flow with
Brownian motion (Satoh, 2003; Kim and Karrila, 1991) and present
a Brownian dynamics formulation for flow-FFF based on dilute so-
lution behavior. The specific equation sets used to model flow-FFF
based on the kinematics of RSF4 are derived, along with a descrip-
tion of the numerical procedures and boundary conditions. For both
cases, steric effects are accounted for by boundary conditions gov-
erning the point of closest approach. In the results section, calcu-
lations are shown first for the elution of spheres with sizes ranges
spanning the steric transition. The results show that the model pre-
dicts a steric transition, and the results are in excellent agreement
with the steric inversion theory of Giddings (Eq. (1.8)). The sphere
calculations are then compared with rods of equal diffusivity under
the same flow conditions. It is shown that at larger sizes, the rods
begin to deviate from normal mode theory, but in the opposite sense
as for spheres. In the Discussion, we examine the reasons for the di-
vergence in behavior, and the implications in regard to calibrating
FFF separations of nanotubes.

2. Modeling

2.1. Advection equations for spheres and rods

The simulation model for spheres used in this work is identical
to that used in an earlier work (Phelan and Bauer, 2009), and is for-
mulated under the assumption that the separations are carried out

a
b

p

Fig. 4. Model parameters and orientation vector for the prolate ellipsoids particle
model.

with dilute, aqueous solutions. Newtonian kinematics are used for
the flow field, and the stresslet, hydrodynamic interactions (inter-
particle and particle-wall) and excluded volume are ignored. The
dominant forces are the drag force due to fluid flow and Brown-
ian motion. Lift forces (Williams et al., 1994) and buoyancy are also
assumed to be negligible. Under these conditions, the linear momen-
tum balance for an ensemble of spheres in a viscous flow, individu-
ally denoted by the superscript (i), is given by the Langevin equation
(Satoh, 2003; Kim and Karrila, 1991),

dR(i)

dt
= v(R(i)) + F(i)B (t)

�(i)
(2.1)

where R is the position vector of the particle, v(R) is the unperturbed
velocity of the fluid evaluated at the particle position, FB is the ran-
dom force due to Brownian motion, and � is the Stokes' law drag
coefficient given by

� = 6�r� (2.2)

where r is the particle radius, and � is the fluid viscosity. Details of
the calculation of the Brownian force are described in Appendix A
and Phelan and Bauer (2009).

The simulation model for rod-like particles used here is identical
to that used in an earlier work (Phelan and Bauer, 2007) except for
a slight modification of the boundary conditions, and the model is
formulated using the same dilute solution assumptions as used for
spheres. The nanotubes are modeled as prolate ellipsoids (Satoh,
2003; Kim and Karrila, 1991), shown in Fig. 4, which are formed by
the rotation of an ellipse about its major axis. The object has a major
axis of length, 2a, a minor axis of length, 2b, and is symmetric to the
minor axis in the third direction. The orientation vector p describes
the orientation of themajor axis in 3-D space. The orientation vectors
for the two perpendicular minor axes, p⊥1

and p⊥2
, can be described

in terms of p and are given in Appendix B.
The equations for the motion of an ellipsoid in a viscous fluid

can be described as a stochastic form of the linear momentum bal-
ance with orientation dependent drag and diffusion coefficients, and
a stochastic form of the Jeffery equation with orientation dependent
rotational diffusion (Satoh, 2003; Kim and Karrila, 1991). The gov-
erning equations for an ensemble of ellipsoids, individually denoted
by the superscript (i), are written as (Phelan and Bauer, 2007)

dR(i)

dt
= v(R(i)) + [�(i)]−1 · F(i)B (2.3)

d
dt

(p(i)) = − W · p(i) + �(i)
p (D · p(i)

− D : p(i)p(i)p(i)) + p(i) × [�(i)]−1 · T(i)B (2.4)

where F(i)B and T(i)B are the Brownian force and torque, respectively,

�(i) and �(i) are hydrodynamic resistance matrices given by

�(i) = �{(X(i)
A − Y(i)

A )p(i)p(i) + Y(i)
A I} (2.5)

�(i) = �{(X(i)
C − Y(i)

C )p(i)p(i) + Y(i)
C I} (2.6)
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D and W are the stretching and vorticity tensors, respectively,

D = 1
2 (∇v + ∇vT ) (2.7)

W = 1
2 (∇v − ∇vT ) (2.8)

and the quantity �p is a function of the particle aspect ratio, � = a
b ,

according to

�p = �2 − 1
�2 + 1

(2.9)

Relations for the quantities X(i)
A , Y(i)

A , X(i)
C , and Y(i)

C are described in
Appendix B. Details of the calculation of the Brownian force and
torque are described in Appendix B and Phelan and Bauer (2007).

2.2. Model equations for RSF4

The geometry and processing parameters describing rectangular
frit inlet symmetrical FFF (RSF4) are shown in Fig. 1. The channel
has a throughput length L, a cross-flow direction thickness H, and a
thickness in the third direction W. The flow rate in the throughput
direction is Qx, and is independent of the flow rate in the cross-flow
direction, Qy. The fluid velocity vector has two non-zero components,
v = [vx,vy, 0]. The velocity field in the throughput direction, vx, is
assumed to be parabolic, and the cross-flow velocity, vy, is uniform.
These velocity components are given by

vx = 6uavg
y
H

(
1 − y

H

)
(2.10)

vy = −|vc,0| (2.11)

where uavg and |vc,0| are average velocities given by

uavg = Qx

HW
(2.12)

|vc,0| = Qy

LW
(2.13)

For these kinematics, the equations governing the motion of the
spheres are given by (Phelan and Bauer, 2009)

dR(i)x
dt

= vx(R(i)) +
F(i)B,x

�(i)
(2.14)

dR(i)y
dt

= vy(R(i)) +
F(i)B,y

�(i)
(2.15)

where vx and vy are given by Eqs. (2.10) and (2.11), respectively.
Likewise, the governing equations for rods are given by (Phelan and
Bauer, 2007)

dR(i)x
dt

= vx(R(i)) + v(i)B,x (2.16)

dR(i)y
dt

= vy(R(i)) + v(i)B,y (2.17)

d
dt

(p(i)x ) = 1
2

�vx
�y

p(i)y
[
1 + �(i)

p (1 − 2p(i)x p(i)x )
]

+ ṗ(i)B,x (2.18)

d
dt

(p(i)y ) = 1
2

�vx
�y

p(i)x
[
−1 + �(i)

p (1 − 2p(i)y p(i)y )
]

+ ṗ(i)B,y (2.19)

d
dt

(p(i)z ) = −�(i)
p p(i)x p(i)y p(i)z

�vx
�y

+ ṗ(i)B,z (2.20)

where the velocity gradient is given by

�vx
�y

= 6uavg
H

(
1 − 2y

H

)
(2.21)

and v B and ṗ
B
are the effective translational velocity and rate of

orientation change due to Brownian motion, whose components are
given in Appendix B. These equations are integrated forward in time
for each particle in the ensemble based on the initial conditions for
particle position using a first order Euler integration scheme. The
code is written in MATLAB.1

2.3. Boundary conditions

An important part of the scheme is the interaction of the particles
with the boundaries. The cross flow velocity continually drives the
particles towards the accumulation wall and the diffusion step being
random may also cause the particles to collide with or overstep this
boundary. To handle this, a no penetration boundary condition is
used. This is implemented in a two step integration process, where
first the advection step is carried out, the particles are checked for
collisionwith the upper and lower surfaces in the thickness direction,
and then the diffusion step is carried out, after which the particles are
again checked for collision. In practice, the results are independent
of whether the advection or diffusion is carried out first in the two-
step scheme. However, it was found that a simple one step scheme
where both advection and diffusion are combined gives deleterious
results that agree with neither theory nor experiment (Phelan and
Bauer, 2009). Since the length scale in the third direction in flow-FFF
is generally around 100 times larger than the cross flow direction and
there is no flow component in this direction, interaction of particles
with these walls is ignored.

For spheres, particles may only approach within a distance equal
to one particle radius of the upper and lower boundaries, as shown
in Fig. 5a. If it is determined that particles have advected or diffused
within one radius of a surface their positions are reset to the point
at which they collided. At subsequent time steps, such particles are
then allowed to undergo diffusion away from the surface, and x-
component of the velocity is given by vx = vx (ri), where ri is the
particle radius. A similar scheme is used for ellipsoids as shown
in Fig. 5b. In this case, the particles may only approach within a
distance � = a| sin	 cos
|, where (	,
) is the angular position of
the rod in spherical coordinates with respect to the center of mass
of the object. The orientation has a relationship with the spherical
coordinate system given by (Zhang et al., 2005)

p = [cos	, sin	 cos
, sin	 sin
] (2.22)

Thus, � = a|py|, and the boundary condition for the velocity is vx =
vx(�i).

3. Results

3.1. Calculation of equivalent diffusion

In terms of application to FFF, there are two choices for the diffu-
sion coefficient which governs the retention for ellipsoids. The Perrin
(1936) diffusivity applies to the case in which particles are randomly
oriented

D =
(

kT
6��a

)
1
s
ln
[
1 + s

�
]

(3.1)

1 Identification of a commercial product is made only to facilitate reproducibility
and to adequately describe procedure. In no case does it imply endorsement by the
National Institute of Standards and Technology (NIST) or imply that it is necessarily
the best product for the procedure.
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Fig. 5. Size exclusion boundary conditions used in the flow simulation: (a) spherical
particles and (b) ellipsoidal particles.

where s=
√
1 − �2. The other choice is the transverse diffusion coef-

ficient of the model, DT,⊥ =kT/�YA (see Appendix B). We show below
that the transverse coefficient best describes the elution behavior for
ellipsoids under conditions of low retention as the particles spend
the majority of the time oriented in the flow direction. If one equates
this value with the sphere diffusivity, i.e., Deq=kT/�=kT/�YA, one can
solve for the radius of the sphere of equivalent diffusivity in terms
of the ellipsoid size

req = a
16
3

s3

2s + (3s2 − 1)Z
(3.2)

where Z is a function of s given in Appendix B. Using Eq. (3.2), a table
of equivalent sphere and ellipsoid sizes for an ellipsoid diameter of
1nm (i.e., b = 0.5) is constructed and shown in Table 1.

3.2. Characteristic dispersion and elution

The simulation procedure and characteristic output are illustrated
using results for the elution of 49.64nm (i.e., approximately 50nm)
spheres and 250nm ellipsoids (case 9 in Table 1). The processing
parameters given in Table 2 are used throughout. For these size
particles under these conditions, the normal mode retention has a
value of R = 0.051. An ensemble size of 1000 particles was used in
all the calculations. Previous study has shown that the mean elution
time is relatively insensitive to ensemble size, and that an ensemble
of this size gives smooth elution profiles (Phelan and Bauer, 2007,
2009).

The first step in the simulation is to emulate the experimental
focusing step which concentrates the species at a particular point in
the flow device in order to obtain a more uniform elution profile. The
initial condition that results from this is illustrated in Fig. 6a for the
case of the 50nm spheres (the vertical axis has been greatly dilated
for clarity). In the focusing step, the output flow in the throughput
direction is reversed and balanced with the horizontal input flow
forcing all the particles to a common horizontal staring point in the
apparatus, xf , called the focus point. In the vertical direction, the

Table 1
Table of equivalent diffusivity sizes for ellipsoids and spheres, based on the transverse
diffusivity of the ellipsoids.

Equivalent diffusion for ellipsoids and spheres

Ellipsoid length (nm) Sphere diameter (nm) D (m2/s)

40 10.92 3.93×10−11

50 13.06 3.29×10−11

64 15.94 2.69×10−11

80 19.13 2.24×10−11

100 23.00 1.87×10−11

128 28.23 1.52×10−11

160 34.03 1.26×10−11

200 41.08 1.04×10−11

250 49.64 8.65×10−12

320 61.29 7.00×10−12

400 74.23 5.78×10−12

500 90.00 4.77×10−12

640 111.48 3.85×10−12

800 135.40 3.17×10−12

1000 164.59 2.61×10−12

1280 204.45 2.10×10−12

1600 248.90 1.72×10−12

2000 303.24 1.42×10−12

2500 369.66 1.16×10−12

3200 460.56 9.32×10−13

4000 562.16 7.64×10−13

5000 686.55 6.25×10−13

6400 857.00 5.01×10−13

8000 1047.77 4.10×10−13

Table 2
Processing parameters used in the simulations.

Processing parameters

Length, L (m) 0.25
Thickness, H (m) 0.00025
Width, W (m) 0.02
Focus point, xf (m) 0.01
T (K) 293
Viscosity (Pa s) 0.001
Q x (m3/s) 2.5×10−8

Q y (m3/s) 2.0×10−8

Q f (m3/s) 2.0×10−8

particles discretely follow the normalized equilibrium profile given
by Eq. (1.3), using the focusing flow rate (Table 1) to calculate the
distribution. The discrete distribution for 1000 particles is shown in
Fig. 6b (note that the x-axis of the plot only extends 1/10 if the way
through the gap). Since the distribution is exponential, the particle
concentration greatly increases as the profile nears the wall.

Fig. 6c shows the distribution of the spheres in the device un-
der throughput conditions when the particles have advanced ap-
proximately half-way down the channel. It can be seen from the
figure that once the flow starts, there is a great amount of disper-
sion in the throughput direction. This effect is due to both the non-
homogeneous initial condition in the y-direction, and the random
nature of the particle diffusion. A close-up of the particle cloud is
shown in the inset to Fig. 6c and indicates that while the particles
travel very close to the wall, very few of them touch the wall at a
given instant. Because of the dispersion, even for monodisperse sys-
tems there is a distribution of residence times.

A comparison of the elution profiles for the 50nm spheres and
250nm rods is shown in Fig. 7. Under these conditions, the distri-
butions are similar but not identical. The average particle residence
time for the spheres is 980.1 ± 46.1s, and the distribution exhibits
a slightly negative skewness of −0.2 and positive kurtosis of 0.46.
For the rods, the average particle residence time is 989.9 ± 46.1s,
and the distribution also exhibits a slightly negative skewness
of −0.13 but a negligible kurtosis of 0.01. For both systems, the
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Fig. 6. (a) Initial condition used for a simulation of 50nm spheres, with a focusing flow rate of 2.0×10−8 m3/s, for an ensemble of 1000 particles, (b) discrete concentration
profile for the initial condition of the 50nm spheres, and (c) illustration of particle dispersion for 50nm spheres approximately mid way through the elution. The inset
illustrates the fine details of the particle cloud.

particles exit in approximately ± 3 standard deviations about the
mean. The mean and standard deviations for the two systems are
essentially identical, but the fatter front end tail of the spheres is ev-
ident. The only other significant difference between the two particle
types under these normal mode conditions is the kurtosis indicat-
ing that the rods are closer to being normally distributed than the
spheres.

3.3. Calculations for equivalent diffusion

The simulation was used to model the elution of spheres and
ellipsoids for the particle sizes shown in Table 1. Fig. 8 compares the

mean elution time for spheres calculated from the simulation with
both normal mode theory and the steric inversion theory of Giddings
(Eq. (1.8)). Steric inversion is evident in the simulation results and
under these conditions, the steric transition occurs at a particle size of
460nm. The simulation begins to strongly deviate from normal mode
theory at a sphere size of about 200nm. However, the agreement
between the simulation and the steric theory is very good across the
entire range of particle sizes. On average, the simulation times are
within 5% of the steric theory, with the maximum deviation being
about 7.5% higher close to the steric transition point. This is a good
indicator that the boundary condition used captures the most of the
essential physics.
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Elution of Spheres and Rods of Equal Diffusivity in RSF4
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Fig. 7. Comparison of the elution behavior for 50nm spheres and 250nm ellipsoids.
The particles have equivalent diffusivity based on the transverse diffusion coefficient
of the model.

Steric Inversion for Spheres in RSF4 

0

5000

10000

15000

20000

25000

0

Diameter (nm)

E
lu

ti
on

 T
im

e 
(s

)

Simulation

Normal Mode

Steric Mode

200 400 600 800 1000 1200

Fig. 8. A comparison of simulation predictions for mean elution time of spheres in
RSF4 with normal mode and steric inversion theory.

Ellipsoid Elution Time (RSF4)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0

Length (nm)

E
lu

ti
on

 T
im

e 
(s

)

Simulation
Normal-Transverse
Normal-Perrin

200 400 600 800 1000 1200 1400

Fig. 9. A comparison of simulation predictions for ellipsoids in RSF4 with normal
mode theory using both the transverse and Perrin diffusivity values to calculate the
retention.

Fig. 9 shows the mean elution time calculated from the simu-
lation for ellipsoids vs. length and it is evident from the data that
steric inversion does not take place for rod-like particles as it does
for spheres. In the figure, the simulation data is compared with nor-
mal mode theory using both the transverse and Perrin diffusivity
values to calculate the retention. Under these highly retained condi-
tions, the curve for the transverse coefficient more closely matches
the simulation values. Agreement between the simulation and the
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Fig. 10. A comparison of steric deviation from normal mode theory for spheres and
ellipsoids plotted as a function of equivalent sphere size.

transverse normalmode curve is extremely good up to about 300nm,
but from that point there is a slow divergence, with the simulation
values becoming increasingly longer.

A comparison of the relative steric effects for the two particle
types is shown in Fig. 10, which plots the deviations from normal
mode theory for spheres and rods vs. the equivalent sphere diame-
ter. From a calibration standpoint, differences between the two be-
come appreciable at a sphere size of approximately 100nm which
corresponds to a rod size on the order of 500nm. While this is tech-
nically below the steric transition point for spheres, it shows that
steric effects begin to affect the results long before the actual inver-
sion takes place. The relative contributions of each to the total dif-
ference in elution time is relative equal until a sphere size of about
160nm (rod size = 1000nm). However, as this point the deviations
for spheres become sharper and more drastic than they are for rods.

4. Discussion

The primary objective of this work was to compare simulations
for particle elution in FFF for different particle types. The simulations
were performed using a Brownian dynamics simulation which takes
into account the drag force due to fluid flow, and the diffusion of the
particles due to Brownian motion, which are the dominant forces
under dilute solution conditions. The boundary conditions also play
an important role in the results, as will be discussed. The goal here
was two-fold. First, it was of interest to determine whether or not
spheres and rods of equal diffusivity elute at the same rate, and if not,
to find at what point the two systems show a divergence in behavior.
This is important becausemonodisperse spheres are used to calibrate
measurements of more complex materials in FFF, and equivalent
diffusion is used as the calibration measure. Second, it was largely
an unknown as to whether or not rod-like particles would exhibit
a similar steric inversion type phenomenon that spheres exhibit in
flow-FFF. This would potentially limit the utility of FFF as a length
sorting device for long nanotubes.

The first item studied was the elution of spheres with a size range
from approximately 10 to 1000nm, which is broad enough to span
the steric transition. The simulation predictions for mean elution
time are in excellent agreement with the steric inversion theory of
(Giddings, 1978, 2000), showing an average 5% deviation across the
entire spectrum of particle sizes. This is a fairly stringent test for the
simulation as the elution behavior transitions from completely nor-
mal mode separation at the low end of the particle size spectrum to
completely steric mode separation at the other. This gives us good
confidence that the appropriate physics is being captured, particu-
larly in regard to the boundary conditions. In addition, we note that
the simulation qualitatively captures the experimental observation
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that the elution distribution for spheres becomes increasingly narrow
as one advances higher into the steric mode region.

The first comparison between different particle types were the
elution fractograms for (the approximately) 50nm spheres and
250nm ellipsoids, which have equivalent diffusivity based on the
transverse diffusion coefficient of the ellipsoid. The results show
that under normal mode conditions, the elution distributions of the
two systems are essentially identical, as is expected by theory. The
only significant difference between the distributions was that the
kurtosis for the rod-like particles indicates that they are closer to
being normally distributed than the spheres, and the sphere distri-
bution has a manifestly larger front end tail than the rods. As the
mean residence time for the spheres is slightly shorter than for the
rods, this may be an early but weak manifestation of the different
size exclusion properties of the particles at the boundary which
causes the spheres to speed up, and the rods to align. However, cal-
culations in the normal mode region reasonably met expectations.

The simulations results for ellipsoids show a number of things
that were of importance to us. First, for rod-like particles steric
inversion akin to that observed for spheres of equal diffusivity is
not observed. Rather, the rods continue to elute by a normal mode
mechanism up to a size of approximately 500nm (based on our as-
sumption of a 1nm diameter), and up to this point the retention be-
havior is well described by the transverse diffusion coefficient of the
model. Past this point, the rods begin to elute increasingly slower
than predicted by normal mode theory. This trend continues up to
the maximum rod length simulated, 2000nm, with no sign of in-
version. Based on the underlying physics, it seems quite plausible to
speculate that this inverse steric effect occurs for rods due to align-
ment of the rods in the low velocity region along the accumulation
wall (whereas the spheres are sterically hindered from approaching
the wall). The reasoning for this is that as the particle size gets larger,
the rods rotate with decreased frequency due to shear and they also
become less diffusive, both translationally and rotationally. The de-
crease in both modes of rotation allows the particles to more closely
approach the wall (based on the steric exclusion boundary condi-
tion), and the decrease in translational diffusion limits their move-
ment away from the wall. Thus, as diffusion becomes less dominant
in flow-FFF, the elution behavior is strongly dictated by the shape
of the particle, the behavior of the particle in the flow field, and the
interaction between the particle and the boundary.

This finding has practical implications experimentally in regard to
the separation of nanotubes. First, the lack of steric inversion for rod-
like particles is in some ways a positive result as these systems will
not have overlapping size fractions, but can continue to be size sorted
with increasing length (of course, the required elution time will also
increase, but that is another matter). In addition, the different modes
of separation can potentially be used advantageously to eliminate
spherical impurities of equivalent diffusivity in systems of longer
rods, something which is much harder to do for shorter rods. On the
other hand, the results show that the calibration of such systems
with spheres of equivalent diffusivity can become flawed at large
sizes. At a certain point, the negative deviations from normal mode
behavior for the spheres and the positive deviations for the rods
lead to increasingly greater differences in mean elution times. While
the steric effect is not so sharp for rods as it is for spheres, the
divergent behavior means that the total difference between the two
can become quite considerable, as evidenced by the results in Fig. 10.
Of course, the exact size at which calibration breaks down depends
on experimental conditions, and the effect can be lessened by shifting
the steric inversion point for the spheres to larger sizes. This may,
however, limit operating conditions.

Another finding that comes out this study is that for small to
medium sized rods, the elution behavior correlates with transverse
diffusion coefficient of the ellipsoidal model, rather than the Per-
rin diffusivity (orientation averaged behavior), whereas, in an earlier

study we showed that the retention correlated with the Perrin diffu-
sivity (Phelan and Bauer, 2007). The difference can be attributed to
the relative value of the retention in the two studies. In the present
case, the retention values for the ellipsoidal particles were all in the
range R � 0.1. In the former case, the retention values were in the
range R � 0.2. This indicates that there is a transition in the domi-
nant mode of transverse diffusion behavior as the retention becomes
smaller, with alignment in the flow direction playing an increas-
ingly important role. This transition is consistent with the steric slow
down that is eventually observed at large rod sizes.

The particular results shown here are for the FFF variant dubbed
as RSF4—the simulation is also programmed to simulate the process-
ing variant known frit-inlet asymmetrical field-flow fractionation
(FIA-FFF) for both rectangular and trapezoidal cross-sections. How-
ever, it is not expected that such processing variations would have
any effect on the conclusions reached here. An additional factor is
that we only looked at ellipsoids of 1nm diameter, and tube size can
run from 1 to 4nm. However, this also probably does not have too
large an effect on the length interpretation reached here as rods of
4nm diameter have a length that is only about 20–25% shorter than
rods of equivalent diffusivity with 1nm diameter.

A number of items might be pursued in future work. The bound-
ary conditions used in the simulation for both spheres and ellip-
soids undoubtedly play a very important role in the results obtained
here. The different behavior of the particle types in the steric re-
gion is dictated by interaction of the particles at the boundary. At
larger sizes, spheres speed up due to size exclusion, while rods slow
down due to increasing alignment. The boundary conditions used for
both particle types are undoubtedly a simplification of the detailed
physics. For spheres, it is likely that the small amount of diffusivity
possessed by the larger particles and possibly even some very small
lift forces (which Giddings and others—Williams et al., 1992, 1994,
199a,b, 1997, 2001; Giddings et al., 1991; Zhang et al., 1994; Jensen
et al., 1996; Jiang et al., 1999—have shown can have an effect for
larger particles in FFF) act to eliminate friction with surface, and that
the velocity boundary condition is very appropriate. Based on the
agreement between the simulation and the steric inversion theory,
this would seem to be the case.

However, for the rod-like particles, the situation is more complex
and there is some additional physics wemaywant to consider to gain
a greater understanding of the steric effect. The boundary condition
used here hinders the translation movement of the particles near
the wall, but not the rotational movement. The importance of this is
that once the rotational movement is hindered, the cross flow then
creates a torque on the particles that will act to further align the
particles with the wall, and this torque is not presently modeled.
Thus, the present approximation represents a minimal alignment
condition and it is likely that the actual effect is stronger. It may be of
interest to incorporate this additional physics. On the experimental
side, it is desirable to test the flow code for rod-like particles against
experimental data. This is made somewhat difficult by the fact that
it is difficult to obtain monodisperse solutions of rod-like particles
akin to nanotubes, so simulations must be compared with fractions
which have a distribution of sizes. On-line size sensitive detection
such as multi angle light scattering can been used to measure rod
lengths as a function of elution times. Also, it may be possible to
collect fractions at different elution times and measure their lengths
by microscopy. Such measurements are underway in our laboratory.

Another interesting possibility that the calculations point to is
using steric effects to create a new mode of separation of rod-like
particles in flow-FFF by aligning the particles in the field direction,
transverse to the flow, for example, with a dielectric field. The calcu-
lations for the sterically hindered spheres indicate that this induces
a great speed up in the elution, and the same would be even truer
for rods due to their great length. This would be beneficial in two
ways. First, the elution of very long rods which are slow in normal
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mode elution, would be greatly accelerated. In addition, if nanotubes
of different type (i.e., semi-conductors and metallics) could be pref-
erentially aligned, it would provide a very nice means for producing
chiral based separations in flow-FFF.

5. Summary and conclusions

The elution of spheres and rods of equal diffusivity in FFF was
studied using a Brownian dynamics method. Results for spheres
show that the simulation correctly models the steric transition, and
the mean elution time behavior is well described by the steric inver-
sion theory of Giddings (1978, 2000) and Giddings and Myers (1978).
The results for rods show that nanotube size particles elute by a nor-
mal modemechanism up to a length of approximately 500nm (based
on a particle diameter of 1nm). At larger sizes, an inverse steric ef-
fect is observed in which larger rods move increasingly slower than
predicted by theory (in the present case up to lengths of 2000nm,
with no sign of inversion). The different behavior of the particle types
is dictated by interaction of the particles at the boundary. At larger
sizes, spheres speed up due to size exclusion, while rods slow down
due to increasing alignment. Spheres and rods of equivalent diffu-
sivity elute at the same rate up to a sphere size of approximately
90nm (500nm rods), at which point there are increasingly greater
differences in mean elution times. This affects the calibration of such
operations, but also shows that length based separations for nan-
otubes are not bound by the same limitation as occurs for spheres
due to steric inversion.

Appendix A. Properties of spheres

The linear momentum balance for the advection of a spherical
particle in a viscous flow can be written as

m
dU
dt

= −FD(t) + FB(t) (A.1)

where FD is the fluid–particle drag force, and FB is the random force
due to Brownian motion. For a spherical particle, the drag force is
given by

FD(t) = �(U − v) (A.2)

where � is Stokes' law drag coefficient given by

� = 6�r� (A.3)

r is the radius of the particle, � is the viscosity of the fluid, U is the
velocity of the particle, and v is the unperturbed velocity of the fluid
evaluated at the particle position. Under the assumption of negligible
inertia, i.e., m(dU/dt) ≈ 0, Eq. (A.1) can be written as

dR
dt

= v(R) + FB(t)
�

(A.4)

where R is the position vector of the particle.
In order for the dynamics in the computation of the random

Brownian force to satisfy the fluctuation–dissipation theorem, the
values for the Brownian force must satisfy the relationships

〈F(i)B (t)〉 = 0 (A.5)

〈F(i)B (t)F(j)B (t′)〉 = 2kT��ij�
(
t − t′

)
I (A.6)

where k is Boltzmann's coefficient, T is the absolute temperature, �ij
is the Kronecker delta, �(t − t′) is the dirac delta function, and the
operator 〈· · ·〉 indicates an average over the ensemble of the random
force.

For spheres, the Brownian force has magnitude

F(i)B = �(i)
√
2 · d · D(i)

�t
(A.7)

and the components along a Cartesian axis are given by (Satoh, 2003)

F(i)B,x = �(i)
√
2 · d · D(i)

�t
· r(i)x (A.8)

F(i)B,y = �(i)
√
2 · d · D(i)

�t
· r(i)y (A.9)

F(i)B,z = �(i)
√
2 · d · D(i)

�t
· r(i)z (A.10)

where d is the dimension of the system (1-D, 2-D, or 3-D), �t is the
time step used in the simulation, D(i) is the Stokes–Einstein diffusion
coefficient given by

D(i) = kT

�(i)
(A.11)

and [r(i)x , r(i)y , r(i)z ] are a normalized set of random numbers.

Appendix B. Properties of prolate spheroids

B.1. Orientation

The orientation vectors of the two perpendicular minor axes, p⊥1
and p⊥2

, can be described in terms of p. First, the orientation vector
p = [px, py, pz] is renormalized such that

p′ = 1
�
[px,py,pz] (B.1)

where �=
√
p2x + p2y + p2z . The components of the orientation vectors

p⊥1
and p⊥2

are given in terms of p and � by

p⊥1
=
⎡
⎣ −py√

p2x + p2y
,

px√
p2x + p2y

, 0

⎤
⎦ (B.2)

p⊥2
=
⎡
⎣ −pxpz

�
√
p2x + p2y

,
−pypz

�
√
p2x + p2y

,
p2x + p2y

�
√
p2x + p2y

⎤
⎦ (B.3)

B.2. Resistance matrices

For prolate spheroids the translational resistance matrix �(i) is

described in terms of the orientation vector p(i) by the relations

�(i) = �{(X(i)
A − Y(i)

A )p(i)p(i) + Y(i)
A I} (B.4)

where

XA

6�a
= 8

3
· s3

−2s + (1 + s2)Z
(B.5)

YA
6�a

= 16
3

· s3

2s + (3s2 − 1)Z
(B.6)

s is the ellipsoid eccentricity given by

s =
√
a2 − b2

a
(B.7)
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and Z is given in terms of s by

Z = ln
(1 + s)
(1 − s)

(B.8)

The rotational resistance matrix �(i) is defined by the relations

�(i) = �
{
(X(i)

C − Y(i)
C )p(i)p(i) + Y(i)

C I
}

(B.9)

XC

8�a3
= 4

3
· s3(1 − s2)
2s − (1 − s2)Z

(B.10)

YC
8�a3

= 4
3

· s3(2 − s2)
−2s + (1 + s2)Z

(B.11)

The resistance matrices have the analytical inverses

[�(i)]−1 = 1
�

{(
1

X(i)
A

− 1

Y(i)
A

)
p(i)p(i) + 1

Y(i)
A

I

}
(B.12)

[�(i)]−1 = 1
�

{(
1

X(i)
C

− 1

Y(i)
C

)
p(i)p(i) + 1

Y(i)
C

I

}
(B.13)

B.3. Brownian force

In order for the dynamics to satisfy the fluctuation–dissipation
theorem, the values for the Brownian forces and torques must satisfy
the relationships (Cobb and Byron, 2005; Cobb and Butler, 2006)

〈F(i)B (t)〉 = 0 (B.14)

〈T(i)B (t)〉 = 0 (B.15)

〈F(i)B (t)F(i)B (t′)〉 = 2kT�(i)�(t − t′) (B.16)

〈
T(i)B (t)T(i)B (t′)

〉
= 2kT�(i)�

(
t − t′

)
(B.17)

where k is Boltzmann's constant, T is the absolute temperature, �ij
is the Kronecker delta, �(t − t′) is the dirac delta function, and the
operator 〈. . .〉 indicates an average over the ensemble of the random
force.

The translational Brownian force term can be decomposed as
(Satoh, 2003)

[
�(i)
]−1 · F(i)B =

F(i)B,‖
�(i)‖

p(i) +
F(i)B,⊥1

�(i)⊥1

p(i)⊥1
+

F(i)B,⊥2

�(i)⊥2

p(i)⊥2
(B.18)

where the forces F(i)B,‖, F
(i)
B,⊥1 and F(i)B,⊥2 are the Brownian forces and

drag coefficients parallel and perpendicular to the orientation of the
ellipsoids with magnitude

F(i)B,|| = �(i)||

√
2 · d · D(i)

T,‖
�t

· r(i)|| (B.19)

F(i)B,⊥1 = �(i)⊥1

√
2 · d · D(i)

T,⊥1

�t
· r(i)⊥1 (B.20)

F(i)B,⊥2 = �(i)⊥2

√
2 · d · D(i)

T,⊥2

�t
· r(i)⊥2 (B.21)

[r(i)‖ , r(i)⊥1, r
(i)
⊥2] are a normalized set of random numbers, the scalar d is

the dimension of the system, and the translational drag and diffusion
coefficients are given respectively by the relations

�(i)‖ = �X(i)
A (B.22)

�(i)⊥1 = �(i)⊥2 = �(i)⊥ = �Y(i)
A (B.23)

D(i)
T,‖ = kT

�(i)‖
(B.24)

D(i)
T,⊥1 = D(i)

T,⊥2 = kT

�(i)⊥
(B.25)

In a similar manner, the Brownian torque can be decomposed as

[�(i)]−1 · T(i)B (t) =
T(i)B,‖
�(i)

‖
p(i) +

T(i)B,⊥1

�(i)
⊥1

p(i)⊥1
+

T(i)B,⊥2

�(i)
⊥2

p(i)⊥2
(B.26)

where the torques T(i)B,‖, T
(i)
B,⊥1 and T(i)B,⊥2 are the components parallel

and perpendicular to the orientation of the ellipsoids withmagnitude

T(i)B,|| = �(i)
||

√
2 · d · D(i)

R,||
�t

· r(i)|| (B.27)

T(i)B,⊥1 = �(i)
⊥1

√
2 · d · D(i)

R,⊥1

�t
· r(i)⊥1 (B.28)

T(i)B,⊥2 = �(i)
⊥2

√
2 · d · D(i)

R,⊥2

�t
· r(i)⊥2 (B.29)

[r(i)‖ , r(i)⊥1, r
(i)
⊥2] are a second normalized set of random numbers, and

the rotational drag and diffusion coefficients are given by

�(i)
‖ = �X(i)

C (B.30)

�(i)
⊥1 = �(i)

⊥2 = �(i)
⊥ = �Y(i)

C (B.31)

D(i)
R,|| = kT

�(i)
||

(B.32)

D(i)
R,⊥1 = D(i)

R,⊥2 = kT

�(i)
⊥

(B.33)

Thus, the term p(i) × [�(i)]−1 ·T(i)B (t) in Jeffrey's equation is given as

p(i) × [�(i)]−1 · T(i)B (t)

= p(i) ×
⎛
⎝T(i)B,‖

�(i)
‖

p(i) +
T(i)B,⊥1

�(i)
⊥1

p(i)⊥1
+

T(i)B,⊥2

�(i)
⊥2

p(i)⊥2

⎞
⎠

=
T(i)B,⊥1

�(i)
⊥1

p(i)⊥2
−

T(i)B,⊥2

�(i)
⊥2

p(i)⊥1
(B.34)

B.4. Brownian translational velocity and orientation

The effective velocity due to Brownian translational diffusion, vB,
is given by

v(i)B,x =
F(i)B,‖
�(i)‖

p(i)x +
F(i)B,⊥1

�(i)⊥1

p(i)⊥1,x +
F(i)B,⊥2

�(i)⊥2

p(i)⊥2,x (B.35)
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v(i)B,y =
F(i)B,‖
�(i)‖

p(i)y +
F(i)B,⊥1

�(i)⊥1

p(i)⊥1,y +
F(i)B,⊥2

�(i)⊥2

p(i)⊥2,y (B.36)

v(i)B,z =
F(i)B,‖
�(i)‖

p(i)z +
F(i)B,⊥1

�(i)⊥1

p(i)⊥1,z +
F(i)B,⊥2

�(i)⊥2

p(i)⊥2,z (B.37)

The effective rate of change due to Brownian rotational diffusion,
ṗ
B
, is given by

ṗ(i)B,x =
T(i)B,⊥2

�(i)
⊥2

p(i)⊥1,x −
T(i)B,⊥1

�(i)
⊥1

p(i)⊥2,x (B.38)

ṗ(i)B,y =
T(i)B,⊥2

�(i)
⊥2

p(i)⊥1,y −
T(i)B,⊥1

�(i)
⊥1

p(i)⊥2,y (B.39)

ṗ(i)B,z =
T(i)B,⊥2

�(i)
⊥2

p(i)⊥1,z −
T(i)B,⊥1

�(i)
⊥1

p(i)⊥2,z (B.40)
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