
Subscriber access provided by NATL INST STANDARDS & TECH

Macromolecules is published by the American Chemical Society. 1155 Sixteenth Street
N.W., Washington, DC 20036

Article

Microdomain Ordering in Laterally Confined Block Copolymer Thin Films
August W. Bosse, Carlos J. Garca-Cervera, and Glenn H. Fredrickson

Macromolecules, 2007, 40 (26), 9570-9581• DOI: 10.1021/ma071866t • Publication Date (Web): 29 November 2007

Downloaded from http://pubs.acs.org on February 11, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

• Supporting Information
• Links to the 2 articles that cite this article, as of the time of this article download
• Access to high resolution figures
• Links to articles and content related to this article
• Copyright permission to reproduce figures and/or text from this article

http://pubs.acs.org/doi/full/10.1021/ma071866t


Microdomain Ordering in Laterally Confined Block Copolymer Thin
Films

August W. Bosse,† Carlos J. Garcı́a-Cervera,‡ and Glenn H. Fredrickson*,§

Department of Physics, UniVersity of California, Santa Barbara, California 93106, Polymers DiVision,
National Institute of Standards and Technology, Gaithersburg, Maryland 20899, Department of
Mathematics, UniVersity of California, Santa Barbara, California 93106, Department of Chemical
Engineering, UniVersity of California, Santa Barbara, California 93106, Department of Materials,
UniVersity of California, Santa Barbara, California 93106, and Materials Research Laboratory,
UniVersity of California, Santa Barbara, California 93106

ReceiVed August 17, 2007; ReVised Manuscript ReceiVed October 19, 2007

ABSTRACT: We examine the effects of small-scale, hexagonal, lateral confinement on microdomain ordering
in diblock copolymer thin films using self-consistent field theory simulations. Specifically, we examine a hexagonal
confinement well with side lengthL approximately equal to five cylindrical microdomain lattice spacings. The
commensurability constraints of the small-scale, lateral confinement, coupled with surface-induced effects allow
the confining well to have a significant effect on the perfection of microdomain order. We identifycommensurability
windowsin L that depend on the segment-wall interaction and the “temperature” annealing rate (modeled as a
Flory ø ∼ 1/T annealing rate). The effect of added majority-block homopolymer is also explored.

1. Introduction

Block copolymer (BCP) thin films represent a promising tool
for generating sub-optical lithographic patterns,1-3 and as such,
ordering of hexagonally packed microdomains in BCP thin films
has received much attention in recent years.4-8 In particular,
there is considerable technological interest in using self-
assembled BCP microdomain arrays in next-generation, sub-
micrometer fabrication techniques.9-11 A BCP thin film con-
sisting of a large array of microphase-separated spheres or
cylinders can be used to pattern a substrate yielding a large
array ofO(10 nm ) dots. Such dot arrays are potentially useful
in next generation high-density magnetic media and semicon-
ductor devices.9 However, if such devices are to be realized,
the dot arrays must exhibit high uniformity and order. This
requirement translates into the need for large, quasi-2D arrays
of uniform, well-ordered BCP microdomains.

Unfortunately, it is difficult to generate large, 2D arrays of
uniform, well-ordered microdomains. While reasonably ordered
micrometer-sized grains are often possible with exceptionally
long thermal annealing times, recent work by Segalman
et al. suggests that large 2D arrays of BCP microdomains
exhibit equilibrium defect populations and defect-mediated
melting transitions consistent with the Kosterlitz-Thouless-
Halperin-Nelson-Young (KTHNY) theory of 2D melting.4

Accordingly, defect formation in large 2D systems appears to
be unavoidable.

There has also been substantial work on enhancing order in
thin film block copolymer systems. Possible techniques for
inducing order include applied external fields (e.g., electric,
sheer, etc.) and lateral confinement, among others (for reviews

of the various methods of enhancing order in BCP material,
see refs 1-3). For example, Segalman et al. have examined
the effects of a boundary on the ordering of hexagonally packed
microdomains.5,6 In short, they observed increased microdomain
order inside of a region extending approximately 4.75µm from
the boundary [for the polystyrene-b-(2-vinylpyridine) system
studied, withN ) 670 andfPVP ) 0.129, this is approximately
160 microdomain lattice spacings]. In addition, Ross and co-
workers have examined the effects of ordering and com-
mensurability in small-scale confining channels and near
confining corners.3,12-14 These results suggest that template-
directed assembly, and in particular lateral confinement repre-
sents a promising tool for controlling microdomain order in BCP
systems.

In this paper, we present a computational study of small-
scale, lateral confinement as a means of controlling microdomain
order in thin film BCP systems. Motivated by recent work on
hexagonally confined BCP thin films15-18 and planned experi-
ments involving small-scale confinement,19 we focus on a
hexagonally confined, cylinder-forming AB diblock copolymer
thin film, both with and without added A homopolymer. The
lateral size of the hexagonal confining well is selected such that
nine cylinder rows fit across the hexagon (or, equivalently, five
microdomains along an edge, giving a total of 61 enclosed
microdomains). This size roughly corresponds to proposed
experimental confinement sizes.19 The size of the hexagonal
confining well can be made to be commensurate with the
hexagonal microdomain lattice formed by the bulk microphase-
separated BCP. It is reasonable to suppose that the confinement
will have a significant effect on ordering in the relatively small
hexagonal array of microdomains.

The confined BCP system was simulated using a self-
consistent field theory (SCFT) for polymer melts (for a more
detailed account of SCFT, see ref 20) where the hexagonal
confinement well was modeled as a fixed particle density
(similar to the “masking” technique introduced by Matsen21).
In our study, we varied the side length of the confining hexagon
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and the sign of the segment-wall interaction to achieve either
A- or B-block wetting.

We demonstrate that the side length has an appreciable effect
on the ordering of the confined microdomains. Furthermore,
we identify a “commensurability window” of side lengths such
that a near-perfect, small-scale hexagonal array of microdomains
is reproducibly obtained within the well. We examine the
dependence of the window’s width on the polymer-wall
interaction, the temperature annealing rate (modeled via the
Flory ø parameter), and the fraction of majority-block A
homopolymer added to the copolymer. Finally, we explore the
mechanisms by which the surfaces of the well induce order
within the hexagonal domain.

Our presentation is outlined as follows. In section 2, we
present the model and SCFT formalism for an AB+ A + wall
system. In section 3, we present our results and discussion.
Specifically, in section 3.1, we examine the case of a quench
to a fixed Floryø parameter (analogous to a quench from infinite
temperature to a temperature corresponding toø). In section
3.2, we examine the effects of controlled temperature annealing
(i.e., ø annealing) during the SCFT relaxation. In section 3.3,
we examine and discuss the effects of a majority-block
homopolymer additive. And finally, in section 4, we close with
a short summary and concluding remarks.

2. Model and Methods

A blend of AB block copolymers, A homopolymers, and fixed
wall “particles” is modeled using a standard Gaussian thread
model with a Flory-type segment-segment and segment-wall
interaction. The fixed wall field and segment-wall interaction
are modeled using a method similar to that introduced by
Matsen.21 In section 2.1, we outline the AB+ A + wall model,
and in section 2.2, we outline our numerical methods.

2.1. Model and SCFT.We consider an incompressible melt
of nd monodisperse AB diblock copolymers,nh monodisperse
A homopolymers, andnw wall “particles” in a volumeV. The
fraction of A-segments in the AB diblock is denotedf, the index
of polymerization of the AB diblock is denotedNd ) N, and
the index of polymerization of the A-homopolymer is denoted
Nh ) RN, so that the parameterR is defined by the ratioR ≡
Nh/N.

Each polymer is modeled as a continuous Gaussian chain
characterized by space curvesrdi(s) andrhj(s), wherei ) 1, 2,
..., nd and j ) 1, 2, ...,nh are polymer indices. For the AB
diblock, the contour variables runs froms ) 0 at the beginning
of the A-block end tos ) 1 at the end of the B-block end, with
s) f corresponding to the end of the A block and the beginning
of the B block. For the A homopolymer,s runs froms ) 0 to
s ) R. We assume the statistical segment lengths of the A and
B segments are equal,bA ) bB ) b. Therefore, the unperturbed
radius of gyration of the AB diblock is given byRg0

2 ) b2N/6.
The volumeν0 occupied by A segments, B segments, and wall
“particles” is given byν0 ) 1/F0, whereF0 is the average total
segment+ wall density:

The AB+ A + wall system is characterized by four microscopic
densities. The microscopic diblock A-segment density is given
by

the microscopic homopolymer A-segment density is given by

and the microscopictotal A-segment density is defined by

Likewise, the microscopic B-segment density is given by

Finally, the microscopic wall “particle” densityFw(r ) is a
predetermined,fixed function with 0 e Fw(r ) e F0, for all r .
We use this function to model a confinement well, and we often
use the termwall field to refer to the microscopic wall “particle”
densityFw(r ). Melt incompressibility requires that the micro-
scopic densities locally sum up to the average total segment+
wall density:

Alternatively, we can express eq 6 as

where we have introduced thefixed total segment density

In the canonical ensemble, the partition function of the AB+
A + wall system is given by functional integrals over all
configurations of all the polymer space curves:

where

and

Here ø is the Flory parameter for A-segment-B-segment
interactions,øwA is the Flory-like parameter for wall-A-segment
interactions, andøwB is the Flory-like parameter for wall-B-
segment interactions. In eq 9,δ[F̂A + F̂B + Fw - F0] is a δ
functional that enforces the incompressibility of the polymer
melt at all points in the domain.

Note that

where

F0 ≡ ndN + nhRN + nw

V
(1)

F̂Ad(r ) ) N ∑
i)1

nd ∫0

f
ds δ(r - rdi(s)) (2)

F̂Ah(r ) ) N ∑
j)1

nh ∫0

R
ds δ(r - rhj(s)) (3)

F̂A(r ) ) F̂Ad(r ) + F̂Ah(r ) (4)

F̂Bd(r ) ) N ∑
i)1

nd ∫f

1
ds δ(r - rdi(s)) (5)

F̂A(r ) + F̂B(r ) + Fw(r ) ) F0 (6)

F̂A(r ) + F̂B(r ) ) F(r ) (7)

F(r ) ) F0 - Fw(r ) (8)

Z ) ∫ ∏
i)1

nd

δrdi ∏
j)1

nh

δrhj δ[F̂A + F̂B + Fw - F0]e
-U0-UI

(9)

U0 )
1

4Rg0
2

∑
i)1

nd ∫0

1
ds|drdi(s)

ds
|2

+
1

4Rg0
2

∑
j)1

nh ∫0

R
ds|drhj(s)

ds
|2

(10)

UI ) 1
F0

∫V
dr [øF̂A(r )F̂B(r ) - øwAFw(r )F̂A(r ) -

øwBFw(r )F̂B(r )] (11)

øwAF̂A + øwBF̂B ) øwF̂- +
øwA

2
F̂+ +

øwB

2
F̂+ (12)
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and we have dropped the explicitr dependence for clarity. Using
eqs 12-14, and explicitly enforcing the incompressibility
constraint,F+(r ) ) F(r ), gives

up to a constant shift in energy. We now write the interaction
terms as follows (again, we elect to drop explicitr dependence),

We also represent theδ functional in eq 9 as a functional
integral:

After some manipulations, we arrive at the following expression
for the partition function in terms of the conjugate potential
fields W( ) Nw(:

where

HereC ≡ F0/N, φ(x) ≡ F(x)/F0, φw(x) ≡ Fw(x)/F0, WA ) iW+
- W-, andWB ) iW+ + W-. Furthermore,all lengths have
been scaled by the radius of gyration of the AB diblock
copolymer wherex ) r /Rg0; for example, the system volume is
expressed as a dimensionless variable,V/Rg0

3 f V. The quantity
φh ≡ (1/V) ∫V dx φ(x) ) (ndN + nhRN)/(ndN + nhRN + nw)
represents the averagesegmentvolume fraction of theentire
system (i.e., the volume fraction of the system that corresponds
to polymer segments), and the quantityæh ) nhRN/(ndN +
nhRN) represents the fraction of segments that belong to A
homopolymers.

The single-chain partition functionsQd[WA, WB] andQh[WA]
can be expressed in terms of the “forward propagators”qd(x, s;
[WA, WB]) and qh(x, s; [WA,WB]) as follows:

and

whereqd(x, s; [WA, WB]) satisfies

subject to the initial conditionqd(x, 0; [WA,WB]) ) 1 with

andqh(x, s; [WA, WB]) satisfies

subject to the initial conditionqh(x, 0; [WA, WB]) ) 1. The
average microscopic volume fractionsφAd, φAh, andφB can be
expressed as integrals over the propagators:

and

where the “backward propagator”qd
†(x, s; [WA,WB]) satisfies

the following differential equation

subject to the initial conditionqd
†(x, 0; [W(]) ) 1 with

In the formalC f ∞ limit, we use the saddle-point approxima-
tion to find mean-field configurations of the conjugate fields
W(. The saddle point equations are given by the standard
expressions:

and

whereW̃( are the saddle point values ofW(. The saddle point

øw ≡ øwA - øwB

2
(13)

F̂( ) F̂A ( F̂B (14)

UI ) - ø
4F0

∫V
dr [F̂-(r ) + 2

øw

ø
Fw(r )]2

(15)

e-UI ) exp[ ø
4F0

∫V
dr (F̂- + 2

øw

ø
Fw)2] )

∫ δw-
exp{∫V

dr [(F̂- + 2
øw

ø
Fw)w- -

F0

ø
w-

2]} (16)

δ[F̂+ - F] ) ∫ δw+ exp[-i ∫V
dr (F̂+ - F)w+] (17)

Z ) ∫ δW+δW- e-H[W+,W-] (18)

H[W+, W-] ) C∫V
dx [ 1

øN
W-

2(x) - iφ(x)W+(x) -

2
øw

ø
φw(x)W-(x)] - C(1 - æh)φhV log Qd[WA, WB] -

C
æhφhV

R
log Qh[WA] (19)

Qd[WA, WB] ) 1
V∫ dx qd(x, 1; [WA, WB]) (20)

Qh[WA, WB] ) 1
V∫ dx qh(x, R; [WA, WB]) (21)

∂

∂s
qd(x, s; [WA, WB]) )

∇2qd(x, s; [WA, WB]) - ψd(x, s)qd(x, s; [WA, WB]) (22)

ψd(x, s) ) {WA(x), 0 < s < f
WB(x), f < s < 1 (23)

∂

∂s
qh(x, s; [WA, WB]) )

∇2qh(x, s; [WA, WB]) - WA(x)qh(x, s; [WA, WB]) (24)

φAd(x; [WA, WB]) )
(1 - æh)φh

Qd
×

∫0

f
ds qd(x, s; [WA, WB])qd

†(x, 1 - s; [WA, WB]) (25)

φAh(x; [WA, WB]) )
æhφh
RQh

∫0

R
ds×

qh(x, s; [WA, WB])qh(x, R - s; [WA, WB]) (26)

φB(x; [WA, WB]) )
(1 - æh)φh

Qd
×

∫f

1
ds qd(x, s; [WA, WB])qd

†(x, 1 - s; [WA, WB]) (27)

∂

∂s
qd

†(x, s; [WA, WB]) ) ∇2qd
†(x, s; [WA, WB]) -

ψd
†(x, s)qd

†(x, s; [WA, WB]) (28)

ψd
†(x, s) ) {WB(x), 0 < s < 1 - f

WA(x), 1 - f < s < 1 (29)

δH[W+, W-]

δW+(x) |
W̃(

) iC[φAd(x; [W̃(]) + φAh(x; [W̃(]) +

φB(x; [W̃(]) - φ(x)] ) 0 (30)

δH[W+, W-]

δW-(x) |
W̃(

) C[(2/øN)W̃-(x) - 2(øw/ø)φw(x) -

φAd(x; [W̃(]) -φAh(x; [W̃(]) + φB(x; [W̃(])] ) 0 (31)
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value ofW+ is strictly imaginary, and the saddle point value of
W- is strictly real.22,20 Accordingly, we define a real valued
pressure field ¥ ) iW̃+ ) -Im[W̃+] and a real valued
compositionfield W ) W̃- ) Re[W̃-]. This gives the following
saddle point equations:

and

We solve these equations by introducing a fictitious “time”
variablet and relaxing the fields forward in time in the direction
of the thermodynamic forces. This “steepest descent” saddle
point search is formally given by

Clearly, eqs 32 and 33 are satisfied when eqs 34 and 35 are
stationary.

The fictitious time, continuous steepest descent search given
by eqs 34 and 35 is not the only possible SCFT update capable
of yielding saddle point solutions. For example, quasi-
dynamic23,24 variants of the steepest descent search exist that
can provide qualitative and in some cases quantitative informa-
tion about the kinetic pathway to equilibrium, albeit at the
expensive of significantly increased computational cost. A
discussion of such “dynamic SCFT” methods is beyond the
scope of this paper; specifically, here we are interested in
equilibrium and metastable saddle point configurations of the
BCP melt. The steepest descent search summarized by eqs 34
and 35 has been demonstrated to be an effective means of
identifying physically relevant saddle point solutions20 and will
thus be adopted for this study.

This completes the standard framework for the SCFT of an
AB + A + wall system. The mean-field configurations¥ and
W are found by iterating the following scheme:

1. Initialize the pressure and composition fields,¥(x, 0) and
W(x, 0).

2. Solve the modified diffusion equations forqd(x, s),
qd

†(x,s), andqh(x,s).
3. CalculateQd, Qh, φAd, φAh, andφB.
4. Update¥(x, t) andW(x, t) by integrating eqs 34 and 35

forward over a time interval∆t.
5. Repeat steps 2-5 until a convergence criterion has been

met.
More complete details of the Gaussian thread model and

polymer SCFT can be found in ref 20.
The wall fieldφw(x) ) Fw(x)/F0 is a fixed function ofx that

is specified before starting the SCFT simulations. We select
φw(x) to be a regular hexagonal pattern centered about the
midpoint of the simulation space. The interior of the hexagon
is set toφw(x) ) 0, and the exterior of the hexagon is set to
φw(x) ) 1, with a narrow, smooth transition region connecting
the interior and exterior. The incompressibility constraint eq 6
restricts polymer segments to the interior of the hexagon. In
other words, the fixed wall fieldφw(x) acts as a confinement
well for the segments of the fluid.

In order to minimize the number of required Fourier modes
needed to resolve theφw(x) ) 0 toφw(x) ) 1 transition region,

and in order to retain the stability characteristics of standard
saddle point search methods (to be discussed below), the
transition is selected to be a hyperbolic tangent form:

Here z and δ are factors used to define the transition region
and set the width of the transition region, respectively, and
d⊥(x) is defined as the distance from the pointx to the nearest
edge of the boundary of the hexagonal well. The boundary of
the hexagonal well is defined to be at the midpoint of the smooth
transition region (i.e., whereφw(x) ) 1/2). We selectz such
that the wall transition region is defined to begin atφw(x) )
0.01 and end atφw(x) ) 0.99 with a width ofδ. This givesz )
log(99) ≈ 4.5951. We do not expect the specific value ofδ
selected to affect the results, provided thatδ is approximately
equal to the AB interface width (i.e., a fraction of 1Rg0).

2.2. Numerical Methods.In order to examine the effects of
lateral confinement on the BCP melt, we simulate the AB+ A
+ wall system in 2D. We sample all relevant fields on a square,
periodic lattice inx andy:

wherenx andny are the number of lattice points in thex andy
directions, respectively,∆x ) Lx/nx and∆y ) Ly/ny are the grid
spacings,Lx is the length of the system in thex direction, and
Ly is the length of the system in they direction. We will
subsequently use a single, bold-face indexi to represent the
ordered pair (i, j). It is important to note that the above-defined
discretization represents a uniform collocation grid allowing for
the use of fast Fourier transforms (FFTs).

The system is assumed to be uniform but finite in thez
direction, and the film thickness is denotedLz. Under this
assumption, the film thickness always appears as a constant
factor in combination withC. In SCFT, the factor ofC, and
thusLz, is absorbed into the relaxation time step∆t, discussed
below. With the above-defined simulation space, the volume
of the system is denotedV ) LxLyLz and the total number of
lattice points is given byM ) nxny.

Provided that the top and bottom surfaces do not have a
selective interaction with the BCP melt, our simulation meth-
odology should provide useful insight into the effects of small-
scale,lateral confinement on BCP microdomain ordering. In
order to simulate more complicated situations where the top
and bottom surfaces of a BCP film have a selective interaction
with the two blocks, a full 3D simulation framework would be
required.

We also discretize the chain contour variables:

wherens is the number of steps along the polymer backbone,
and ∆s ) 1/ns is the contour step size. The fictitious time
variablet is also discretized:

The value of∆t selected depends on the method used to solve
the relaxation equations (discussed below), andnt defines the
total number of SCFT iterations used to relax the saddle point
equations.

In step 2 of the SCFT algorithm, outlined in section 2.1, we
solve the modified diffusion equations using the pseudo-spectral

φAd(x) + φAh(x) + φB(x) - φ(x) ) 0 (32)

(2/øN)W(x) - 2(øw/ø)φw(x) - φAd(x) - φAh(x) + φB(x) ) 0
(33)

∂

∂t
¥(x, t) )

δH[¥, W]

δ¥(x, t)
(34)

∂

∂t
W(x, t) ) -

δH[¥, W]

δW(x, t)
(35)

φw(x) ) 1
2 [1 + tanh(z d⊥(x)

δ )] (36)

xi ) i∆x i ) 0, ...,nx - 1
yj ) j∆y j ) 0, ...,ny - 1 (37)

sm ) m∆s, m ) 0, ...,ns (38)

tn ) n∆t, n ) 0, ...,nt (39)
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operator splitting method developed by Rasmussen and co-
workers.25,26 That is, motivated by both the formal solution

with the initial conditionq(x, 0) ) 1, and the Baker-Campbell-
Hausdorff identity,27 we perform anO(∆s2) splitting of e∆sL:

whereL ≡ ∇2 - ψ(x, s). The functionψ(x, s) is diagonal in
real space, and the Laplacian operator is diagonal in Fourier
space; thus, e-∆sψ(x,s)/2 is evaluated in real space and e∆s∇2 in
Fourier space. As mentioned above, the collocation grid allows
us to move between real and Fourier space using FFTs.

The time integration of eqs 34 and 35 is performed using an
explicit, forward-Euler algorithm:

where superscriptsn represent discrete steps in the time variable
t. As indicated above,C and Lz are constant factors in the
HamiltonianH[¥n, Wn]; therefore, they represent a modification
to the Euler time step∆t. Henceforth, we use the symbol∆t to
represent the total time step∆tCLz.

We use as a convergence criterion theL1 norm of the sum of
the thermodynamic forces at SCFT iterationn:28

Clearly, a completely relaxed saddle point solution gives
|δH/δ¥ + δH/δW|1 ) 0.

3. Results and Discussion

In order to examine how hexagonal, lateral confinement
affects ordering in block copolymer thin films, we simulated
AB + A + wall systems in 2D using SCFT, as discussed above.
The results of these simulations are presented below.

For all simulations we setf ) 0.7swith this choice we identify
the A block as the majority block.39 For the quenched simulations
presented in section 3.1,øN was held fixed atøN ) 17. This
value of f andøN yields saddle point solutions corresponding
to a hexagonally ordered cylindrical microphase. For theøN
annealing simulations presented in section 3.2,øN was ramped
from øN ) 12 to the final value oføN ) 17. The value oføwN
was selected to beøwN ) 17, øwN ) 0, or øwN ) -17 for
A-attractive, neutral, or B-attractive walls, respectively. For the
AB diblock simulations (sections 3.1 and 3.2), the A homopoly-
mer fraction was set toæh ) 0, and for the AB+ A blend
simulations (section 3.3), the A homopolymer fraction was set
to æh ) 0.20, indicating that the blend is 20% A homopolymer.
The A homopolymer length was selected to be 35% percent of
the copolymer length,R ) 0.35.

The system size was chosen asLx ) Ly ) 48; this system
size allowed us to explore a wide range of possible hexagon

sizes, up to a maximum hexagon side length of approximately
L ) 24. The wall transition region width was selected to beδ
) 1. We were interested in hexagon side lengths that yielded
nine rows of microdomains across the hexagon, or equivalently
five microdomains along an edge. There are exactly 61
microdomains contained in such a confining hexagon. With this
in mind we focused on a range of hexagon side lengths between
L ) 14.00 andL ) 23.00.

The spatial resolution was selected in order to resolve both
the A-B interfaces and the wall transition region. We found
that ∆x ) ∆y ) 0.25 was a sufficient resolution for our
purposes; therefore, we setnx ) ny ) 192. The number of
polymer contour steps was selected to bens ) 50. These
parameters allowed for sufficiently accurate evaluation of the
energy functional (Hamiltonian)H[¥, W] in order to differentiate
between the various systems of interest (specifically, the various
values of hexagon side lengthL).

For all simulations presented here, the Euler SCFT time step
was selected to be∆t ) 2. Larger time steps resulted in stability
problems. The total number of SCFT iterations was set tont )
20 000, unless otherwise indicated. For the Euler update
discussed above, with∆t ) 2 andnt ) 20 000, we were able to
determine the saddle point solutions¥ andW with |δH/δ¥ +
δH/δW|1 ) O(10-5). Using the above simulation parameters
(nx ) ny ) 192,ns ) 50, andnt ) 20 000), the average single
simulation run time was approximately 7 h on a dedicated
compute node. A total of 935 full production runs were carried
out giving a total of approximately 6545 compute-hours.40

In order to identify the window inL that yielded a well-
ordered array of microdomains (henceforth called thecom-
mensurability window), we measured the average standard
deviation (SD) of nearest neighbor (NN) microdomain separa-
tions inside the confining hexagon〈σ〉. This average was
calculated from five or ten independent simulations, started from
five or ten distinct random initial conditions (we used ten
independent initial conditions for our quenched simulations and
five independent initial conditions for our annealed simulations).
When defects form, the nearest neighbor separation between
microdomains will change locally (near the defects). Therefore,
we expect to see a defect-induced jump in the standard deviation
of nearest neighbor microdomain separations. We use the
notationΛN(øwN) to represent the commensurability window
with exactlyN enclosed microdomains for a specific value of
øwN.

For side lengthsL outside of the commensurability window,
we observed microdomain defect formation as a result of
deviations from exactly N ) 61 enclosed microdomains
discussed above. Accordingly, a deviation from 61 enclosed
microdomains indicates a defective array. However, the jump
in 〈σ〉 is much more abrupt (nearly an order of magnitude in
〈σ〉 over a change in hexagon side length of∆L ≈ 0.50), and
thus we use〈σ〉 as our primary metric for identifying com-
mensurability windows.

3.1. AB Quenched Simulations.Here we present results for
a quench toøN ) 17 (modeled as a SCFT relaxation from
random initial conditions at a fixedøN ) 17) for the AB +
wall system presented above. There is no A homopolymer
present in this system, so we setæh ) 0.

In Figure 1, we present graphs of〈σ〉 vsL for the AB diblock
system with an A-attractive wall (øwN ) 17), neutral wall (øwN
) 0), and B-attractive wall (øwN ) -17). Recall, forf ) 0.7,
the A block is the majority block. From Figure 1a we see that
the commensurability window for the A-attractive wall is given
by Λ61(17) ) [15.75, 17.00]. This window defines the region

q(x, s + ∆s) ) e∆sLq(x, s) (40)
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in L inside which we observed a well-ordered, hexagonal array
of 61 microdomains forall 10 sampled random initial conditions
and high uniformity in microdomain size and shape. ForL inside
of the commensurability window〈σ〉 ≈ 0.05, and outside the
window 〈σ〉 is larger by approximately 1 order of magnitude.
From Figure 1b we see that the commensurability window for
the neutral wall is given byΛ61(0) ) [18.50, 18.75]. Finally,
from Figure 1c, we see that the commensurability window for
the B-attractive wall is given byΛ61(-17) ) [18.75, 19.25 ].

In Figure 2, we present representative compositions profiles
and their corresponding Voronoi diagrams for A-attractive,
neutral, and B-attractive walls. The composition profiles and
Voronoi diagrams indicate the presence of defects for values
of L outide ofΛ61(øwN) and the presence of a well-ordered array
for values ofL inside ofΛ61(øwN).

It is important to note that the commensurability windows
identified for the neutral and B-attractive walls are considerably

smaller than the commensurability window identified for the
A-attractive wall. In fact, the commensurability window for the
A-attractive wall is 2.5 times larger than the window for the
B-attractive wall and five times larger than the window for
the neutral wall. Furthermore, there appears to be a tendency
for the defects to form along the confining wall forL <
min[Λ61(øwN)] and in the center of the hexagon forL >
max[Λ61(øwN)]. The above identification of commensurability
windows may have important technological applications. The
simulation results suggest that if one can engineer a confining
wall that attracts the majority block, then one may be able to
exploit wider tolerances inL when constructing a confining
hexagon.

Figure 1. Graphs of〈σ〉 vs L for an AB melt after a quench from
random initial conditions toøN ) 17 for (a) an A-attractive wall (øwN
) 17), (b) a neutral wall (øwN ) 0), and (c) an B-attractive wall (øwN
) -17). For each case, there is a region inL (the commensurability
window) inside which there is a perfect array of 61 hexagonally ordered
microdomains.

Figure 2. Representative composition profiles (lighter shades cor-
respond to larger values ofφA) and their corresponding Voronoi
diagrams (hexagon in white, pentagon in gray, and heptagon in black)
for (a-c) an A-attractive wall, (d-f) a neutral wall, and (g-i) a
B-attractive wall. For the A-attractive wall, we plot composition profiles
and their corresponding Voronoi diagrams for (a)L ) 15.00, (b)L )
16.25, and (c)L ) 17.75. For the neutral wall, we plot composition
profiles and their corresponding Voronoi diagram for (d)L ) 17.75,
(e) L ) 18.50, and (f)L ) 19.50. Finally, for the B-attractive wall, we
plot composition profiles and their corresponding Voronoi diagram for
(g) L ) 18.00, (h)L ) 19.00, and (i)L ) 20.00.
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It is not immediately obvious why the commensurability
window for a majority-block-attractive wall should be wider
than the window for neutral or minority-block-attractive walls.
We can gain some insight into this observation by examining
microphase development near the wall.

The above simulations essentially model a quench to a
temperature corresponding toøN ) 17.29 In the bulk (i.e., far
away from a wall), there are two particularly important values
of øN for an asymmetric diblock (i.e.,f * 0.5). First, there is
the microphase separation transition (MST) value,30 denoted
(øN)MST. Second, there is the spinodal value, denoted (øN)S.30

For the diblock system of interest in this paper, withf ) 0.7,
(øN)S ≈ 15 and (øN)MST ≈ 14.75.30 If øN is selected to be below
the MST valueøN < (øN)MST then the composition profiles in
a bulk simulation will rapidly relax to a homogeneous (also
called disordered) state withφA(x) ) f andφB(x) ) 1 - f. For
a bulk simulation with (øN)MST < øN < (øN)S, the homogeneous
(disordered) phase is metastable, and microphase separation can
proceed via nucleating of the ordered phase (for a discussion
of nucleation of the lamellar microphase in BCP systems, see
refs 31 and 32). In this metastable region, the disordered phase
BCP scattering functionS(k) is strongly peaked aroundk ) k0,
corresponding to the periodicity of the microphase.30 Finally,
asøN approaches (øN)S, the disordered phase scattering function
diverges atk0, the homogeneous phase becomes unstable (i.e.,
nucleation barriers vanish), and the system rapidly microphase
separates.30 In other words, forøN > (øN)S, we expect rapid,
global microphase separation on a length scale corresponding
to 2π/k0. For symmetric diblock copolymers (f ) 0.5) in the
mean-field limit (C f ∞), the values of (øN)MST and (øN)S

coincide, and for weakly asymmetric diblocks, the values are
nearly co-incident.

Microphase development of asymmetric BCPs near a bound-
ary is complicated and rather subtle.33-38 Accordingly, when
necessary we draw comparisons from work on symmetric and
weakly asymmetric BCPs. For example, Fredrickson showed
that if a boundary has a preferential attraction to one component
of a symmetric or weakly asymmetric diblock copolymer, one
observes low-amplitude composition oscillations that extend into
the bulk, with a magnitude that dies off exponentially.33 These
composition oscillations are observed in the disordered (homo-
geneous) phase, for temperatures well above the spinodal
temperature [or equivalently,øN < (øN)S]. As the system is
cooled toward the spinodal temperature, the composition oscil-
lations increase in magnitude and penetration depth, extending
increasingly far into the bulk.33 As ε ) |øN - (øN)S|/(øN)S f
0, the magnitude of the composition oscillations approach the
bulk microphase separation values, yielding a “wetting layer”
with thicknessw ∝ log ε that diverges logarithmically asε f
0 (e.g., see ref 37).

For quenches into the ordered phase [i.e.,øN > (øN)S], Brown
and Chakrabarti demonstrated that composition oscillations form
near the boundary and propagate into the bulk.36 Furthermore,
they showed that the long-time form of the quenchedøN >
(øN)S composition profiles are well fit by the functional form
identified by Fredrickson in ref 31 forøN < (øN)S composition
oscillations.36

For the block copolymer system of interest here, the B
segments microphase-separate to form a microdomain lattice.
Therefore, it is useful to examine the order parameter

where as discussed above,φ(x) ) 1 - φw(x) is the fixed total
segment fraction function. In Figure 3, we plotψ(x, y, t) vs x

at y ) 24 [i.e.,ψ(x, 24, t) vs x], averaged over ten independent
random initial conditions, for a AB diblock quenched toøN )
17, and confined by aL ) 17.75 hexagonal wall. The liney )
24 is a perpendicular bisector of two opposite edges of the
confining hexagon. The order parameterψ(x, 24, t) is plotted
at iteration timest ) 20∆t, 40∆t, and 80∆t during the saddle
point search. Here we only plot the A-attractive and B-attractive
wall interactions. We can clearly see composition oscillations
near the boundary atx ≈ 8.6. These oscillations extend into
the center of the hexagon and appear to rapidly decay. The shape
and time dependence of the composition oscillations appears
to be consistent with the surface-induced microphase separation
phenomena referenced above.36

Of primarily importance in Figure 3 is the observation that,
when ignoring the surface enrichment layer, the first peak inψ
insideof the boundary islarger for the A-attractive wall than
for the B-attractive wall. The first peak inψ inside of the
boundary corresponds to the first interior cylinder-like B
microdomain. The additional peaks inψ that are even further
inside the well are also larger for the A-attractive wall.
Furthermore, we can see that all of the interior composition
peaks remain larger for the A-attractive wall over all times
reported in Figure 3. In Figure 4, we superimpose plots ofψ(x,
24, t) vsx for A-attractive and B-attractive walls, averaged over
10 independent random initial conditions. We also shift the order
parameter curves in Figure 4 so that the first interior composition
peaks (not the surface enrichment layer) are aligned. With the
order parameter curves superimposed and aligned, the larger
peaks inψ for the A-attractive wall are more easily identified.
The difference in peak size is due to the rapid decay enve-
lope.33,36For the case where A-segment is attracted to the wall,

ψ(x, t) ) φB(x, t) - (1 - f)φ(x) (45)

Figure 3. Graphs ofψ(x, 24, t) vs x, averaged over ten independent
random initial conditions, for (a) A-attractive wall (at point “A”) and
(b) B-attractive wall (at point “B”). In both figures, we plotψ(x, 24, t)
at t ) 20∆t (square+ dashed), 40∆t (circle + dotted), and 80∆t
(triangle+ dashed-dotted).
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the polymer architecturedictates that the first B microdomain
forms much closer to the wall than for the B-attractive wall;
accordingly, during the early stages of microphase separation
near the surface, the amplitude for the positive peaks inψ will
be larger for the A-attractive wall.

The positive peaks inψ correspond to points of increased
B-segment fraction. The microphase-separated B microdomains
form at or around these locations. Since the peaks inψ are larger
in amplitude for the A-attractive walls, we expect the A-
attractive wall to have more influence over the enclosed B
microdomains than the B-attractive wall. This is precisely what
is illustrated in Figure 1.

Even though the resulting microphases have similar lattice
constants (i.e., nearest neighbor separations), as can be appreci-
ated in Figure 2, the polymer architecture also dictates that the
confinement scale for the A-attractive wall is smaller than for
the neutral or B-attractive wall (see Figure 2). This smaller-
scale confinement, coupled with the architectural dependencies
of surface-induced phase separation, suggests that the A-
attractive wall will have more influence over the B microdomain
formation (and thus ordering), when compared to neutral or
B-attractive walls.

We have largely ignored the neutral wall up until this point.
This is because the neutral wall appears to both quantitatively
(Figure 1) and qualitatively (Figure 2) resemble the B-attractive
wall. That is, the B segments are attracted to the neutral wall
much like the B-attractive wall, and the size and width of the
commensurability windows are similar for the neutral and
B-attractive walls.

In addition to the wall’s role in surface-induced microphase
separation phenomena, the shape of the well helps orient the
microdomains in a way that is commensurate with a hexagonal
lattice. Provided the hexagon side length is carefully selected
[i.e., L ∈ ΛN(øwN)], the hexagonal shape of the boundary will
work to encourage the surface-induced composition waves to
form a well-ordered hexagonal microphase array.

We noted above that forL below the observed com-
mensurability windows, defects tend to form along the wall.
This is most likely due to direct incommensurability effects.
That is, the side length is not commensurate with the natural
microdomain cylinder spacing. In contrast, forL above the
ordered window, defects primarily form inside the confining
hexagon. This kind of defect formation likely involves incom-
mensurability effects as well; however, it may also involve a
competition between surface-induced microphase separation and
bulk microphase separation. Simply stated, the wall will have
less influence over the central region for larger systems than
for smaller systems.

One could imagine that controlledøN annealing from below
(øN)MST and (øN)S to a final value above (øN)MST and (øN)S

could “magnify” the effects of the hexagonal well on micro-
domain ordering by allowing composition oscillations to slowly
set in and eventually form a well-defined, partially microphase-
separated surface layer, as referenced above. As (øN)MST is
crossed, the surface layer will encourage further ordering, and
then once (øN)S is crossed, bulk microphase separation will
occur throughout the inside of the hexagon. We study such an
annealing situation below.

3.2. AB Annealed Simulations. As mentioned above,
composition oscillations appear near the boundary for values
of øN below (øN)MST. In Figure 5, we present representative
equilibriumdensity composition profiles for A-attractive (øwN
) 17) and B-attractive (øwN ) -17) walls atøN ) 12 andøN
) 14. Recall that (øN)MST ≈ 14.75 for our system withf ) 0.7,

Figure 4. Shifted graphs ofψ(x, 24, t) vs x, averaged over ten
independent random initial conditions, at (a)t ) 20∆t and (b) 40∆t.
In both figures, we plotψ(x, 24, t) for an A-attractive wall (square+
dashed) and a B-attractive wall (circle+ dotted). The A- and B-
attractive wall positions are marked as “A” and “B,” respectively. The
ψ(x, 24, t) curves have been shifted inx so that the first interior order
parameter peaks (at point “P”) are aligned. This allows for an easy
visual comparison of the peak heights.

Figure 5. Representativeequilibrium density composition profiles
(lighter shades correspond to larger values ofφA) for (a) A-attractive
wall at øN ) 12, (b) A-attractive wall atøN ) 14, (c) B-attractive
wall at øN ) 12, and (d) B-attractive wall atøN ) 14.

Macromolecules, Vol. 40, No. 26, 2007 Microdomain Ordering 9577



so these values oføN correspond to the homogeneous (disor-
dered) phase. With the exception oføN, we used the exact same
system and simulation parameters discussed above. Each of
these simulations were run at fixedøN for nt ) 20 000 field
iterations. AtøN ) 12, we observe composition oscillations
near the wall, even though the system has not undergone a bulk
microphase separation, and atøN ) 14, we identify well-defined
microphase separation and ordering near the wall, again, even
though the system has not undergone a bulk microphase
separation. It is our hope to take advantage of surface-induced
composition oscillations, microphase separation, and ordering
by slowing annealing from below (øN)MST.

In order to further examine surface-induced microphase
separation and ordering effects, we developed a (relatively) slow
øN annealing scheme. Specifically, we annealedøN from øN
) 12 < (øN)MST, through (øN)MST and (øN)S, to the final value
of øN ) 17. We incrementedøN by 0.25 every 500 SCFT time
steps, beginning att ) 500∆t and ending at 10 000∆t. This
annealing rate and step size allowed the system to fully relax
between steps inøN; accordingly, on the time scale of theøN
increments, the system can be assumed to have reached a local
equilibrium. After theøN annealing, we then further relaxed
the system using the standard SCFT saddle point search at fixed
øN ) 17 until nt ) 20 000. Well-defined surface-induced
microphase separation was observed during the anneal [much
like the example presented in Figure 5b and Figure 5d], and
this ordered layer facilitated formation of a hexagonal lattice
once (øN)S was crossed and bulk microphase separation oc-
curred.

The result of the annealing runs for an A-attractive wall (øwN
) 17), a neutral wall (øwN ) 0), and a B-attractive wall (øwN
) -17) are presented in Figure 6. We note that in all three
cases theøN annealing increased the width of the com-
mensurability window compared to those presented in section
3.1. For the A-attractive wall, the commensurability window is
given by Λ61(17) ) [15.75, 17.75]. For the neutral wall, the
commensurability window is given byΛ61(0) ) [17.25, 19.75].
And finally, for the B-attractive wall, the commensurability
window is given by Λ61(-17) ) [17.75, 19.75]. TheøN
annealing has effectively equalized the ordering effects of the
A-attractive, neutral, and B-attractive walls.

For the annealed systems presented here, defects likely form
as the result of direct incommensurability conditions. That is,
for small or large systems, the elastic strain energy is too great
to maintain a perfect lattice for the specific hexagon side length,
and as a result microdomain defects form. If one were able to
minimize the energy of distortion associated with a highly
incommensurate confining hexagon, perhaps the width of the
commensurability window could be increased further. In the
next section, we examine the possibility of relieving chain
stretching in the majority block coronas with a majority-block
homopolymer additive, and thus potentially increase the width
of the commensurability window.

3.3. AB + A Annealed Simulations. In this section, we
examine the effects of adding an majority-block homopolymer
(i.e., A homopolymer) to the AB+ wall system studied above.
The fraction of A homopolymer is fixed atæh ) 0.20 so that
20% of the melt is A homopolymer, and the A homopolymer
length is selected to beR ) 0.35. Given the obvious advantages
of øN annealing, all simulations presented in this section were
run using theøN annealing scheme outlined in section 3.2.

In Figure 7, we plot〈σ〉 vs L for the AB + A blend with a
A-attractive wall (øwN ) 17), a neutral wall (øwN ) 0), and an
B-attractive wall (øwN ) -17). Qualitatively these results are

very similar to the those presented in Figure 6 for the AB melt;
however, there are a few important differences. First of all, each
of the commensurability windows in Figure 7 are shifted to
larger values of hexagon side lengthL. This is because the
matrix in the AB + A blend is swollen (as a result of the
presence of the A homopolymer), resulting in a larger average
NN distance for the ordered microphase. Specifically, with the
addition of 20% A-homopolymer, the NN separations increased
by approximately 6% for the A-attractive wall, 10% for the
neutral wall, and 8% for the B-attractive wall. In addition, the
commensurability window for the majority-block-attractive wall
(øN ) 17), illustrated in Figure 7a, is considerably smaller than
for the annealed AB melt, illustrated in Figure 6a. This is
because the A homopolymer tends to aggregate along the wall,
producing an A-homopolymer surface layer. This layer is clearly
visible in Figure 8a. The A homopolymer aggregation along
the wall hinders the effectiveness of the A homopolymer at
reducing chain stretching in the microphase matrix. In fact, the

Figure 6. Graphs of〈σ〉 vs L for an AB melt after aøN anneal from
from random initial conditions atøN ) 12 to øN ) 17 for (a) an
A-attractive wall (øwN ) 17), (b) a neutral wall (øwN ) 0), and (c) an
B-attractive wall (øwN ) -17). Again, for each case, there is a
commensurability window inL inside which there is a perfect array of
61 hexagonally ordered microdomains.
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aggregation appears to actually reduce the width of the com-
mensurability window. On the other hand, from Figure 7, parts

b and c, we can see that the commensurability windows for the
neutral and minority-block-attractive walls appear to be about
the same size as reported in section 3.2, albeit shifted to larger
values ofL. Furthermore, the homopolymer appears to be evenly
distributed inside the hexagon for the neutral and B-attractive
walls, as illustrated in Figure 8, parts b and c.

The slight shift inL for the commensurability windows may
offer enough of a technological advantage to warrant incorpora-
tion of majority-block homopolymer in real-world studies of
small-scale, lateral confinement of block copolymer systems-
it allows one to achieve a high level of ordering (as measured
with 〈σ〉) with larger confining hexagons. We suspect that a
further shift and perhaps widening of the commensurability
windows can be achieved by some subtle tuning of the
hompolymer lengthR and segment fractionæh.

3.4. “Control” Case: 37 Enclosed Microdomains.In an
attempt to test the validity of our observations and conclusions
for other small-scale confinement sizes, we ran a parallel set of
simulations, using exactly the same system parameters, except
with a smaller hexagon size. The hexagon size was selected
in order to yield seven rows of microdomains across the hexa-
gon, or equivalently four microdomains along an edge. There
are exactly 37 microdomains contained in such a confining
hexagon. In order to conserve computer time, the simulations
were carried out in a slightly smaller simulation space withLx

) Ly ) 36 andnx ) ny ) 144. Otherwise,all system and
simulation parameters were exactly the same as given above.

In qualitative terms, our observations appear to carry over to
the case of 37 enclosed microdomains. We can see from Figure
9 that the relative positions and sizes of the commensurability
windows, and the relative change in positions and sizes for the
smaller confining hexagons agrees well with the observations
reported in sections 3.1, 3.2, and 3.3.

For this smaller system, we also ran a series of 100 quenched
simulations (using 100 different random initial conditions) for
an A-attractive wall and a confining hexagon withL ) 13.00
in the center of the commensurability window. Again, all other
system and simulation parameters were the same as outlined
above. The observed values of the standard deviation of nearest
neighbor separationsσ for the 100 different initial conditions
were identical, and perfect ordering was achieved in each
realization. This gives strong evidence that the observed order
inside of the confining hexagon is highly reproducible.

3.5. Fluctuations. In this study, we used the mean-field,
SCFT approximation to simplify our model. However, this
approximation ignores (composition) field fluctuations that are
otherwise present in the theory and are observable experimen-
tally, e.g., near the order-disorder transition. It is quite possible

Figure 7. Graphs of〈σ〉 vs L for an AB + A blend after aøN anneal
from random initial conditions atøN ) 12 to øN ) 17 for (a) an
A-attractive wall (øwN ) 17), (b) a neutral wall (øwN ) 0), and (c) an
B-attractive wall (øwN ) -17). Again, for each case, there is a
commensurability window inL inside which there is a perfect array of
61 hexagonally ordered microdomains.

Figure 8. Representative composition profiles for an AB+ A + wall system (lighter shades correspond to larger values ofφAhsthe A homopolymer
fraction) with (a) an A-attractive wall withL ) 17.50, (b) a neutral wall withL ) 19.75, and (c) a B-attractive wall withL ) 20.25. The absolute
shading is not important here, just the relative shading in each frame. In frame a, the area with the highest concentration of light shading is along
the hexagon wall. This indicates that the A homopolymer is aggregating along the A attractive wall. For frames b and c, the A homopolymer
concentration distribution appears to be much more uniform throughout the microphase matrix.
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that composition fluctuations could affect the commensurability
windows identified in this paper. For example, field fluctuations
can serve to populate, as well as provide a path for escape from,
low-energy defect structures. This competition could have an
influence on the widths of the commensurability windows. In
any event, the importance of fluctuations can be systematically
controlled by varying theC parameter of section 2.1 (which
varies with molecular weight asC ∼ N1/2) and eliminated in
theC f ∞ limit where the saddle point approximation becomes
exact. For cases of finiteC, fluctuation effects could be
incorporated by implementing Monte Carlo or complex Lan-
gevin field-theoretic polymer simulation techniques.20 Such
simulation techniques, however, require considerably more
computational resources than the SCFT methods utilized here.

4. Conclusion

We have examined the effects of small-scale, hexagonal,
lateral confinement on ordering and defect formation in SCFT
simulations of cylinder-forming block copolymer thin films. The
confining well was modeled as a fixed density field that
interacted with the segments via the melt incompressibility
constraint and a Flory-type interaction term.

For a quench toøN ) 17, a majority-block-attractive wall
(in our case the A-attractive) had a larger effect on the ordering
of the resulting microdomains than a neutral or minority-block-
attractive wall. Specifically, for an A-attractive wall, the width
of the commensurability window was 2.5 times larger than for
the B-attractive wall and five times larger than for the neutral
wall. This difference can be explained by examining the effects
of surface-induced microphase separation phenomena near the
MST and the spinodal.

Controlled temperature annealing from below (øN)MST to a
final value of øN ) 17 appears to equalize the effects of
A-attractive, neutral, and B-attractive walls on ordering. This
can be explained by observing the effects of significant
composition oscillations that form below (øN)MST and, in turn,
encourage improved ordering of the microphase once the bulk
MST is crossed.

An A homopolymer (majority block) additive was examined
as a means to increase the width of the commensurability
windows. While no appreciable change in commensurability
window width was observed for the 20% A homopolymer
employed in our study, the added A homopolymer shifted the
commensurability windows to larger values ofL.

Figure 9. Graphs of〈σ〉 vs L for various AB and AB+ A systems with 37 enclosed microdomains (instead of the 61 enclosed microdomains
reported in sections 3.1, 3.2, and 3.3). The first column (a-c) corresponds to the case presented in section 3.1 and Figure 1 for an AB melt
quenched toøN ) 17 with (a) an A-attractive wall, (b) a neutral wall, and (c) a B-attractive wall. The second column (d-f) corresponds to the case
presented in section 3.2 and Figure 6 for an AB melt annealed fromøN ) 12 to øN ) 17 with (d) an A-attractive wall, (e) a neutral wall, and (f)
a B-attractive wall. The third column (g-i) corresponds to the case presented in section 3.3 and Figure 7 for an AB+ A blend annealed fromøN
) 12 to øN ) 17 with (g) an A-attractive wall, (h) a neutral wall, and (i) a B-attractive wall.
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We have demonstrated that for hexagonal, laterally confined
block copolymer thin films the preferential segment-wall
interactions, hexagon side length,øN annealing rate, and
polymer architecture and formulationall have an appreciable
effect on the order of the enclosed microdomains. Moreover,
we have shown that SCFT simulations can be fruitfully used to
elucidate the role of each of these factors on the achievement
of defect-free microdomain arrays.

The findings presented here could have technological rel-
evance. In order to avoid the inherent difficulties of realizing
large “single-crystal” arrays of BCP microdomains, one could
instead pattern a surface with a grid of small hexagonal wells
by using conventional top-down lithography. By filling the wells
with block copolymer, and relying on bottom-up self-assembly,
it should be possible to achieve a high degree of registry and
uniformity of microdomains over macroscopically large areas.
Inside of each hexagonal well would be a small-scale, well-
ordered, uniform microdomain array such as the arrays presented
in this paper.
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