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A geometrical argument is used to account for the exponent of 1/3 describing the isotropic-�para�nematic
phase boundary of sheared carbon nanotube dispersions �E. K. Hobbie and D. J. Fry, Phys. Rev. Lett. 97,
036101 �2006��. Through simplifying assumptions motivated by the effects of concentration and attractive
interactions, the behavior is explained by relating the mean strain-induced alignment to the average distance
between nanotubes for the scenario of limited anisotropy in non-Brownian suspensions.
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A quantitative description of the development of �para�ne-
matic order in sheared suspensions of rigid-rod polymers and
colloids is a nontrivial problem of practical and pedagogical
interest and importance. It generally involves a solution of
the Smoluchowski equation describing the evolution of an
orientational distribution function �ODF� that gives the prob-
ability of finding a rod aligned at a specified angle with
respect to the direction of flow �1–4�. From this distribution,
the order parameter tensor can then be computed. Solutions
of this type are nontrivial, requiring either numerical treat-
ment or an approximation scheme that highlights the physics
of interest. In two recent papers �5,6� we offer experimental
evidence that the degree of shear-induced alignment in semi-
dilute rigid-rod nanotube suspensions with attractive interac-
tions scales with nanotube volume fraction � as �1/3. In one
of these papers �6�, we allude to a simple physical argument
as to why this might be the case. As presented this argument
is quite terse and it is the purpose of the present communi-
cation to clarify the details and underlying assumptions.

For the sake of simplicity we assume uniaxial symmetry
in the ODF, which is an approximation dictated by the mea-
surements of interest here �7�. The tensor characterizing the
degree of alignment is

S = 1
2 �3�n̂n̂� − 1� , �1�

where n̂ denotes the orientation of a nanotube and 1 is the
identity tensor. The brackets in Eq. �1� denote an average in
solid angle over the ODF, p���, where � is the angle a nano-
tube makes with the axis of mean alignment, x. The scalar
order parameter is the projection of Eq. �1� along the direc-
tion of mean alignment,

S = x̂ · S · x̂ = �P2�cos ��� . �2�

Previously reported experimental results �6� suggest that
there is a discontinuity in S at a critical shear stress �c that
marks—equivalently—the limit of full nanotube dispersion
and the isotropic-�para�nematic phase boundary in semidilute
“sticky” non-Brownian nanotube suspensions. We denote
this discontinuity S0���, with the data further suggesting
S0�����1/3 �6�. Another previous study of completely analo-
gous non-Brownian nanotube suspensions suggests an iden-

tical power law for S in the limit of very large rotational
Peclet number �5�, defined here as the ratio of shear rate �̇ to
the thermal rotational diffusion coefficient Dr.

To explain this power law, we expand Eq. �2� around the
isotropic state by introducing the deviation

�n̂ = n̂ − n̂i, �3�

where the subscript i refers to the initial isotropic configura-
tion. To leading order, Eq. �2� then becomes

S � 3��x̂ · n̂i��x̂ · �n̂�� = 3��x̂ · �n̂� cos �i� . �4�

By appealing to geometry we model the anisotropy of the
suspension as shown in Fig. 1, where the effect of the shear
flow is to introduce a degree of uniaxial orientation along x.
What are drawn as movable contacts in Fig. 1 should be
viewed as points of the strongest interaction. The anisotropy
can be characterized by

� = R cos � − Ricos �i, �5�

where �i and Ri represent the flow angle and distance be-
tween points of the interaction, respectively, in the isotropic
state, with � and R being the analogous quantities after the
deformation. If the mean distance between points of interac-
tion is identical to the mean separation between nanotubes,
R0 �which to leading order is assumed to be unaltered by the
anisotropy�, then
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FIG. 1. �Color online� A drawing showing an idealized geom-
etry of a strained semidilute nanotube suspension, where the labeled
variables are identified in the text.
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�

R0
� cos � − cos �i = x̂ · �n̂ , �6�

and Eq. �4� becomes

S � 3
�� cos �i�

R0
. �7�

Note that � cos �i is positive in the interval 0��i�	, being
symmetric around �i=	 /2, and we thus need only consider
the more convenient interval 0��i�	 /2. Replacing cos �i
in Eq. �7� with the isotropic root-mean-square value of 1 /�3,
we get

S � �3
���
R0

. �8�

This relation is completely general and will apply to limited
anisotropy in any rigid-rod network. As suggested by the
data in Ref. �6�, the mean deformation ��� is a function of the
reduced shear stress, � /�c, and Eq. �8� gives the correct
behavior in the isotropic limit. Since R0��−1/3, our argument
is complete.

The suspensions of interest are unique in that they are
extremely non-Brownian due to the viscosity of the suspend-
ing fluids �5,6�. They are also inherently “sticky” with an
isotropic state characterized by macroscopic aggregation �8�.
It is well established that caging effects greatly slow rota-
tional diffusion in semidilute rigid-rod suspensions �1� and
this effect has been quantitatively confirmed for the suspen-
sions of interest here �5�. Attractive interactions will also
have the effect of extending the lifetime of transient contacts
in the �para�nematic state, further slowing rotational diffu-
sion. The drawing in Fig. 1, which relies on a local configu-
ration of nanotubes that is in some sense static, is a gross
oversimplification, but it captures the qualitative features of
the measured projection of the ODF �5�. Whether or not the
argument retains a degree of validity in light of a more rig-
orous and quantitative treatment remains to be seen.

It should be emphasized that a key aspect of the argument
is shear-induced anisotropy that is in some sense weak, since
this will be consistent with a deviation from an isotropic
state that can be viewed as being in some sense small. Values
of S measured with video microscopy support this require-
ment �9� as they never exceed Smax	0.5. The limited aniso-
tropy that develops in these suspensions under shear also
explains why the anisotropic dispersions show light-
scattering profiles more characteristic of isotropic rigid-rod
suspensions �5,6�. Rigorously speaking, the “fractal” chain
dimension df 	1 will only apply to a random isotropic col-
lection of rigid rods. As such an ensemble becomes uniaxi-
ally aligned, the exponent describing the shape of the scat-
tering profile projected along the axis of alignment will cross
over from 1 to 2, where the latter value reflects the large
argument envelope of the square of the zeroth-order spheri-
cal Bessel function corresponding to the form factor of an
infinitely thin straight rod. Specifically, for a monodisperse
collection of uniformly straight rods of length L and negli-
gible diameter the relevant projection is

I�qx� � 

−1

1

d�cos ��p���
sin2�Lqxcos �/2�

�Lqxcos �/2�2 , �9�

where qx is the component of the scattered wave vector along
the axis of mean alignment. For constant p���, the right-hand
side of Eq. �9� scales as �qx�−1 for Lqx�1, which for large L
is easily satisfied in the regime of wave vector relevant to
light scattering. In the other limit p������cos �−1�, the scat-
tering projection scales as �qx�−2. In between these two ex-
tremes, Eq. �9� is evaluated numerically for a Gaussian ODF
of varying width, which gives a high-q power-law exponent
of df =1.04 for S=0.1, df =1.12 for S=0.2, and df =1.21 for
S=0.3. Physically, this reflects the characteristic width of
sin2�x� /x2�exp�−x2 /3� dominating the integrand in Eq. �9�
until the ODF becomes sufficiently sharp. Weak tube defor-
mation will move this crossover to higher S, since in the
formalism we adopt the order parameter is set by the body
director of the nanotube while the scattering will be sensitive
to the internal structure �10�. For even modest anisotropy, a
power law with an exponent of −1 will thus give a reason-
ably good accounting for the measured scattering profile,
consistent with what has been reported experimentally �5,6�.

It is also important to reconcile the varied descriptions
offered previously for the dependence of S on shear rate
�5,6,11�. In terms of rotational Peclet number �Pe�, flow bi-
refringence and dichroism data for the nanotubes in question
have been interpreted in terms of a power law with a rather
small exponent �5,11�: S�Pe0.16. More recently, however, we
have suggested that the dependence of S on shear rate is in
fact logarithmic and we have offered a very simple physical
explanation as to why this might be the case �6�. In light of
the magnitude of Pe in these non-Brownian suspensions, it
indeed seems more attractive to adopt the approach used in
Ref. �6�, which defines the appropriate dimensionless group
as the ratio of the shear stress to the critical stress required
for nanotube dispersion. The two different interpretations
may in fact be reconciled by noting that a logarithmic depen-
dence is quite difficult to distinguish from a power law with
a small critical exponent and the previously reported Pe0.16

behavior would in fact be quite difficult to discern from an
underlying logarithmic growth law.

Finally, we note that the value of S measured rheo-
optically is highly dependent on the value of the intrinsic
differential optical anisotropy that one adopts as characteris-
tic of the nanotubes. The order parameter can be determined
from the relations

S��,�̇� �
2ns
n���,�̇�

�
��
=

2ns
n���,�̇�
�
��

, �10�

where 
n=
n�+ i
n� is the measured anisotropy in the
complex index of the refraction tensor, 
�=
��+ i
�� is
the complex intrinsic differential optical anisotropy of the
nanotubes at the wavelength employed, and ns is the index of
refraction of the suspending fluid �10–12�. For a given sys-
tem one thus needs an independent measure of S that can be
used to “calibrate” 
� before Eq. �10� can be employed as a
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precise and efficient means of quantitatively measuring the
shear-induced alignment. In a previous study we used video
microscopy to do this by obtaining a direct—if
approximate—measure of the ODF �5,9�. For the multi-
walled carbon nanotubes in question, this approach correctly
gives 
��	3.5 and 
��	2.7 at a wavelength of 670 nm.
These values are larger than previously reported �9� and are
actually larger than comparable values measured for single-
wall carbon nanotubes �5,11�. To explain this difference, we

suggest that despite the presence of more structural defects,
the multiwalled tubes may in fact have optical coefficients
that are more characteristic of bulk semiconductors �13�, giv-
ing them an intrinsic optical anisotropy that is larger than
that previously measured rheo-optically for single-walled
tubes.

The author is grateful to S. D. Hudson for useful discus-
sions and critical reading of the manuscript.
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