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ABSTACT    
 
        We investigate the role of particle potential symmetry on self-assembly by Monte 
Carlo simulation with the particular view towards synthetically creating structures of 
prescribed form and function.  First, we establish a general tendency for the rotational 
potential symmetries of the particles to be locally preserved upon self-assembly. 
Specifically, we find that a dipolar particle potential, having a continuous rotational 
symmetry about the dipolar axis, gives rise to chain formation, while particles with 
multipolar potentials (e.g., square quadrupole) having discrete rotational symmetries led 
to the self-assembly of random surface polymers preserving the rotational symmetries of 
the particles within these sheet structures. Surprisingly, these changes in self-assembly 
geometry with the particle potential symmetry are also accompanied by significant 
changes in the thermodynamic character and in the kinetics of the self-assembly process.  
Linear chain growth involves a continuous chain growth process in which the chains 
break and reform readily, while the growth of the two-dimensional polymers only occurs 
after an ‘initiation’ or ‘nucleation’ time that fluctuates from run to run. We show that the 
introduction of artificial seeds provides an effective method for controlling the structure 
and growth kinetics of sheet-like polymers. The significance of these distinct modes of 
polymerization on the functional character of self-assembly growth is illustrated by 
constructing an artificial centrosome structure derived from particles having continuous 
and discrete rotational potential symmetries. 
   
INTRODUCTION 
 
        Molecular self-assembly at equilibrium is central to the formation of numerous 
biological structures [1-3] and the emulation of this process through the creation of 
synthetic counterparts [4-9] offers great promise for nanofabrication [10-15]. The central 
problems in this field are an understanding of how the symmetry of interacting particles 
encodes information about the geometrical structure of the self-assembled structure and 
the nature of the thermodynamic transitions governing this type of organization.  
        A first attempt at establishing principles for molecular self-assembly was made by 
Crick and Watson in the case of the protein shells of viruses. [16] They argued that viral 
shell structures assembled from equivalent protein particles must have the form of 
hollow tubes (helical in general) or closed shell structures belonging to the family of 
Platonic polyhedra (cube, tetradedron, octahedron, dodecahedron, icosahedron) where 
each particle has an equivalent local environment with its neighbors. The equivalence of 
the local environment requires that a permutation of particles within these structures 
preserves their local interactions within the organized structure so that Crick and 
Watson’s arguments amount to the hypothesis that the local particle potentials within the 
self-assembled structures are invariant under particle permutation, P.  Crick and 
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Watson’s claims [16] were soon supported by electron microscopy and x-ray diffraction 
measurements indicating that polio virus had an icosahedral viral shell (’capsid’), [1,17] 
but Caspar and Klug [3] later amended these symmetry arguments to allow for the local 
inequivalence (‘quasi-equivalence’) of molecular environments that were found in 
subsequent investigations of viral capsid structure. [Molecular ‘switches’ involving 
changes of molecular conformation of the particles (proteins) involved in self-assembly 
are normally invoked to rationalize these deviations from ‘equivalence’ that allow 
‘spherical’ virus capsids to become indefinitely large.] Caspar and Klug further argued 
that the general tendency to minimize the defect energy of the viral capsid selects out a 
unique family of icosahedral symmetry structures in which hexagonal units are inserted 
between the pentagonal units at the vertices of an icosahedron, a family of shell structures 
that they term ’icosadeltahedra’. Most spherical viruses have been found to conform to 
this type of organization. [1, 17] 
        The symmetry arguments of Crick and Watson [16] do not make any prescription 
about the particular geometrical form of the self-assembled structure in relation to the 
symmetry properties of the sub-particles. Self-assembling systems are often characterized 
by strong directional interactions (e.g., dipolar) with well-defined rotational symmetries 
[18] and, by extending the intuitive reasoning of Crick and Watson, we anticipate that 
these rotational symmetries tend to be locally preserved in the self-assembled structure. 
In the next section, we explore this hypothesis with model multipole potentials. 
 
MULTIPOLE INTERACTION MODELS OF SELF-ASSEMBLY 
 
Monte Carlo simulation methods 
 
      At gas phase densities, the simulation of strongly associating systems can present 
challenges for traditional simulation techniques. The strong binding energies between 
associated particles and large distances between non-associated particles can make 
sampling of important regions of configuration-space difficult [19]. The time required for 
particles to undergo an association/disassociation transition can be very long compared to 
typical molecular dynamics simulation times. There are Monte Carlo algorithms that can 
overcome these difficulties, however. In this work, we use the Aggregate Bias Monte 
Carlo algorithm [20] to improve the sampling of relevant regions of configuration space 
and enhance the sampling of clusters. At the heart of this algorithm is an intra-box swap 
move that is targeted at sampling the formation or destruction of clusters. We also 
implement the simple translational and rotational moves to explore nearby regions of 
phase space. A detailed discussion of this method is given in our previous paper devoted 
to the Stockmayer fluid [18], which is defined in the next section.   
 
Symmetries of multipole particle potentials and the ‘equivalence principle’  
 
       Stimulated by the philosophical approaches of Crick and Watson [16] and Casper and 
Klug [3], we introduce a family of minimal (’schematic’) models that can serve as a 
testing ground for understanding principles of self-assembly. Our approach builds on our 
recent systematic investigation of the Stockmayer fluid (SF) involving a fluid having a 
competition between dipolar (See Fig. 1a) and van der Waals interactions and which is 
established to exhibit the formation of equilibrium linear polymer chains upon cooling. 
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[18] This is a natural starting point for investigating protein self-organization since 
proteins are often characterized by large dipolar (e.g., the dipole moments of tubulin, 
collagen and sickle cell hemoglobin(S) dimers are 1410 D, 1150 D and 545 D, 
respectively [22]) or directional hydrogen bonding interactions and it seems likely these 
highly directional interactions must be part of any explanation of molecular self-assembly 
of proteins in solution (1 D = 3.336 x 10-30 Coulomb ⋅ m). The dipolar potential has a C∞v 
point group symmetry which is a continuous rotational symmetry. Next, we consider a 
point quadrupole generalization of the SF [23] that approximately models two side-by 
side and head-to-tail dipoles or four charged particles (two plus and two minus charged 
particles; See Fig. 1) in a square ring. The special case of the square quadrupole potential 
(θ = π / 2) evidently exhibits a discrete (D2h ) point group symmetry. We also consider a 
triangular configuration of SF particles that have a head-to-tail configuration (See Fig. 
1c), which is characterized by a C3 discrete rotational symmetry.  If we formally extend 
the reasoning of Crick and Watson to require that these potentials preserve their local 
symmetries in the organized structure, then we should expect chain-like structures in the 
continuous rotational potential case of the SF (known to be the case) and two-
dimensional polymers to form for the particle potentials having a discrete symmetry 
rotational potential (In particular, the potentials in Figs. 1b and 1c should lead to sheet-
like polymers having rectangular and hexagonal symmetries, respectively.). Notably, it is 
the symmetries of the potentials that are primarily important in our considerations below 
and similar patterns of self-assembly can be expected for other potentials (hydrogen 
bonding, π- π interactions and localized hydrophobic interactions, strong-segregation 
block copolymers in solution, grafted polymer chains on nano-particles having 
attachment points of prescribed symmetry, etc.) exhibiting strong directional interactions 
with the same point group symmetries. 
 

 
 
 
Figure 1. Multipole potentials of particles with directional interactions.  
a) dipole, b) quadrupole, c) ’hexapole’. 
 
 
 
 

a) c) b) 
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Stockmayer fluid 
 
        First, we briefly recall some basic aspects of self-assembly in the SF. [18] Two 
particles in the SF interact via a Lennard-Jones (LJ) potential and an additional point 
dipole potential placed the center of each particle (Fig. 1a). The dipolar contribution to 
the potential is given by, 
 
                udipole = (µi  •  µj )/ rij 

3 − 3 (µi  •  rij ) (µj  • rij )/ rij
5                                       (1) 

 
where µi is the dipole moment of particle i and rij = ri – rj is the interparticle separation 
and the LJ contribution to the potential (uSF ≡ uLJ + udipole) has the familiar form, 
 
                 uLJ  =  4 ε [(σ/ rij )

12  -  (σ/ rij )
6 ] ,                                                                (2)     

     
where the van der Waals (vdW) interaction energy strength ε controls the magnitude of 
the potential minimum, and σ is a measure of particle ‘size’.  It is conventional to define 
a dimensionless measure of the dipole interaction energy relative to the vdW energy, 
(µ*)2 = µ2/ εD σ3 ε where εD is the dielectric constant of the fluid background medium. 
All concentrations ρ are number densities and T is normalized by ε/ kB where kB is 
Boltzmann’s constant. 
       In a previous investigation [18], we mapped out the thermodynamic transition lines 
for the SF as a function of ρ and T in the low density regime. Upon cooling, there is a 
self-assembly (‘polymerization’) transition where dipolar particle chains form and 
disintegrate in a state of dynamic equilibrium (Fig. 2). The location of the transition 
curves defining this transformation are found to be well-described by the theory of 
equilibrium polymerization [18, 21], where the sticking energy (enthalpy of association 
[21]) is uniquely fixed by the minimum in the intermolecular potential between two SF 
particles [18]. At low temperatures, the long-range dipolar interaction causes the chains  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Polymerization transition in the Stockmayer fluid (SF) upon cooling [18];       
a) Left; T = 10.0, b) Right;   T = 7.80. The number density ρ is constant, ρ = 0.001. 
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to form ring structures that minimize their energy. [18] This topological transition occurs 
despite the entropic energetic cost of confining the free ends of the chains into rings. 
Figure 2 shows the change in organization as T is lowered through the transition 
temperature (TΦ = 9.5 at this concentration [18]).        
       The growth of the average (equilibrium) length of the chains upon cooling and their 
shrinking upon heating are quite reversible in the SF; no nucleation seems to be required 
for this growth process. Fluctuations in thermodynamic variables [average energy E, 
extent of polymerization Φ (fraction of particles in assembled state), average chain length 
L, etc.] become large and long-lived near the polymerization transition temperature, TΦ, 
and the specific heat Cp shows a maximum near TΦ, reflecting these fluctuations. The 
smooth and reversible nature of the polymerization in the SF is completely altered by 
changing to potentials having discrete rotational symmetries, however. [23] 
 
Quadrupole / van der Waals fluid 
 
       The inclusion of a point quadrupole interaction (Fig. 1b), superimposed on the van 
der Waals interaction, is a direct formal generalization of the SF. The LJ component of 
the potential is the same as in Eq. (2) and a detailed definition of the quadrupole 
interaction is given in ref. [23]. As mentioned earlier, we can think of this potential here 
in terms the approximate four charge representation shown in Fig. 1b. Similar to the SF, 
we introduce a dimensionless quadrupole interaction strength relative to the van der 
Waals interaction as, Q* = Q / (4 π εD σ5 ε)1/2 where qaQ 24=  is the ‘quadrupole strength 
parameter’, defined as in terms of the charge q and the charge separation a (See Fig. 1b).   
       We see from Fig. 2 that the continuous rotational symmetry of the dipolar particles 
about their symmetry axis is approximately preserved in the organized structure (nearby 
particles can create perturbations in the potential so the symmetry preservation is only 
approximate). The rotational freedom of the resulting particle chains causes the 
assembled structures to be ‘floppy’ and one-dimensional by nature, at least when the 
attractive van der Waals interactions are not strong enough to induce chain collapse. [24] 
The discrete rotational symmetry of the Quadrupole/van der Waals (Quad/vdW) fluid 
(Fig. 1b) that generalizes the SF indeed gives rise to structures exhibiting an approxi-
mately two-fold local symmetry within the assembled sheet-like polymers. In Fig. 3, we 
show a representative ‘random surface’ polymer that spontaneously assembled in the 
Quad/vdW fluid at low temperatures. We observe that the ‘dipoles’ comprising the 
quadrupole exhibit a strong tendency to form local closed loops within the sheet (See Fig. 
3), reminiscent of the SF. These two-dimensional or ‘random surface’ polymers tend to 
roll up in one direction to form ‘nanotubes’(See Fig. 3) [23], providing a two-
dimensional polymer analog of ring formation in the SF. Thus, the organization of both 
the SF and the Quad/vdW fluids are both driven by directional interactions and the local 
symmetries in the particle potential are approximately preserved in the organized 
structure, as hypothesized above. A similar pattern of behavior is found for the triangular 
(‘hexapole’) configuration of dipolar particles shown in Fig. 1c, which has a three-fold 
rotational symmetry. In this case, we find the formation of both open hexagonal random 
surfaces [23], as well as closed icosahedral shells. [23] The formation of closed 
icosahedra is evidently another generalization of SF ring formation to the two-
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dimensional polymers of the hexapole model where the sheets effectively fold up along 
two orthogonal directions of the sheet to form closed shells. This mode of shell formation 
conforms to the ‘equivalence’ arguments of Crick and Watson. [16] 
 

 
 
Figure 3. Random surface and ‘nanotubes’ formed by square Quad/van der Waals fluid. 
Left image indicates a top view of a representative random surface polymer (T = 1.35,  
Q* = 1.0, ρ = 0.001) and a profile view is shown in top middle. Inset shows local ‘charge 
configuration’ within the ‘sheet’. Right images shows side (upper image) and profile 
view (lower image) of self-assembled ‘nanotubes’ (T = 1.7, Q* = 2.0, ρ = 0.001). 
 
      We note that if we change the angle θ of the quadrupole potential from π/2 to θ = π /4 
(See Fig. 1b), it becomes difficult for the particles to form into random surfaces as in  
Fig. 3. [23] Evidently, the symmetry properties of the particle potential must be 
consistent with allowable surface tiling symmetries for sheet formation to occur.  
Previous simulations for particles having a linear quadrupole interactions along with an 
anisotropic hard-core interaction (model of exfoliated clay particles) led to the formation 
of ’branched equilibrium polymers,’ [25] which can be thought of as random surfaces 
having a disordered topological structure. [23] Branched equilibrium polymers were also 
found for our simulations for θ = π /4. [23] 
 
CONTROLLING SELF-ASSEMBLY WITH SEEDS 
 
       Inserting seeds of specific symmetry provides an important source of control over the 
geometry of self-assembly and the kinetics of growth. Seeding also provide a way of 
imposing growth symmetries that are not shared by the potential of the assembling 
particles. Templating [26] occurs in many biological systems to regulate self-assembly 
into unique or nearly unique growth forms and we can expect this process to serve as a 
powerful tool in controlling synthetic nanofabrication. Unwanted templating can lead to 
disease and the misdirection of synthetic self-assembly into unwanted growth forms. 
       Figure 4 illustrates the growth of a hollow cylinder (nucleated from a seed having the 
form of a ring of hexagons). This heterogeneous nucleation process leads to the 
propagating growth of a cylinder with a hexagonal local symmetry (Hex/vdW model; See 
Fig. 1c), a structure that does not seem to readily form in the absence of a seed. 
Moreover, by making the seed anisotropic (by making particles on one side of the 
hexagon ring simple vdW particles), we find that we can obtain directional growth along 
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one direction. [23] Such ‘polarized growth’ growth is characteristic of many biological 
self-assembly processes, such as microtubule growth emanating from the centrosome in 
the course of mitosis [27].    
 

 
 
 
Figure 4. Seeded nanotube formation in the Hex/vdW fluid. Images show from left to 
right: end-on, side-view and profile views. Conditions: T = 7.85, µ∗ = 6.0, ρ = 0.001.     
       
        The introduction of an artificial seed has a dramatic influence on the evolution of the 
self-assembly process. The growth kinetics without the seed exhibits intense fluctuations 
in the time at which for which assembly growth initiates. [23] By eliminating the 
requirement for homogeneous nucleation of a seed structure, we find that the growth 
curves describing the self-assembly process become much more reproducible, having a 
form reasonably similar to the SF. Seeding thus generally reduces the average time 
required for the initiation or ‘nucleation’ of growth assembly and serves to regulate the 
ultimate assembly geometry by encoding the symmetry characteristics of the seed with 
those of the assembling particles into self-assembling structures.              
 
An artificial centrosome: one-dimensional versus two-dimensional polymers 
 
      We have seen that an apparently modest change in the character of the particle 
potential (dipole to quadrupole or hexapole) can give rise to dramatic changes in the 
assembly structure and growth kinetics. It is interesting to consider the implications of 
this change in interaction potential type on the functional character of the assembly 
process. A full treatment of this problem will require molecular dynamics simulations, 
but we can obtain some qualitative insights into this question by Monte Carlo simulation.  
       The cytoplasm is conspicuously composed of two primary self-assembling proteins- 
actin and tubulin. The first cytoskeleton protein, actin, can form reversible polymers as in 
the case of the dipolar fluid, while tubulin polymerizes as a sheet-like polymer in a highly 
directional fashion. This directional growth has been studied in vitro by introducing 
artificial seeds (synthetic analogs of ‘centrosomes’). [28]  
       Given the quasi-two dimensional nature of the experiments, we restrict ourselves to a 
plane. Our seed (See Fig. 5) is a hexagon of hexapole particles as in Fig. 4 where the 
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dipoles point outward radially (µ* for the centromere-inspired seed was taken to equal 
12.0, while µ* for the other particles equals 6.0.). There were 32 particles confined to 
within a circle of diameter 25 (ρ = 0.0652) where the dipoles were allowed to orient in 
any direction in three-dimensional space and T = 12.0, which was sufficiently low T to  
 
 

 
 
Figure 5.  Polymerization from artificial centrosome in two-dimensions: parallel, anti-
parallel, and single dipole particles. Particles are free to rotate their dipoles out of plane.  
 
induce polymerization in this quasi-two-dimensional fluid. (It should be appreciated that 
this simulation involves a rapid deep quench so that the resulting structures are not at 
equilibrium.) We compare three classes of particles: ordinary hard sphere with a point 
dipole at their center and pairs of such diploes in a parallel and anti-parallel orientation. 
The dipolar particles, with their continuous local rotational symmetry, grew into chains as 
in the SF and these structures readily grew from an artificial seed, as shown in Fig. 5. 
Seeding of a sort is evidently possible for dipolar particles. The chains that formed had 
the property of breaking within their interiors while they were growing and these 
dynamic structures then recombined with other polymer arms or the initial arm of the 
growing star polymer. There was also tendency for the rings to close into loops as the 
chains became long so that multi-loop structures arise. It is clear that the growth of such 
structures cannot exert a coherent interaction on its surroundings, as required for effective 
centromere growth. On the other hand, the multipole analogs of the dipolar sphere model 
exhibit a rather different type of growth process. These structures likewise ‘nucleate’ off 
a core seed (artificial ‘centrosome’), but the growth becomes highly directed from the 
ends of the growing fiber-like structures composed of discrete rotational symmetry 
particles. It is easy to imagine that growing structures of this kind could exhibit a force on 
their environment. Such a growth process could also be the source of active molecular 
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transport. It would appear that the self-assembly processes illustrated in Fig. 5 could 
perform complementary functional tasks. Such differences of growth dynamics are 
perhaps a contributing factor to the origin of the multiple types of assembling proteins 
(actin, tubulin, intermediate filaments) found in living cells.  
 
Conclusions 
 
   We have sought to understand how the symmetry properties of the interaction potential 
of model fluids influence the geometrical structure of self-assembly. We find that there is 
a general tendency for the point group symmetries of the particle potentials to be 
preserved under self-assembly and we obtain insight into the origin of chain-like and 
random surface structures with local rectangular and hexagonal symmetries based on 
simple multipole potential models. Biological molecules characteristically exhibit large 
Coulombic, dipolar and multipole interactions (or interactions exhibiting the same point 
group symmetries) so that this class of potentials is promising for investigating broad 
trends in biological and synthetic self-assembly. We also show that polymorphic 
character of the self-assembly process in the case of formation of two-dimensional 
polymers can be regulated with artificial seeds of prescribed symmetry. Seeding also 
serves to regulate the kinetics of self-assembly, reducing the fluctuations in the 
nucleation time. The differing nature of the self-assembly process in the case of 
continuous and discrete rotational symmetry particles is shown to have functional 
implications through our example of an ‘artificial centrosome’. Future work should 
consider a combination of multipole (dipole, quadrupole, octapole) interactions since 
these interactions are simultaneously present in real proteins. Transitions between self-
assembled structures having different symmetry and topological characteristics can be 
expected to result from changing the relative strengths of these directional interactions.  
A transition of this kind might explain the transition of microtubules from a nanotube to a 
ring configuration under exposure to certain drugs or viral infection. [29] 
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