
INTRODUCTION

Extensive efforts have been made to improve the fillers and filler-matrix
interfaces of resin composites (Söderholm et al., 1984; Goldberg et al.,

1994; Ferracane et al., 1998; Drummond and Bapna, 2003; Anusavice et al.,
2005). Resin compositions and cure conditions have also been improved
(Eick et al., 1993; Bayne et al., 1998; Loza-Herrero et al., 1998).
Nonetheless, while composites may be satisfactory for smaller restorations,
they are not recommended for large stress-bearing restorations (Sakaguchi,
2005). A recent study reported that "clinical data indicate that the two main
challenges are secondary caries and bulk fracture" (Sarrett, 2005).

To overcome the fracture problem, investigators have used whiskers to
improve composite strength and fracture resistance (Xu et al., 1999). Nano-
sized silica particles were fused onto the whiskers to enhance silanization
and retention in the resin by roughening the whisker surfaces. Compared
with glass-particle-filled composites, the whisker composites exhibited
superior performance in thermal-cycling (Xu et al., 2002), long-term water-
aging (Xu, 2003), and three-body wear (Xu et al., 2004a). The whisker
composites were non-cytotoxic and supported cell proliferation and viability
in vitro (Xu et al., 2004b).

To combat secondary caries, researchers have developed composites
with calcium (Ca) and phosphate (PO4) ion release (Dickens-Venz et al.,
1994; Skrtic et al., 1996a,b; Dickens et al., 2003). These composites
demonstrated the ability to remineralize tooth lesions in vitro. However, the
low strength of these Ca- and PO4-releasing composites was "inadequate to
make these composites acceptable as bulk restoratives" (Skrtic et al., 2000).

In the present study, nano-sized dicalcium phosphate anhydrous (DCPA,
CaHPO4) particles were used as fillers with whiskers in resins. DCPA has
been extensively used in calcium phosphate cements (Chow, 2000) and Ca-
and PO4-releasing materials (Dickens et al., 2003). However, while nano
forms of hydroxyapatite and tricalcium phosphate have been synthesized
previously (Zhang and Gonsalves, 1997; Sutorik et al., 2003; Bow et al.,
2004), nano-sized DCPA particles have never been reported. The nano
DCPA particles in the present study were synthesized for the first time. It
was hypothesized that adding nano-DCPA would result in Ca and PO4
release for the composite, and adding whiskers would result in strength
matching that of control composites without release.

MATERIALS & METHODS

Nano DCPA Particles
Nano-sized DCPA was prepared via a spray-drying process (Chow et al., 2004).
We prepared a solution by dissolving 1.088 g of DCPA (J.T. Baker, Phillipsburg,
NJ, USA) in 1 L of an acetic acid at 16 mmol/L concentration to obtain a Ca and
PO4 ionic concentration of 8 mmol/L. The solution was sprayed through a nozzle
(PNR America, Poughkeepsie, NY, USA) that was situated on the top of a heated
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glass column (Fig. 1A). An electrostatic precipitator (MistBuster,
AirQuality Engineering, Minneapolis, MN, USA) was connected to
the lower end of the column and drew air from the column to create

a steady flow of air/mist. The water/volatile acid were evaporated
into the dry, heated column and expelled from the precipitator into
an exhaust hood. The dried particles were collected by the
electrostatic precipitator.

The powder was examined with x-ray diffractometry (XRD,
DMAX2200, Rigaku Denki, Woodlands, TX, USA). The specific
surface area of the powder was analyzed by multipoint-BET
(AUTOSORB-1, Quantachrome Instruments, Boynton Beach, FL,
USA) and transmission electron microscopy (TEM, 3010-HREM,
JEOL, Peabody, MA, USA). To minimize agglomeration, we
ultrasonicated an acetone suspension of the particles, and drops of
the suspension were deposited onto the TEM grids.

Nano-silica-fused Whiskers
Silicon carbide whiskers (ART, Buffalo, NY, USA) having a mean
diameter of about 0.9 �m and a mean length of 14 �m were mixed
with nano-silica (Aerosil-OX50, Degussa, Ridgefield, NJ, USA),
with a particle size of 40 nm, at a whisker:silica mass ratio of 5:1.
The mixture was heated at 800°C for 30 min. The powder was
silanized with 4% 3-methacryloxypropyltrimethoxysilane and 2%
n-propylamine in cyclohexane (all mass fractions). The nano-
silica-fused whiskers are hereinafter referred to as whiskers.

Fabrication of Nano DCPA-whisker Composites
Three groups of specimens were fabricated (Table). A 3x3 design
was used, with 3 resins (direct-filling with HEMA; direct-filling
without HEMA; indirect heat-cured without HEMA) and 3
DCPA:whisker mass ratios (1:2, 1:1, 2:1) (designated as "D:W").

For group 1, the nano-DCPA and whiskers were blended with
resin part 1 to form the initiator paste (Table). The filler mass
fraction was 60% for all 3 groups and yielded a flowable paste.
The accelerator paste consisted of the same amount of powder
mixed with resin part 2. Equal masses of the 2 pastes were blended
and filled into a 2 x 2 x 25 mm3 mold. For group 2, the initiator
and accelerator monomers are listed as parts 1 and 2, respectively
(Table). For group 3, the specimens were heat-cured at 120°C for
30 min.

A hybrid composite (TPH, Caulk/Dentsply, Milford, DE,

Figure 1. Synthesis of nano DCPA particles. (A) Schematic of the spray-
drying apparatus. "HEPA" refers to High Efficiency Particulate Air Filter.
The glass column was heated with electrical heating tapes and thermally
insulated with a fiberglass tape, reaching an average temperature in the
column of 80°C. (B) TEM of nano DCPA particles. Arrows indicate
particles about 50 nm in diameter. (C) XRD pattern indicates that the
powder was a poorly crystalline DCPA.

Table. Matrix Compositions of the 3 Groups of Composites (mass %)*

Bis-GMA TEGDMA HEMA BHT BPO DHEPT MEHQ

Group 1
part 1 36.475 36.475 25 0.05 2
part 2 37 37 25 1

Group 2
part 1 48.975 48.975 0.05 2
part 2 49.5 49.5 1

Group 3 48.965 48.965 2 0.07

* Bis-GMA = bisphenol glycidyl dimethacrylate. TEGDMA = triethylene
glycol dimethacrylate. HEMA = 2-hydroxyethyl methacrylate. BHT =
2,6-di-tert-butyl-4-methylphenol. BPO = benzoyl peroxide. DHEPT =
N,N-dihydroxyethyl-p-toluidine. MEHQ = 4-methoxylphenol. Group
1 used a two-part chemically activated resin system containing
HEMA. Group 2 used the two-part chemically activated resin system
without HEMA. The purpose was to examine the effects of HEMA on
the composite properties. Specimens of Group 3 were heat-cured for
indirect applications.
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USA), containing 78% of silicate particles, about 0.8 �m in
diameter, was used as a control and is referred to as hybrid control.
The specimens were light-cured (Triad-2000, Dentsply, York, PA,

USA) for 2 min. Specimens of an inlay/onlay composite (Concept,
Ivoclar, Amherst, NY, USA; designated as inlay/onlay control)
were cured in a Concept Heat-Integrated Processor at 120°C for 10
min under a pressure of 0.6 MPa.

Measurements of Strength and Ca and PO4 Release
Flexural strength was measured by a three-point flexural test with a
10-mm span at a crosshead speed of 1 mm/min on a Universal
Testing Machine (5500R, MTS, Cary, NC, USA). A NaCl solution
(133 mmol/L), buffered with 50 mmol/L HEPES (pH = 7.4; 37°C),
was used for specimen immersion. The specimens were: (1) stored
in an oven at a relative humidity of approximately 50% for 1 day;
(2) immersed for 1 day; or (3) immersed for 56 days, all at 37°C,
prior to mechanical testing.

To measure the Ca-PO4 release, we used the NaCl solution
described above. In a previous study, a composite disk of
approximately 15.8 mm in diameter and 1.55 mm in thickness was
immersed in 100 mL solution (Skrtic et al., 1996a), yielding a
composite volume per solution of 3.0 mm3/mL and a surface
area/solution of 4.7 mm2/mL. In the present study, 3 specimens of
approximately 2 x 2 x 12 mm3 were immersed in 50 mL solution,
yielding a specimen volume/solution of 2.9 mm3/mL and a surface
area/solution of 6.2 mm2/mL. The immersion times were: 1 day, 2,
4, 7, 14, 21, 28, 35, 42, 49, and 56 days. At each time, aliquots of
0.5 mL were removed and analyzed for Ca and PO4 concentrations
with a spectrophotometer (DMS-80 UV-visible, Varian, Palo Alto,
CA, USA), according to established standards and calibration
methods (Vogel et al., 1983; Skrtic et al., 1996a; Dickens et al.,
2003).

We performed two-way ANOVA to detect the significant
effects of variables. We performed Tukey's multiple comparison at
p = 0.05 to compare the data.

RESULTS
TEM (Fig. 1B) showed agglomerated particles, with individual
particles having a size of approximately 50 nm (arrows). The
XRD pattern (Fig. 1C) had peaks corresponding to DCPA,
while the hump suggests that it may be poorly crystalline. The
BET measurement yielded a specific surface area of 18.6 m2/g.

The DCPA-whisker composites before immersion showed
decreasing strength with increasing D:W ratio (Fig. 2A). For
the composite with HEMA, the flexural strength in MPa at
D:W = 1:2 was (156 ± 11), significantly higher than (111 ± 5)
at D:W = 2:1 (p < 0.05).

For the composite without HEMA, the strength at D:W =
1:2 was (148 ± 9), higher than (110 ± 13) at D:W = 2:1 (p <
0.05).

For the heat-cured composite, the strength at D:W = 1:2
was (167 ± 23), not significantly different from (137 ± 18) at
D:W = 2:1 (p > 0.1). The strength of the heat-cured composite
at D:W = 1:2 was higher than (103 ± 32) of the inlay/onlay
control (p < 0.05). Those of the chemically cured composites at
D:W = 1:2, both with and without HEMA, were higher than
(112 ± 22) of the hybrid control (p < 0.05).

Most composites did not show a significant decrease in
strength after 1 day's immersion (Fig. 2B). The heat-cured and
the chemically cured nano DCPA-whisker composites without
HEMA showed no significant decrease in strength compared
with those before immersion (p > 0.1). Only the chemically
cured composite with HEMA at D:W = 1:2 had a significant
strength loss (p < 0.05).

Figure 2. Composite flexural strength. Heat-cured nano DCPA
composite: ●. Chemically cured nano DCPA composite with HEMA: ●●.
Chemically cured nano DCPA composite without HEMA: ■. Specimens
(A) without immersion, (B) after 1 day's immersion, and (C) after 56
days' immersion. Each value is the mean of 5 measurements, with the
error bar showing 1 standard deviation (SD) (mean ± SD; n = 5). Two-
way ANOVA identified significant effects of resin composition and
DCPA:whisker ratio (p < 0.05), with no significant interaction between
the two factors (p = 0.86). The 56-day immersion decreased the
strength of the chemically cured DCPA-whisker composites, but not the
heat-cured DCPA-whisker composites and the controls (p > 0.1).
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After the 56-day immersion (Fig. 2C), the heat-cured
composite showed no significant decrease in strength (p > 0.1)
compared with that of specimens before immersion. The
chemically cured DCPA-whisker composites (with and without
HEMA) showed significant strength losses (p < 0.05).

The ion release increased rapidly with time, then reached a
plateau with further increase in time (Fig. 3). The composite
with HEMA (D:W = 2:1) had higher release than other
composites (p < 0.05). For group 1 at 56 days, the total ionic
PO4 concentration in mmol/L reached (1.95 ± 0.13), (0.98 ±
0.05), and (0.43 ± 0.07), at D:W = 2:1, 1:1, and 1:2,
respectively. The corresponding Ca concentrations reached
(0.68 ± 0.07), (0.38 ± 0.05), and (0.27 ± 0.01), respectively.
Groups 2-3 had similar concentrations; both were slightly
lower than those of group 1 (p < 0.05).

DISCUSSION
This study represented the first effort to combine nano-sized
Ca- and PO4-releasing fillers with reinforcing fillers in resins.
In previous studies, nano-sized inert tantalum-oxide particles
(Chan et al., 1999), micron-sized fluoride-releasing fillers

(Anusavice et al., 2005), and micron-sized DCPA were used in
resins (Dickens et al., 2003). The nano DCPA-whisker
composites of the present study possessed flexural strengths
similar to those of commercial composites without Ca and PO4
release. The reinforcement mechanisms were whiskers pinning
and bridging the cracks (Xu et al., 1999, 2002). The whiskers
have a tensile strength of about 50 GPa, compared with 2.6
GPa for glass fibers. Fracture toughness is > 2 MPa·m1/2 for
silicon carbide, compared with 0.7 MPa·m1/2 for glass. Hence,
the whiskers were more effective in resisting cracks and less
likely to be cut through by the cracks, compared with glass
fillers in composites.

A previous study used amorphous calcium phosphate
(ACP) fillers and developed an ACP remineralizing composite
(Skrtic et al., 1996a). When dry specimens without immersion
were used, the ACP composite had a three-point flexural
strength of (47 ± 5) MPa with unmilled ACP and (56 ± 16)
MPa with milled ACP (O'Donnell et al., 2006). In the present
study, the nano DCPA-whisker composites for direct-filling
had three-point flexural strengths of about 150 MPa before
immersion at D:W = 1:2.

Figure 3. PO4 and Ca release for the 3 groups of composites. Each value is mean ± SD; n = 4. The nano DCPA:whisker mass ratio was designated as
D:W. For each group, two-way ANOVA showed significant effects of D:W and immersion time, with a significant interaction between the 2
parameters (P < 0.05). Increasing the D:W ratio significantly increased the PO4 and Ca concentrations (P < 0.05). At each D:W, increasing the
immersion time significantly increased the PO4 and Ca ion concentrations. The hybrid control and inlay/onlay control had no detectable release.
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After the 56-day immersion, the strength of the chemically
cured composite (D:W = 1:2) decreased to (104 ± 6) MPa
without HEMA and (108 ± 12) MPa with HEMA. In
comparison, a previous composite, with micron-sized DCPA,
had a bi-axial flexural strength of 40-60 MPa before
immersion; the strength decreased to 10-20 MPa after 90 days
of immersion (Dickens et al., 2004). The strength of the ACP
composite decreased to 40 MPa after 11 days' immersion
(Skrtic et al., 1996a). Hence, the strengths of nano-DCPA-
whisker composites were substantially higher than those of
previous Ca- and PO4-releasing composites. The nano-silica-
whiskers are relatively inert and stable, and previous studies
showed that they were strongly bonded with the resin matrix
(Xu et al., 2002). Hence, the nano DCPA-whisker composites
are expected to have improved long-term durability compared
with the previous Ca-PO4 composites that do not have a stable
reinforcement phase. Further studies are needed to investigate
the long-term water-aging behavior of the nano DCPA-whisker
composites.

It should be noted that a 10-mm span was used in the three-
point flexural test, while ISO Specification 4049 (2000) calls for
the use of a 20-mm span. To examine any differences, we tested
specimens of the hybrid control composite (TPH) using both the
10-mm span and the 20-mm span. The flexural strength values
(mean ± SD; n = 5) were measured to be (111.7 ± 22.0) MPa and
(111.9 ± 14.1) MPa, at 10-mm and 20-mm spans, respectively.
Specimens of the heat-cured DCPA-whisker composite (at an
intermediate D:W = 1:1) were also tested with both 10-mm and
20-mm spans, yielding (135.7 ± 7.8) MPa and (134.4 ± 17.5)
MPa, respectively. Although the strengths with 10-mm and 20-
mm spans are nearly the same, future studies should use the 20-
mm span, to be consistent with the specification. Another issue is
the number of samples: The present study used n = 5, consistent
with the ISO Specification 4049, on the three-point flexural test.
To examine the effect of n, we tested the heat-cured DCPA-
whisker composite (at an intermediate D:W = 1:1) using the 20-
mm span. The strength was (134.4 ± 17.5) MPa at n = 5, (136.1
± 15.1) MPa at n = 10, and (139.4 ± 14.2) MPa at n = 14. While
these values were nearly the same, there was a slight decrease in
the standard deviation with increasing n.

The ACP composites with HEMA yielded PO4
concentrations of 0.2-0.7 mmol/L and Ca of 0.3-1.0 mmol/L
(Figs. 2-3 in Skrtic et al., 1996a). The nano-DCPA composite
with HEMA produced a Ca concentration (0.68 mmol/L)
similar to the ACP composites, and a PO4 concentration (1.95
mmol/L) approximately twice that of ACP composites. Another
study on remineralizing Ca-PO4 composites reported a PO4
concentration of 0.1 mmol/L and a Ca concentration of 0.5
mmol/L in buffered saline (Dickens et al., 2003).

A reason for the high release from the nano-DCPA
composites, even with the non-releasing whiskers serving as
part of the fillers, was likely the high surface area of the nano-
DCPA, measured to be A = 18.6 m2/g. In comparison, in a
previous study (Dickens et al., 2003), the DCPA particle size,
d, was 1.1 �m, and the TTCP (tetracalcium phosphate) particle
size was 16 �m. The density, �, is 2.89 g/cm3 for DCPA and
3.07 g/cm3 for TTCP. Hence, A = 6/(�d) = 1.9 m2/g for DCPA,
and A = 0.12 m2/g for TTCP, much less than the 18.6 m2/g for
the nano DCPA. Smaller particles with a larger surface area
may have faster release, resulting in higher ionic
concentrations. Previous studies (Skrtic et al., 1996b; Dickens

et al., 2003) have shown that when Ca and PO4 were released,
they re-precipitated to form hydroxyapatite outside the
composite and inside the tooth lesions, significantly increasing
the mineral content of the lesion. The fact that the Ca-PO4
concentrations from the nano-DCPA-whisker composites
matched or exceeded those of previous composites that were
shown to remineralize tooth lesions suggests that these nano-
DCPA-composites may also be effective remineralizers.

It should be noted that this study focused on developing
novel nano-composites with high strength and Ca and PO4
release, without attempting to simulate the in vivo saliva flow
and pH changes. Thus, this study demonstrated that the high-
strength composites released Ca and PO4 matching/exceeding
the previous remineralizing composites measured by a similar
method, without examining the kinetics of the release under in
vivo conditions. Although this study measured the release up to
56 days, the release is expected to continue after 56 days. The
ion concentrations in Fig. 3 plateaued, likely due to the
measurement method in which the solution was not changed.
Further studies should measure the concentration of the
solution at certain time intervals, such as hourly or daily, and
replenish the solution with the same volume of fresh solvent at
each time interval. Studies are also needed to investigate the
remineralization of enamel and dentin lesions with these high-
strength nano DCPA-whisker composites.

In summary, nano DCPA particles were synthesized and
incorporated into dental resins for the first time. Significant
releases of Ca and PO4 were obtained from these composites.
The addition of nano-silica-fused whiskers resulted in high
composite strengths, matching those of commercial stress-
bearing, non-releasing composites. Furthermore, the Ca-PO4
concentrations from the nano-DCPA-whisker composites
matched/exceeded those of previous Ca-PO4 composites that
were shown to remineralize tooth lesions, while the flexural
strengths of the nano-DCPA-whisker composites were two- to
three-fold those of the previous Ca-PO4 composites. In
addition, the processing method of synergistically using
calcium phosphate nano-fillers/reinforcement fillers in dental
resins may yield new composites with high stress-bearing and
caries-inhibiting capabilities, a combination not available in
any current dental materials.
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