
THE JOURNAL OF CHEMICAL PHYSICS 124, 144906 �2006�
Lattice model of equilibrium polymerization. V. Scattering properties
and the width of the critical regime for phase separation
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Dynamic clustering associated with self-assembly in many complex fluids can qualitatively alter the
shape of phase boundaries and produce large changes in the scale of critical fluctuations that are
difficult to comprehend within the existing framework of theories of critical phenomena for
nonassociating fluids. In order to elucidate the scattering and critical properties of associating fluids,
we consider several models of equilibrium polymerization that describe widely occurring types of
associating fluids at equilibrium and that exhibit the well defined cluster geometry of linear polymer
chains. Specifically, a Flory-Huggins-type lattice theory is used, in conjunction with the random
phase approximation, to compute the correlation length amplitude �o and the Ginzburg number Gi
corresponding, respectively, to the scale of composition fluctuations and to a parameter
characterizing the temperature range over which Ising critical behavior is exhibited. Our
calculations indicate that upon increasing the interparticle association energy, the polymer chains
become increasingly long in the vicinity of the critical point, leading naturally to a more asymmetric
phase boundary. This increase in the average degree of polymerization implies, in turn, a larger �o

and a drastically reduced width of the critical region �as measured by Gi�. We thus obtain insight
into the common appearance of asymmetric phase boundaries in a wide range of “complex” fluids
and into the observation of apparent mean field critical behavior even rather close to the critical
point. © 2006 American Institute of Physics. �DOI: 10.1063/1.2181138�
I. INTRODUCTION

While the theory of phase separation in “simple,” non-
associating fluids has reached an advanced state and success-
fully explains the critical properties of these systems,1–7 our
understanding of the critical behavior of many “complex”
fluids encountered in everyday practice is still rather limited.
The literature is full of reports of “deviations” from ordinary
critical behavior, especially in ionic fluids �ranging from col-
loidal, ionomer, and polyelectrolyte solutions to proteins, vi-
ruses, and DNA�,8–16 micelle forming liquids,17 and other
fluids exhibiting interparticle association. The latter systems
are being increasingly subjected to quantitative investigation
because of their importance for understanding fundamental
biological processes involving protein aggregation and self-
assembly and because of their many practical applications in
commercial formulations of consumer products and in mate-
rial processing.

In contrast to simple or nonassociating liquids, associat-
ing fluids commonly exhibit highly asymmetric phase
boundaries, and, correspondingly, coexisting phases having
disparate volumes �or compositions�.9,16,18,19 Indeed, the
shapes of the phase boundaries in complex fluids are often
reported to resemble those of polymer solutions.15,19–21 Nu-
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merous studies have also indicated apparent mean-field criti-
cal exponents for these fluids for temperature ranges where
simple fluids would exhibit Ising-type critical behavior.8–16

However, increasingly refined measurements demonstrate
that these associating fluids display Ising critical behavior at
temperatures very close to the critical point, indicating that
the width of the nonclassical critical region is actually much
smaller than for simple fluids.22–26 As frequently noted, the
critical exponents switch sharply between their mean-field
and Ising values in the narrow critical regime of these com-
plex fluids,9,11,22,27 a feature also characteristic of the critical
behavior of polymer solutions.28,29

Recent simulations30 provide insight into the physical
origins of the critical properties of these complex fluids, al-
though the theory of these systems remains relatively unde-
veloped. For example, simulations for an electrically neutral
fluid of charged hard spheres �the “restricted primitive
model”� indicate that ion pairs form large scale dynamic
polymeric structures at equilibrium and that ion pairing and
subsequent polymerization of dipolar clusters strongly affect
the critical properties of these fluids.30 The presence of these
dynamic clusters has long been suggested based on indirect
experimental observations.30 Simulations reveal that both
charge valence and particle size asymmetries influence the
character of the clustering �linear chains versus branched
polymers� and that the tendency to form transient polymer

31
structures is quite general in charged fluids. The nature of
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the clustering apparently simplifies when there is a large
asymmetry in the ion sizes, and linear polymer chain clusters
are highly prevalent in this limit.32 Clustering also occurs, of
course, in dipolar fluids where the dipolar particles exhibit a
strong propensity to form chains at equilibrium with head-
to-tail configurations.33 These observations suggest that the
critical properties of many associating fluids should resemble
those for polymer solutions.19–21 Once the prevalance for po-
lymerization in these fluids is recognized, the differences in
the width of the critical region and in the size of the critical
fluctuations between complex and simple fluids become al-
most obvious. Our goal then lies in developing a theoretical
description of this ubiquitous clustering phenomenon and of
its impact on the critical and scattering properties of complex
fluids.

We have recently shown that many thermodynamic
properties �critical temperature, critical composition, osmotic
compressibility,34 etc.� of dipolar fluids can be quantitatively
described by using a simple Flory-Huggins �FH� model of
equilibrium polymerization.32,35–37 Dipolar fluids are proto-
typical associating fluids, and their successful description by
a FH-type approach represents a promising start for develop-
ing a general theory of associating fluids. However, this
theory has not been developed to provide a complete descrip-
tion of critical properties, such as the correlation length or
the width of the critical region and other basic critical prop-
erties that are helpful in comprehending the critical behavior
of these associating fluids. The mean-field nature of this
modeling is also an intrinsic limitation.

The present paper directly addresses itself to the problem
of calculating the scattering properties of equilibrium poly-
mer solutions, but our treatment is still limited to mean-field
theory. Despite this restriction, we are able to compute the
Ginzburg number �Gi� which delineates the size of the criti-
cal region for phase separation in solutions of polydisperse
clusters that are generated by equilibrium polymerization.
The calculations are performed for several models of equi-
librium polymerization that exhibit different constraints on
the polymerization process. These constraints regulate the
degree of polymerization at low temperatures and the
breadth of the polymerization transition,38 and their influence
on the criticality of these associating liquids is the subject of
the present paper.

The analysis begins with the free association �FA� po-
lymerization model in which every particle �monomer� can
promiscuously associate with any other particle without any
condition other than physical proximity. We then analyze the
case where polymerization is initiated by a thermally acti-
vated process �A model� that has a relatively low probability.
The small equilibrium constant for activation acts as a con-
straint on further polymerization and leads to a much sharper
polymerization transition as a function of temperature since
there are fewer activated species competing for available
monomer “mates.” This thermal activation constraint is also
found to produce substantial changes in the critical proper-
ties of this class of associating fluids, as discussed below.
The polymerization equilibrium can likewise be modulated
by the introduction of a chemical initiator �the I or “living

38–41
polymerization” model�, which plays a role similar to
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that of thermally activated species. Since thermal activation
and chemical initiation similarly affect the critical properties
of equilibrium polymers, we restrict the discussion below to
the illustrative case of the A model. The case of a large
activation equilibrium constant is not considered since this
case leads to fairly short chains38 and, thus, the critical prop-
erties of these fluids are only slightly perturbed compared to
simple liquids. Our initial representative calculations focus
on systems for which the extent of polymerization becomes
appreciable to emphasize the qualitative consequences of
strong association on critical properties.

Another important factor analyzed in our calculations is
the impact of chain stiffness on the critical properties of
equilibiurm polymerization solutions. Chain rigidity influ-
ences the critical behavior of ordinary polymer solutions and
must likewise affect the critical behavior of fluids undergo-
ing equilibrium polymerization. Much of our discussion is
confined to Gaussian and wormlike polymer chain models as
extreme limits. The computation of Gi and the correlation
length amplitude for these model associating polymer solu-
tions requires the evaluation of the square gradient coeffi-
cient � that describes the interfacial free energy cost of cre-
ating inhomogeneties in the polydisperse polymer solutions.

Section II briefly reviews the essential thermodynamic
characteristics of models of equilibrium polymerization, fo-
cusing on quantities closely related to the critical properties
of associating solutions. Section III describes the theoretical
background for the basic scattering quantities that are re-
quired for computing the Ginzburg number. Illustrative cal-
culations of the phase boundaries and the influence of asso-
ciation on both critical and scattering properties, as well as
on the Ginzburg number, are summarized in Sec. IV.

II. FLORY-HUGGINS THEORY OF EQUILIBRIUM
POLYMERIZATION

Our recent papers38–41 develop a comprehensive theory
of equilibrium polymerization. The theory describes the ba-
sic thermodynamic and critical properties of polydisperse
polymer solutions, the competition between polymerization
and phase separation, and the characteristic rounding for this
type of thermodynamic clustering transition. The properties
treated include the average chain length L, extent of poly-
merization �, Helmholtz free energy F, configurational en-
tropy S, specific heat CV, polymerization transition tempera-
ture Tp, osmotic pressure �, second and third virial
coefficients A2 and A3, and the critical temperature Tc and
critical composition �c for phase separation. This systematic
treatment has been derived for three general models of asso-
ciation: a model with unrestricted equilibrium polymeriza-
tion in which all particles can associate democratically at
equilibrium �termed the FA model�, a model in which the
particles must become thermodynamically activated to ini-
tiate polymerization �A model�, and finally a model in which
chain growth is induced by a chemical initiator �I model�.38

This basic classification scheme for equilibrium polymeriza-
tion follows that introduced long ago by Tobolsky and
Eisenberg42 and encompasses the main classes of equilibrium

polymerization encountered in practice.
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The present paper extends our theory to the description
of the scattering and critical properties of equilibrium poly-
merization systems by considering quantities such as the
structure factor S�q�, correlation length amplitude �o, width
of the critical regime, Ginzburg number Gi, etc. We briefly
review those main theoretical results for the FA and A mod-
els that are required in developing the present extension of
the theory for the critical behavior of associating fluids.

A. Free asociation model

The FA system is composed of ns solvent molecules and
n1

o monomers of species M that can “freely associate” with
polymers once the free energy for this process is negative.
The resulting polymers form and disintegrate in dynamic
equilibrium. Chain growth may proceed either by the addi-
tion of a single monomer or by the linkage of two chains.
Chains may break in the middle, or segments may dissociate
from the chain ends. These two modes of polymerization and
depolymerization can be represented by the single kinetic
equation38

Mj + Mk � Mj+k, j,k = 1,2, . . . ,� . �1�

The constant volume system is described using the standard
Flory-Huggins lattice model in which single site occupancy
constraints apply to solvent molecules and to all monomers
�unreacted monomers and those present in polymers�. The
total number Nl of lattice sites is expressed in terms of the
numbers �ni� of molecules of the individual species Mi as

Nl = ns + �
i=1

�

ini = ns + n1
o. �2�

Equation �2� reflects the underlying assumptions of incom-
pressibility and equal volumes for solvent molecules and for
monomers of the associating species, assumptions recently
lifted in a theory for the pressure dependence of equilibrium
polymerization.43 Equation �2� can be converted to the alter-
native form of the mass conservation condition,

�
i=1

�

�i = �1
o, �3�

that relates the volume fractions ��i= ini /Nl� of the polymer
species �Mi� to the volume fraction �1

o of monomers before
polymerization.44 The equilibrium constant Kp for the poly-
merization reaction in Eq. �1� is assumed to be same for all j
and k and, thus, is expressed in terms of a single free energy
�fp of polymerization as Kp=exp�−�fp /kBT�, with kB desig-
nating Boltzmann’s constant and T being the absolute tem-
perature. For simplicity, all monomers are assumed to inter-
act identically with the solvent molecules, regardless of
whether they are unpolymerized �M1� or belong to polymer-
ized species Mi �i�2�, which, in turn, implies the presence
of a single monomer-solvent interaction parameter 	.

Under the above assumptions, the equilibrium distribu-
tion of the volume fractions ��i� is solely dictated by the
initial monomer concentration �1

o, the temperature T, and the
38
energy �hp and entropy �sp of polymerization,
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�i = iCAi, i � 2, A � �1Kp, C � z/�2
Kp� , �4�

where the coefficient 
 equals �z−1� and 1 for fully flexible
and stiff chains, respectively.38,45 Substituting Eq. �4� into
Eq. �3� and performing all summations �with the constraint
0�A�1� yield the relation between �1

o and �1,

�1
o = �1 +

CA2�2 − A�
�1 − A�2 , �5�

where the quantity A�A��1
o ,T� is determined numerically

from Eq. �5� for given T, �1
o, �hp, and �sp.

The extent of polymerization � �the fraction of mono-
mers converted into polymers� and the average chain length
L are basic properties of equilibrium polymerization solu-
tions and are likewise functions of T, �1

o, �hp, and �sp

through

� �
�1

o − �1

�1
o =

1

�1
o

CA2�2 − A�
�1 − A�2 �6�

and

L �
�i=1

� �i

�i=1
� �i/i

=
�1

o

�1
o − �CA2/�1 − A�2�

. �7�

A plot of ��T� versus T exhibits an inflection point, and the
temperature T� at which the derivative �2� / 	�T2	�1

o vanishes
is often identified by experimentalists with the polymeriza-
tion transition temperature Tp. The variation of Tp with �1

o is
termed the “polymerization transition line” and provides a
rough criterion for delineating the thermodynamic boundary
between polymer rich and monomer rich states. This inter-
pretation is less adequate for the FA model where the poly-
merization transition is broad. The temperature T� is gener-
ally distinct38 from Tp where the specific heat has a
maximum. Both of these temperatures provide valuable in-
formation about the polymerization transition, and the gap
between these temperatures represents a measure of how
much the transition is rounded.41

The Helmholtz free energy F is the basic thermodynamic
property of the system, and in contrast to ��i�, �, and L, F
also depends on the strength �FH of the effective monomer-
solvent interactions,

F

NlkBT
= �1 − �1

o�ln�1 − �1
o� + �1

o ln �1

+ �1 − �1
o��1

o	 +
CA2

�1 − A�2 , �8�

where the dimensionless monomer-solvent Flory-Huggins
interaction parameter 	=�FH/T arises within FH theory as a
purely energetic quantity that is inversely proportional to
temperature.46 The osmotic pressure � of the associating so-

lution is evaluated from the Helmholtz free energy F as
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�a3

kBT
= −

cell

kBT

 �F

�V



T,n1
o

= − ln�1 − �1
o� − ��1

o�2	 −
CA2

�1 − A�2 , �9�

with cell=V /Nl being the volume associated with a single
lattice site.

The condition for the existence of a stable homogeneous
phase is given by the simple form


 �2F/�NlkBT�
��1

o2 

Nl,T

� 0,

while the vanishing of the second derivative of F with re-
spect to �1

o defines the constant volume spinodal curves T
=T��1

o� as the solution of the equation

1

�1
o + �2CA2/�1 − A�3�

+
1

1 − �1
o − 2	 = 0, �10�

where again the quantity A�A��1
o ,T� emerges from the so-

lution to Eq. �5�.
An extremum of the spinodal curve identifies the critical

temperature Tc and critical composition �c���1
o�c. Knowl-

edge of these critical parameters, in conjunction with Eq. �9�,
enables calculating the �mean-field� critical osmotic com-
pressibility factor Zc=�ca

3 / �kBTc�c�, another important
thermodynamic quantity for solutions of associating species.

B. Activated equilibrium polymerization

The simplest model of activated polymerization is de-
scribed by the reaction scheme,47

M1 � M1
*, �11�

M1
* + M1 � M2, �12�

Mi + M1 � Mi+1, i = 2,3, . . . ,� , �13�

where the activated species M1
* reacts only with nonactivated

monomers M1 to form dimers, but does not participate in the
succesive chain propagation processes. An alternative model,
in which dimers are formed by linking two activated mono-
mers M1

* and chain growth occurs exclusively through the
addition of M1

* to the resulting polymers, is mathematically
isomorphic38 to that described by Eqs. �11�–�13�. The sim-
plest model of Eqs. �11�–�13� is further specified by desig-
nating �fa=�ha−T�sa and �fp=�hp−T�sp as the free en-
ergies of activation and polymerization, respectively. In
order to minimize the number of parameters, both the enthal-
pies �hp and entropies �sp associated with dimer formation
�Eq. �12�� and with the propagation process �Eq. �13��, re-
spectively, are taken as identical. As for the FA model, all
monomers �unpolymerized and those in polymers� are

treated as interacting identically with the solvent.
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The distribution of volume fractions ��i� for all species
i,

�i = iCAi, i � 2, A � �1Kp, C � zKa/�2
Kp� ,

�14�

formally resembles that derived for the FA model �see Eq.
�5��, except for the appearance of the volume fraction �1

* of
the activated monomers,

�1
* = �1Ka, with Ka = exp�− �fa/kBT� .

While the quantity A in Eq. �14� is defined as in Eq. �4�, the
prefactor C in Eq. �14� departs from its definition in Eq. �4�
for the FA model by the presence of the equilibrium con-
stant Ka for activation. This formal identity between Eqs. �4�
and �14� does not imply, however, that A and ��i� have simi-
lar values for these two models since the mass conservation
constraint for the activated association model,

�1
o = �1�1 + Ka� +

CA2�2 − A�
�1 − A�2 , �15�

contains an extra term �1
*=�1Ka that is absent in Eq. �5�.

The definitions of the extent of polymerization � and the
average degree of polymerization L explicitly include the
presence of activated monomers,

� �
�1

o − �1 − �1
*

�1
o =

1

�1
o

CA2�2 − A�
�1 − A�2 �16�

and

L �
�1

* + �i=1
� �i

�1
* + �i=1

� ��i/i�
=

�1
o

�1
o − �CA2/�1 − A�2�

, �17�

but the right hand sides of Eqs. �16� and �17� are formally the
same as those in Eqs. �6� and �7�, respectively. A more de-
tailed analysis of Eqs. �16� and �17� reveals that that both �
and L are no longer generally monotonic functions of tem-
perature when an activated process is present.38

The Helmholtz free energy of the system can be con-
verted into a form that does not explicitly contain the volume
fraction �1

* and that is formally identical to Eq. �8�,

F

NlkBT
= �1 − �1

o�ln�1 − �1
o� + �1

o ln �1 + �1 − �1
o��1

o	

+
CA2

�1 − A�2 . �18�

Short range van der Waals interactions are represented in Eq.
�18� �as in Eq. �8�� by a single interaction parameter 	 that
describes the average effective interactions between the sol-
vent and monomers of the associating species M.

The formally identical expressions for the free energy F
for the FA and A models imply a common expression for
the osmotic pressure �see Eq. �9��,

�cell

kBT
= − ln�1 − �1

o� − ��1
o�2	 −

CA2

�1 − A�2 ,
and for the spinodal stability condition �see Eq. �10��,
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1

�1
o + �2CA2/�1 − A�3�

+
1

1 − �1
o − 2	 = 0.

As already mentioned, this commonality does not lead to the
same values of �, Tc, �c, etc., in these two models due to the
different mass conservation equations determining A.

III. CRITICAL PROPERTIES OF EQUILIBRIUM
POLYMER SOLUTIONS

The formal expansion of the specific Helmholtz free en-
ergy f =F /Nl around the critical point for a homogeneous
equilibrium polymerization solution,

f

kBT
=

fc

kBTc
+ a10� +

1

2
a21�

2�

+
1

3!
a31�

3� +
1

4!
a40�

4 + ¯ , �19�

is derived48 assuming that f is an analytic function of the
order parameter ���−�c �defined as the difference be-
tween the actual composition ���1

o and the critical compo-
sition �c���1

o�c� and of the reduced temperature ���T
−Tc� /T. The coefficients a10, a21, a31, and a40 in Eq. �19� are
derivatives of the specific Helmholtz free energy, evaluated
at the critical point �i.e., at �=�c and T=Tc�,

a10 =
 ��f/kBT�
��



�c,Tc

, �20�

a � a2,1 =
 �3�f/kBT�
��2��



�c,Tc

, �21�

a31 =
 �4�f/kBT�
��3��



�c,Tc

, �22�

b � a4,0 =
 �4�f/kBT�
��4 


�c,Tc

, �23�

and fc is the specific free energy f of Eq. �8� �or Eq. �18�� at
the critical point, i.e., fc� f��=�c ,T=Tc�.

Contributions from fluctuations of the order parameter
are appended to Eq. �19� by the addition of a square gradient
term,2 which transforms Eq. �19� into the free energy expan-
sion,

f

kBT
=

fc

kBTc
+ a10� +

1

2
a�2� +

1

3!
a31�

3� +
1

4!
b�4

+
1

2
�c	��	2 + ¯ , �24�

where the order parameter ����r� now is spatially varying
and the square gradient coefficient � is evaluated at the criti-
cal point, i.e., �c=���=�c ,T=Tc�.

A. Basic scattering properties

We next discuss basic relations describing the long
wavelength scattering properties of equilibrium polymeriza-

tion solutions. The coefficient �, whose evaluation for poly-
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disperse polymer solutions is described in Sec. III C, is de-
termined from the expansion of the structure factor S�q� in
the small angle limit of q=0,

1

S�q�
=

1

S�0�
+ �q2 + ¯ . �25�

Moreover, � is related to the static correlation length �,
which is defined through the Ornstein-Zernicke equation2

S�q� =
S�0�

1 + �2q2 , q → 0, �26�

by

� =
�2

S�0�
. �27�

The mean field static correlation length � scales with the
reduced temperature � according to the �mean field� defining
relation,

� = �o	�	−1/2, �28�

and the correlation length amplitude �o is independent of
temperature. The mean field sum rule �2�S�0� in Eq. �27�
implies that �o controls both the intensity �S�0�� and the scale
��� of composition fluctuations.48 More generally, � scales as
��	�	−� with �=0.630 in the Ising critical regime. The long
wavelength limiting structure factor S�0� is proportional to
the isothermal osmotic compressibility �1/�1

o����1
o /��� and

near the critical point scales with � as

S�0,�c,�� = �c	�	−�, �29�

where �c����c�=1/ 	a	 plays the role of the critical ampli-
tude for S�0� �with a given by Eq. �20�� and where �=1 and
1.239 for the mean field and three-dimensional �3D� Ising
critical behaviors,5,6 respectively. Combining Eqs. �27�–�29�
yields the “sum rule” relating �, �o, and � within a mean-
field approximation,

� = �o
2/� . �30�

B. Ginzburg number

The temperature ranges over which mean field and Ising-
type critical behaviors apply are expressed in terms of the
Ginzburg number Gi.1 This quantity provides an estimate of
the magnitude of the reduced temperature � at which the
crossover from mean field to Ising-type behaviors occurs.
Importantly, Gi can be obtained from mean field theory
through a direct determination of the condition that the fluc-
tuation contribution to the long wavelength scattering scat-
tering factor S�0� is comparable to the mean field contribu-
tion. We have introduced48 a refined Ginzburg criterion that
distinguishes three temperature ranges, the mean field and
Ising scaling regimes, as well as an intermediate “crossover
regime” of criticality that separates the first two. Specifically,
our previous analysis48 indicates that mean field theory holds
for ��10 Gi, while Ising critical behavior corresponds to �
�Gi/10. The range Gi/10���10 Gi describes the cross-
over regime, so that ��Gi lies in the middle of this reduced

temperature range. The Ginzburg number Gi for a fluid un-
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dergoing an equilibrium polymerization is expressed as48

Gi =
b2

64�2	a	��c
*�3 , �31�

where the coefficients a and b are given by Eqs. �19� and
�20�, respectively, and �c

*��c /acell
2 is the dimensionless

square gradient coefficient � /acell
2 evaluated at the critical

point, with acell being the lattice constant. The Ginzburg
number Gi can be presented alternatively as

Gi =
b2�c

4

64�2��o,c
* �6 , �32�

where �o,c
* ��o,c /acell is the dimensionless correlation length

amplitude �o /acell evaluated at the critical composition �c.
Section III C describes the estimation of �c

* for an equilib-
rium polymerization solution.

C. Square gradient coefficient �

According to the random phase approximation �RPA�
theory,49 the structure factor S�q� for an incompressible so-
lution of monodisperse polymer species in a �structured� sol-
vent is given by

1

S�q�
=

1

i�Pi�q�
+

1

�1 − ��Ps�q�
− 2	�q� , �33�

where � is the volume fraction of polymers, i designates the
polymerization index �i.e., the number of monomers in a
single chain�, Pi�q� and Ps�q� are the form factors for a
single polymer chain and a solvent molecule, respectively,
and 	�q� is a linear combination of the Fourier transforms
c
��q� of the direct correlation functions c
��r�.50 Notice that
Eq. �33� describes a system in which a solvent molecule and
individual monomer of a polymer chain have the same vol-
umes �and thus occupy single lattice sites in the lattice
model�. This simplifying assumption can readily be lifted,
but is invoked only to keep the number of parameters to a
minimum.

The extension of Eq. �33� to a solution of polydisperse
polymer chains in a �structured� solvent involves introducing
a summation in the denominator of the first term on the right
hand side of Eq. �33� over all sizes i of the equilibrium
polymers.49 The resulting generalized RPA expression for
S�q� emerges as

1

S�q�
=

1

�i=1
� �i�iPi�q��

+
1

�1 − ��Ps�q�
− 2	�q� , �34�

where Pi�q� now denotes the structure factor for an indi-
vidual i-mer, �i is its volume fraction, and where the short-
hand notation ���1

o=�1
*+�i

��i is employed. �The thermo-
dynamic q→0 limit of Eq. �34� has been discussed
previously by Stockmayer.34� The form factors Pi�q� and
Ps�q� of Eq. �34� are related to the corresponding radii of
gyration Rg,i and Rg,s of a polymer and a solvent molecule,
respectively, through the well-known long wavelength limit

expressions
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Pi�q� = 1 − 1
3 �Rg,i�2q2 + O�q4� + ¯ �35�

and

Ps�q� = 1 − 1
3 �Rg,s�2q2 + O�q4� + ¯ . �36�

Equations �35� and �36� are valid for arbitrary shaped objects
and, thus, apply to polymers as well as solvent molecules
and monomer species. Since the square gradient coefficient �
is defined as the coefficient of the q2 term in the expansion,

1

S�q�
=

1

S�0�
+ �q2 + O�q4� + · · · , �37�

we combine Eqs. �34�–�37� to obtain an explicit expression
for �,

�* �
�

acell
2 =

�1/3��i=1
� �i�i�Rg,i

* �2�
��i=1

� i�i�2 +
�1/3��Rg,s

* �2

1 − �
,

�38�

Rg,i
* �

Rg,i

acell
, Rg,s

* �
Rg,s

acell
,

where the sum over i includes the activated monomers �if
they are present in the system�. Reduced variables are used
in Eq. �38� for both � and the radii of gyration of all scatter-
ing species and are defined in terms of the lattice cell dimen-
sion acell which is specified below. While the estimation of
Rg,i for polymer chains �i�2� can be performed following
standard methods, the determination of the monomer Rg,i=1

and solvent molecule Rg,s requires special consideration.
To evaluate Rg,i=1 and Rg,s, we consider a reference

monomer-solvent mixture in which monomers are not poly-
merized. The structure factor S�q� for this system is also
described by the Ornstein-Zernicke relation

S�q� � 1/�1 + �2q2� . �39�

For an athermal �	=0� mixture, S�q� scales as

S�q� � 1/�1 + �1/3�Rg
2q2� , �40�

where Rg denotes the radius of gyration for the monomeric
scattering species. The mean field Eq. �40� is valid only
when both the scattering species components have the same
volumes and shapes. The correspondence of Eqs. �39� and
�40� under athermal condition �i.e., far from the critical point
where �c=�o,c; see Eq. �28�� implies the identification of the
square of the correlation length amplitude �o,c with �1/3�Rg

2

for this unpolymerized system. The quantity �o,c reflects a
minimum cutoff scale for composition fluctuations, and we
therefore define this parameter as the basic unit of length in
our lattice model. Taking �o,c=acell leads to the simple di-
mensionless estimate for the radii of gyration of monomers
and solvent molecules,

Rg,i=1
* = Rg,s

* = 3. �41�

The determination of the radii of gyration �Rg,i�2� for
polymer chains �i�2� requires the adoption of a model for
the chain conformational statistics. According to the ideal
Gaussian chain model, the radius of gyration is simply pro-
portional to the product of the Kuhn length lK and the square

root of the polymerization index i,
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�Rg,i�2 = 1
6 ilK

2 . �42�

A reasonable estimate of the Kuhn length lK
* ,

lK
* �

lK

acell
= 2Rg,i=1

* = 23, �43�

can be obtained from the assumption that lK represents the
approximate center-to-center distance between two touching
�spherical� monomers bonded to each other in the polymer
chain. Note that the Gaussian chain approximation of Eq.
�42� underestimates Rg,i for relatively short random flight
chains.

The substitution of Eqs. �41�–�43� into Eq. �38� simpli-
fies the latter to the rather compact form

�* =
�1 + �1

* + �2/3�s1

s0
2 +

1

1 − �
, �44�

where the sums s0 and s1,

s0 � �1 + �1
* + �

i=2

�

i�i =
A

Kp
+

A

Kp
Ka

+
CA2�A2 − 3A + 4�

�1 − A�3 , A � �1Kp �45�

and

s1 � �
i=2

�

i2�i =
CA2�− A3 + 4A2 − 5A + 8�

�1 − A�4 , �46�

are evaluated by using Eq. �5� of Sec. II. Equations �44�–�46�
apply to both the FA and A models of equilibrium polymer-
ization. In the former case, the concentation �1

* of the acti-
vated monomers or the equilibrium constant Ka for the acti-
vation process is set to zero in Eqs. �44� and �45�. The value
�c

* of �* at the critical point is obtained from Eq. �44� by
setting �1=�1,c, �1

*=�1,c
* , �=�c, and T=Tc,

�c
* = �*��1 = �1,c,�1

* = �1,c
* ,� = �c,T = Tc� , �47�

where the subcripts c on �1, �1
*, �, and T indicate that these

quantities are evaluated at the critical point.
The radius of gyration for the wormlike chain model is a

more complicated function of the persistence length 1/ �2��
and the bond length lb, and the counterpart of Eq. �44� is
derived in Appendix A for this model.

Andrews et al.51 have previously applied the RPA theory
to describe scattering properties of living polymer solutions
within the context of an n→0 spin polymer-magnet analogy
that corresponds to the I model of equilibrium
polymerization.38–41 These computations compare reason-
ably well to experiments for living poly�
-methylstyrene� in
a good solvent �deuterated tetrahydrofuran�, but critical fluc-
tuation effects associated with phase separation are not em-
phasized in this work. In particular, Andrews et al.51 do not
expand the free energy about the critical point as in our Eq.
�19� and do not consider the critical properties relating to
phase separation. They focus instead on good solvent regime
where the primary contribution to the wave vector �q� depen-
dence of the scattering arises from the polymers alone. An-

51
drews et al. also study the screening of excluded volume
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interactions that naturally arise in such good solvents. These
excluded volume screening effects cannot be described by
mean field theory and involve a different type of fluctuation
effects �polymer excluded volume� than the kind encoun-
tered in phase separation.

Although the calculations of Andrews et al. are based on
an abstract polymer-magnet analogy that is sometimes diffi-
cult for us to follow, we have shown elsewhere that S�0�
from this formalism essentially coincides with our mean field
theory approximation for S�0�.41 On the other hand, we find
their lengthy RPA expression for the correlation length ��T�
rather difficult to understand since their expression exhibits
no explicitly identifiable relation to the radii of gyration of
the assembling polymer chains nor to the size distribution of
the chains. Clearly these quantities must be explicitly de-
scribed to treat chain flexibility, e.g., the wormlike chain
model.

D. Ginzburg number for monomer-solvent reference
system

The reference system for the current analysis of equilib-
rium polymerization solutions is chosen as the monomer-
solvent mixture in which the monomers do not polymerize,
but still interact with solvent molecules through the effective
interaction energy �FH. Equation �32� for the Ginzburg num-
ber for this system may be written as

Gi =
b2

64�2a4��o,c
* �6 �48�

and involves the correlation length amplitude �o,c and the
thermodynamic derivatives a and b defined by Eqs. �21� and
�23�, respectively, for the unpolymerized system. These de-
rivatives are readily evaluted within the FH theory as

a �
 �3�f/kBT�
��2��



�c,Tc

=
2�FH

�FH/2
= 4 �49�

and

b �
 �4�f/kBT�
��4 


�c,Tc

=
2

�c
3 +

2

�1 − �c�3 = 32, �50�

where the conditions for the critical composition �c and criti-
cal temperature Tc, i.e., �c=0.5 and Tc= �1/2��FH, have been
utilized. Interestingly, the derivative a coincides with the
mean-field estimate of the ratio of the theta temeperature to
the critical temperature for a monomer-solvent system. The
remaining quantity �o,c

* of Eq. �48� is already known through
the identification of �o,c with the lattice constant acell.

The square gradient coefficient �c for the reference sys-
tem can be determined as a special limit of Eq. �38�,

�c
* �

�c

acell
2 =

1

3
� �Rg,i=1�2

�c
+

�Rg,s�2

1 − �c
�

=
1

3
� 3

�1/2�
+

3

�1/2�� = 4, �51�

upon use of the radii of gyration for a monomer and solvent

molecule from Eq. �41�. The reduced correlation length am-
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plitude �o,c
* ��o,c /acell, computed from Eq. �30�, equals unity,

�o,c
* = �c

*/a = 1, �52�

consistent with our previous definition. Finally, the Ginzburg
number Gi for the monomer-solvent reference system fol-
lows from Eq. �48� as

Gi =
1

16�2 � 0.0063, �53�

a value that is not only consistent with the typical order of
magnitude for Gi for binary mixtures of small molecules and
for single component simple fluids �Gi�O�0.01��,2 but that
also coincides with a numerical estimate2 of Gi=0.006 for a
lattice model monomer-solvent system based on simulation
data of Mackie et al.52 Our estimate of the reduced tempera-
ture ���T−Tc� /Tc range over which Ising-type scaling is
exhibited �Gi/10�O�0.001�� also agrees with typical values
cited for nonquantum small molecule fluids.53

E. Quartic coupling constant b

Equation �32� indicates that Gi, and thus the width of the
critical region in which Ising critical behavior is exhibited,
depends on three physical quantities: the parameters �c and
�c,o that characterize the amplitude and the spatial scale of
composition fluctuations, respectively, and the quartic cou-
pling constant b from the expansion of the free energy den-
sity �see Eq. �23��. The first two quantities have an obvious
physical interpretation, but b evidently is a more abstract
quantity whose variation with particle association is difficult
to understand intuitively. A general expression for b in terms
of molecular parameters would provide a powerful tool for
estimating the width of the critical region for complex fluids
since �c and �o,c

* may be determined from measurements or
simulations.

A fluid undergoing equilibrium polymerization with a
strongly directional association enthalpy �hp can basically
be considered to be a polydisperse polymer solution. �Cer-
tainly, a snapshot of such a fluid would give this appearance
at any point in time.� This viewpoint suggests that it might be
possible to estimate b from the Flory-Huggins theory of
monodisperse polymer solutions in which the polymers are
permanent rather than dynamic. This FH estimate of b is
designated as bFH and is compared below with the b evalu-
ated from our equilibrium polymerization theory to gain in-
sights into the qualitative meaning of b.

The FH expression for b is obtained by combining the
definition of b from Eq. �23� with the FH relations for the
free energy and the critical composition of monodisperse
polymer solutions,54

bFH = 2N1/2�1 + N−1/2�4, �54�

where N denotes the polymerization index. For long polymer
chains �N→��, bFH scales as bFH�N1/2, so that b is ex-
pected to increase as a power law of the average degree of

polymerization L when particle association is prevalent. The
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relation betwen b and L at the critical point �Lc� is examined
in the next section. Table I summarizes other critical proper-
ties of monodisperse polymer solutions that are useful in our
comparative analysis below.

IV. ILLUSTRATIVE CALCULATIONS OF THE CRITICAL
AND SCATTERING PROPERTIES

As already mentioned, the free association and thermal
activation models involve different numbers of free energy
parameters that control the assembly process. While the sim-
pler FA model is described in terms of the enthalpy �hp and
entropy �sp of polymerization, the specification of the A
model also requires including the free energy parameters �the
enthalpy �ha and entropy �sa� for monomer activation. In
addition to depending on these polymerization parameters,
the specific thermodynamic properties depend on tempera-
ture T, the initial monomer concentration �1

o, and the van der
Waals interaction �FH.

Calculations in the present paper are performed using
the representative values �hp=−35 kJ/mol and �sp

=−92 J / �mol K� which are comparable to those determined
in previous experimental studies of living polymerization in
poly�
-methylstyrene� solutions.55,56 The polymerization
temperature T� �inflection point in � as a function of tem-
perature� estimated employing these free energy parameters
is typically not far above room temperature, and similar
order of magnitudes for �hp and �sp have been quoted
for other model fluids exhibiting equilibrium
polymerization.55–57 The lattice coordination number z is
taken as z=6 �appropriate to a three-dimensional cubic lat-
tice�, and the effective interaction energy �FH is selected as
�FH/kB=302 K, again following the choice employed in ear-
lier papers.38–41 The additional free energy parameters for the

TABLE I. The critical parameters of monodisperse polymer solutions.

�c

1

1 + N
� N−1/2

Reference 54

Tc
2�FH� N

1 + N
�2

� 2�FH Reference 54

Rg
* N /6lK

*

a �1+N−1/2�2�1 Reference 52

b 2N�1+N−1/2�4�2N1/2 Reference 52

�c
* �1+N���lK

* �2 /18+N−1/2��N1/2

�o,c
*

N

1 + N
�lK

* �2/18 + N−1/2 � N1/4

Gi
1

16�2

1
N

� 1 + N−1/2

�lK
* �2/18 + N−1/2�3

� N−1/2

Reference 52
activation model A are specified relative to those adopted for
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the corresponding polymerization parameters through the
reduced free energy parameters ���ha /�hp and �
��sa /�sp. Taking �=0 and �=1 �with � restricted to unity�
corresponds, respectively, to the low and high activation
models discussed previously38 in which the equilibrium con-
stant Ka for activation, respectively, is low �Ka=1.67
�10−5� and independent of temperature for �=0 and is high
for ��1.

A small Ka implies low and relatively high concentra-
tions of activated and nonactivated monomers, respectively,
at the transition temperature. Within the reaction scheme de-
fined by Eqs. �11�–�13� for the A model, the activated spe-
cies M1

* reacts only with unactivated monomers M1 to form
dimers, but M1

* does not participate in the futher propagation
steps. Chain growth is taken as occurring exclusively
through the addition of M1 to existing polymers Mi �i�2�.
Thus, the resulting degree of polymerization in the fully po-
lymerized state is relatively high for the low activation
model. In contrast, the high activation model ��=1� is char-
acterized by an equilibrium constant Ka�Tp� at the polymer-
ization temperature Tp that is greater than unity, which im-
plies that almost all monomers become converted into the
activated state, so that chain growth cannot proceed further
due to the low concentration of the unactivated M1 species.
Consequently, the degree of polymerization is limited, and
the polymerization process does not significantly affect the
critical behavior of associating solutions for the high activa-
tion model.

The relative magnitude of Ka is not the only factor that
governs the critical parameters in the A�� ,�� model, how-
ever. An interesting feature of this model for �=1 is that the
critical composition �c becomes insensitive to the magnitude
of �hp in the limit of large �hp. Specifically, �c saturates to
a constant whose value generally depends only on the ratio �
of the entropies of activation and polymerization. When �
=1, the critical composition �c is close to 1/2, but it de-
creases towards zero as � becomes larger. Consequently, the
entropy ratio � in the A��=1,�� model regulates the aver-
age chain length at low temperatures and hence plays a role
similar to the initiator concentration in living polymerization
systems.39 As shown below, this strong dependence of the
polymerization process on � provides a powerful means to
control the polymerization index of self-assembled polymers
within the A��=1,�� model. While the calculations of criti-
cal parameters are presented for both the A1�A��=1,��
and A0�A��=0,�� activation models for brevity, the com-
putational analysis for the variation of the Ginzburg number
with the associating interaction �hp is limited to the A0

model since this model suffices to exemplify the more inter-
esting general behavior that ensues when the average degree
of polymerization is large near the critical point.

A. Basic critical parameters „Tc, �c, and Lc…

The critical scattering properties of equilibrium polymer
solutions depend on the critical temperature Tc, critical com-
position �c, and other basic critical properties of these solu-
tions �e.g., the average degree of polymerization Lc at the

critical point for phase separation�. Many of these basic criti-
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cal properties have been examined in our recent papers38–41

in order to uncover identifying characteristics of particular
polymerization models that might be helpful in the interpre-
tation of experimental data. This section includes a brief re-
view of those critical properties necessary for the analysis of
scattering properties and Gi and for comparisons with prop-
erties of ionic fluids. The calculations illustrate the basic na-
ture of phase boundaries that occur in these fluids, the rela-
tion of these phase boundaries to the transition lines
describing the polymerization transition, and the dependence
of critical properties �Tc, �c, and Lc� on the relative strength
h� of the directional association interaction and the van der
Waals interaction through the dimensionless quantity h�

���hp /R� /�FH �where R is the gas constant�.
The spinodal curves are directly calculated from Eq. �10�

and the critical temperatures, and critical compositions can
then be determined from the extrema in the spinodals.38,40

Since our previous studies40 of the competition between
phase separation and equilibrium polymerization emphasize
living polymerization systems with a low concentration of
initiator, we focus here instead on the critical properties of
the rather different classes of associating fluids exhibiting
activated polymerization or free association. Figure 1 pre-
sents examples of spinodal curves T=T��1

o� calculated for a
family of freely associating polymer solutions that are speci-
fied by different values of h�. As the dimensionless sticking
energy h� is increased, the polymers become progressively
longer at the critical point. Polymerization has little effect on
the shape of the phase boundary when h� is small, but the
phase boundary progressively resembles that for a high mo-
lar mass polymer solution as h� is increased. The temperature
scale in Fig. 1 is normalized by the critical temperature

FIG. 1. Variation of the spinodal curves for freely associating polymer so-
lutions with the dimensionless sticking energy h���	�hp	 /R� / �2�FH�. The
curves from top to bottom refer to h�=32, 24, 18, 14, 10, 7.0, 5.0, 4.0, 3.0,
1.6, and 0.20 and have been computed assuming that all the polymers are
completely flexible chains. The temperature scale is normalized by the criti-
cal temperature Tc�h�=0� of the system in the absence of polymerization,
and circles denote the positions of the critical points. The effective
monomer-solvent interaction energy �FH and the entropy of polymerization
�sp are fixed as �FH=302 K and �sp=−92 J/�mol K�. The inset replots the
spinodal curves in terms of the reduced variables T /Tc and �1

o /�c, where Tc

and �c denote the critical parameters for the system with interaction h�. The
dashed curves are extrapolations to the higher composition regime where
numerical instabilities make the determination of the spinodal curves
difficult.
Tc�h�=0� of the system in the absence of polymerization in
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order to visualize better the influence of h� on Tc. Association
clearly makes the fluid less miscible, i.e., leads to a higher
Tc. In the limit h�→�, the ratio of critical temperatures
Tc�h�� /Tc�h�=0� approaches 4, which equals the ratio of the
theta temperature T��h�=0� �at which the monomer-solvent
second virial coefficient vanishes� to the critical temperature
Tc�h�=0� of the monomer-solvent mixture.58 The constraint
that the critical temperature Tc of a polymer solution must be
less than the theta temperature T� for the monomer-solvent
system ultimately limits how much Tc�h�� can be altered by
particle association, and this saturation effect is apparent in
Fig. 1. However, when �FH and �hp are coupled through a
dependence on another molecular parameters, as in the
Stockmayer fluid �SF�, the ratio Tc�h�� /Tc�h�=0� can exceed
the limiting value shown in Fig. 1.35

B. Some considerations relevant to experimental
observations

An interesting question at this juncture is how much the
predicted phase boundaries resemble those of real associat-
ing fluids, such as the ionic and polar fluids mentioned in the
Introduction. To make qualitative contact with experimental
data for these systems, the spinodals in Fig. 1 are reexpressed
in terms of the reduced concentration variable �1

o /�c em-
ployed in comparative studies of associating fluids ranging
from simple fluids �e.g., argon� to fluorocarbon, metallic, or
ionic systems where association becomes more prevelant.9,18

The phase boundaries in the inset to Fig. 1 exhibit a remark-
able resemblence to the family of phase boundaries �bin-
odals� observed in many associating fluids �see Fig. 1 of Ref.
9�. This qualitative correspondence, in conjunction with ear-
lier experimental and simulation studies of the critical prop-
erties of ionic fluids �mentioned in the Introduction�, sup-
ports the suitability of an equilibrium polymerization model
to analyze the general critical behavior of associating fluids.

The sticking energy �hp for dipolar and charged particle
fluids is proportional to the electrostatic energy for the inter-
acting particles in their lowest energy “contact” position.36

Since the electrostatic energy scales inversely to the static
dielectric constant � of the medium, �hp tends to be larger in
the gas phase and in organic solvents where � is low. High
values of �hp can also arise for proteins and other large
complex molecules that exhibit large dipole or charge in-
duced interactions, despite the relatively high dielectric con-
stant of water.59 A large polarizability �as found in fullerenes
and carbon nanotubes� should also lead to large values of
�hp and thus to a propensity towards particle association.

Analyses of experimental data have often been per-
formed under the assumption that Tp and T� are the same,24

but this is not generally true60 because of the highly rounded
nature of the polymerization transition in the FA model and
in the activation models with a large Ka. The gap between T�

and Tp reflects the extent of transition rounding in these
models. Comparison of our calculations for the FA model to
the extensive simulation data for the SF provides an im-
proved definition of the polymerization transition. Van Wor-
kum and Douglas36 have found that estimates of the poly-

merization transition temperature, based on the temparature
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T� at which � exhibits an inflection point, yield a better
description in terms of the reduced variables for the proper-
ties of the polymerizing SF �e.g., the average chain length�
than those obtained by determinating the polymerization
temperature as the temperature Tp at which the specific heat
has a maximum. Hence, the definition in terms of T� repre-
sents a better “physical” choice for ionic fluids.

C. Strong, weak, and intermediate coupling regimes
of polymerization

A knowledge of the location of the polymerization tran-
sition line T���1

o� with respect to the phase boundaries gov-
erning phase separation is central to discussing the critical
properties of associating fluids. When the polymerization
temperature at the critical composition T���c� lies well be-
low Tc, the critical behavior essentially reduces to that of an
unassociated fluid, while when T���c� is much greater than
Tc, the phase diagram should resemble that for a polymer
solution. The strong coupling between polymerization and
phase separation that occurs when Tc�T���c� can lead to
the presence of multiple critical points under certain circum-
stances and to other complex critical behavior.38

Figure 2 illustrates how the polymerization transition
lines T���1

o� shift in relation to the phase boundaries �spin-
odals� as h� is varied. When h� is small �e.g., h�=1.0�, the
polymerization line lies below the critical point, but for a
large h� �e.g., h�=9.9�, T� lies far above Tc. Thus, an inter-
mediate h� �h��4� exists where the polymerization line in-
tersects the spinodal curve at the critical point. We term the
associative interaction “strong” when h��4 and “weak”
when h��4. Equilibrium polymerization solutions only ap-
pear polymeric in nature when the associative interaction is
relatively strong.

While the illustrative examples for the spinodals and po-
lymerization lines in Figs. 1 and 2 refer to the FA model,
Figs. 3–5 summarize how the pattern of critical properties

FIG. 2. Comparison of spinodal curves �solid lines� and polymerization
transition lines �dashed curves� for the FA model. The circles mark the
location of the critical points. The polymerization transition line is defined
by the inflection point in the extent of polymerization ��T� as a function of
T. Depending on the value of h� �indicated in the figure�, the polymerization
line may lie below or above the critical point or may coincide with the
spinodal curve at the critical point. The associative interaction in the FA
model is designated as “strong” when h��4 and “weak” when h��4.
becomes modified for other models of equilibrium polymer-
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ization. Examining the variation of critical properties �Tc and
�c� with h� is helpful for understanding the physical behavior
of the scattering properties described below. Figure 3 pre-
sents the relative critical temperature Tc,R as a function of h�

for the FA, A0, and A1 models. All curves for Tc,R�h�� in
Fig. 3 exhibit two plateau regions in which Tc,R is insensitive
to h�, but the magnitude of the second plateau in the large h�

limit varies significantly between the different polymeriza-
tion models. �This second plateau reflects the average degree
of polymerization at the critical point as shown below�. In
contrast to the A0 and FA models where Tc /Tc,o approaches
4 at high h�, the limiting ratio saturates to a lower value for
the A1 model. The corresponding variation of the critical
composition �c with h� is illustrated in Fig. 4. Apart from a
regime of small h� where �c is insensitive to h� or the inter-
mediate interaction regime where �c grows in a nonmono-
tonic fashion, �c decreases with h� and ultimately ap-
proaches zero �FA and A0 models� or a constant between 0
and 0.5 �A1 model�. The tendency of the ratio Tc /Tc�h�=0�

FIG. 3. The reduced critical temperature Tc /Tc�h�=0� as a function of h� for
equilibrium polymerization solutions in the FA, A0��=1.14��A��=0,�
=1.14�, A1��=1.14��A��=1,�=1.14�, and A1��=1.54��A��=1,�
=1.54� models defined in the text. The lines are guides to the eye. The A0

model exhibits two critical points for �2.3�h��3.3� �Ref. 38�.

FIG. 4. The critical composition �c as a function of h� for the same models
of equilibrium polymerization as described in Fig. 3. The lines are guide to
the eye. Note that in the h�→� limit, the critical composition �c for the
A1��� models approaches a constant that depends on the ratio � of the

entropies of activation and polymerization.
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to saturate for large h� to values different than 4 and 0 is a
direct consequence of the limited magnitude of L at low
temperatures that emerges because of the low concentation
of the nonactivated monomers that particiapte �in contrast to
the activated ones� in the propagation processes.

D. Average degree of polymerization Lc at the critical
point

Figure 5 depicts how the average chain length Lc at the
critical point changes with h� for the same polymerization
models, as analyzed in Figs. 3 and 4. A large dimensionless
interaction h� produces unlimited chain growth �i.e., very
large Lc� for the FA and A0 models, but causes only a lim-
ited polymerization �small Lc� for the A1 model. In fact, the
curves for Lc�h�� level off for rather low h� in the latter case,
and a further increase of h� produces no change of Lc.

Knowledge of Lc also enables determining the extent to
which equilibrium polymer solutions resemble ordinary
polymer solutions where the polymerization is frozen in. The
inset to Fig. 5 demonstrates that the critical composition �c

for the FA model scales with Lc as �c�Lc
−1/2, consistent

with the FH theory for monodisperse polymer solutions. This
agreement suggests that we can predict some quantitative
aspects of the critical properties of equilibrium polymer so-
lutions from the FH theory for monodisperse polymer solu-
tions under certain circumstances. We further explore the
limitations of this formal correspondence below.

E. Critical scattering properties and the width of the
critical region

In addition to asymmetric phase boundaries and the rela-
tively high critical temperatures that are often found for as-
sociating fluids, the scattering properties of these fluids are
also quite distinct from those exhibited by simple fluids. Per-
haps the most common observation is that the correlation
length amplitude �o,c at the critical composition �c �see Eq.
�28�� is often much larger �by an order of magnitude or

FIG. 5. Average chain length Lc at the critical point of equilibrium poly-
merization solutions as a function of h� for the FA, A0, and A1 models. The
lines are guides to the eye. The inset demonstrates that the critical compo-
sition �c scales as �c�0.81Lc

−0.5 for the FA model and as �c�0.043Lc
−0.3

for the A0 model.
more� than for simple liquids, and a similar trend is shared
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by the scattering intensities. Specifically, �o is typically on
the order of molecular dimensions �angstrom� in simple flu-
ids, while �o of associating fluids is often reported to be on
the order of nanometers and thus greatly exceeds the size of
individual molecules in the fluid.10,11,16,17,19,22 This nanoscale
correlation length can naturally be understood to arise from
the formation of dynamic clusters. In addition to the en-
hanced scattering characteristics, the larger scale of fluctua-
tions, as set by �o, leads to an increasingly broad temperature
range in which mean field theory applies and to a narrower
temperature range where Ising criticality is observed. �Essen-
tially, the same phenomenon is responsible for the reduced
size of the Ising critical region in binary polymer
blends.61,62� This reduction is quantified here by calculating
the Ginzburg number Gi which specifies the reduced tem-
perature range over which mean field theory and Ising scal-
ing should apply. The determination of Gi requires the
knowledge of the critical thermodynamic properties �Tc�h��,
�c�h��, and Lc�h���, as well as the critical scattering proper-
ties ��o,c�h��, �c�h��, and �c�h��� that are described in the
present section.

As shown in Fig. 6, the critical amplitude �c for the
structure factor S�0� grows monotonically with h� �except for
small h� where �c first decreases and achieves a minimum�,
and �c saturates to a limiting value �c=1 for h�→�. A faster
saturation of �c appears for the A0 model which generally
exhibits a greater degree of polymerization and a sharper
polymerization transition than the FA model. The variation
in these scattering properties with increasing h� is expected
since an increase of h� implies an increase in the degree of
polymerization at the critical point.

F. Quartic coupling constant b for solutions of
equlibrium polymers

The quartic coupling constant b is the only parameter
required for the estimation of the width of the critical regime
Gi that is not directly observable experimentally. The quan-
tity b clearly depends on molecular size asymmetry as evi-
denced by the strong dependence of b on the polymerization
index N in Eq. �44� for ordinary polymer solutions. Since
strong directional interactions naturally lead to the formation
of dynamic polymeric structures, we anticipate that b should

FIG. 6. Critical amplitude �c of the long wave structure factor S�0,�c� as a
function of h� for the FA and A0 equilibrium polymerization models.
also depend strongly on the dimensionless sticking interac-
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tion h�. Figure 7 shows that b varies nonmonotonically with
h� for both the FA and A0 models, and a precipitous jump
and a more appreciable minimum appear for the latter case.
The jump in b�h�� �and similarly a jump in �c�h�� in Fig. 6�
arises from the discountinuous variation of the critical com-
position �c with h� �see Fig. 4�. To gain insight into the
trends in Fig. 7, b is presented as a function of the average
chain length Lc at the critical point and is compared to the
corresponding FH estimate bFH=bFH�Lc� of Eq. �44� in
which the polymerization index N is replaced by Lc. Figure 8
demonstrates that b�Lc� for the FA model agrees remarkably
well with the naive FH estimate bFH�N�Lc�,

bFH�Lc� = 2Lc
1/2�1 + Lc

−1/2�4, �55�

over the entire range of Lc considered. This formal corre-
spondence between permanent and dynamic polymer solu-
tions is further supported by the scaling �c�Lc

−1/2 �see inset
to Fig. 5� noted earlier.

Unfortunately, this attractive formal correspondence fails
quantitatively for the A0 model. First of all, �c for the A0

FIG. 7. Quartic coupling constant b of Eq. �23� as a function of h� for the
FA and A0 equilibrium polymerization models.

FIG. 8. Quartic coupling constant b of Eq. �23� �squares� as a function of
the average degree of polymerization Lc at the critical point for the FA
model of equilibrium polymerization. The circles denote the naive FH esti-
mate bFH�N�Lc� from Eq. �55�. The inset presents b vs Lc for the A0 model

where Eq. �55� is no longer valid.
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model scales for large Lc as �c�Lc��0.043Lc
−0.30±0.01, as in-

dicated in the inset to Fig. 5. The quartic constant b also
exhibits a smaller exponent b�76Lc

0.26±0.01 �see the inset to
Fig. 8� than expected from the intuitive identification of equ-
librium polymerization solutions with ordinary polymer so-
lutions. Moreover, the exponents in the above power law
expressions for �c�Lc� and b�Lc� vary somewhat with the
choice of free energy parameters for the A0 model. Despite
the lack of a truly universal estimate of b based on the anal-
ogy with polymer solutions, this comparison qualitatively ex-
plains that the increase of b with h� in the FA and A0 mod-
els derives from the increase in Lc�h�� and suggests the
existence of a scaling relation between b and Lc.

G. Square gradient coefficient �c, correlation length
amplitude �o,c, and average mean square radius
of gyration ŠRg

2
‹c

While the critical parameters a and b are independent of
the effective monomer sizes in our polymerization models,
both the square gradient coefficient �c and the correlation
length amplitude �o,c are sensitive to these size parameters
through their explicit dependence of on the radii of gyration
Rg,i of the individual i-mers in the system. Consequently,
calculations of �c and �o,c are performed for both Gaussian
chains and for a family of wormlike chain models in which
stiffness is tuned by choosing the fixed bond angle � between
successive bonds in the chain. Figures 9�a� and 9�b� present
the square gradient coefficient �c �normalized by �c�h�=0�
for the correponding unpolymerized system� as a function of
h� for the FA and A0 models, respectively. In the former
case, �c monotonically increases with h�, apart from the
weak coupling regime where �c is insensitive to h�. A similar
behavior has been noted before for Tc and �c and simply
arises from the relatively low average degree of polymeriza-
tion in this regime of low h�. However, a qualitatively dif-
ferent variation of �c with h� is found for the A0 model
where �c exhibits a precipitous jump, followed by a shallow
minimum, and then monotonic growth for large h�. This
jump in �c�h�� appears due to the jump of the critical com-
position �c with h� for the A0 model �see Fig. 4�. For both
polymerization models, a larger bond angle � in the worm-
like chains leads generally to higher �c.

Figures 10�a� and 10�b� illustrate, respectively, the de-
pendence of the correlation length amplitude �o,c on h� for
the FA and A0 models, with �o,c in Figs. 10�a� and 10�b�
normalized by its counterpart �o,c�h�=0� for a unpolymerized
monomer solvent system. The ratio �o,c /�o,c�h�=0� for the
FA model exhibits a weak local minimum for small h� and
then grows with h�. This minimum stems from the fact that
the decrease of �c�h�� dominates the increase of �c�h�� as a
function of h�. A completely monotonic variation of
�o,c /�o,c�h�=0� with h� is found, however, for the A0 model.
While a typical value of �o,c for atomic and small molecule
liquids is on the order2,4 of angstroms, �o,c�h�=0��O �1 Å�,
Figs. 10�a� and 10�b� show that this scale can be an order of
magnitude larger for equilibrium polymer solutions in the

strong coupling regime, �o,c�h��10��O �1 nm�. Such
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larger correlation length amplitudes have been observed in
numerous complex fluids, often along with apparent mean
field critical behavior over an appreciable temperature
range.10,11,16,17,19,22

The insets to Figs. 10�a� and 10�b� indicate that the av-
erage root mean square radius of gyration �Rg

2�c
1/2 at the criti-

cal point increases smoothly with h�. The general trend for �c

and �o,c to grow strongly at large h� is a direct consequence
of this increase in �Rg

2�c
1/2, which is parallel to the growth of

Lc with h� �see Fig. 5�. For comparison, the scaling relations
describing �c, �o,c, and Rg of monodisperse polymer solu-
tions are summarized in Table I. In each case, we can predict
the qualitative behavior of these properties for large h� by
imposing the limit N→� in the corresponding expressions
for critical properties of ordinary polymer solutions and by
identifying N with Lc. Note that the growth of �Rg

2�c
1/2 with h�

is substantially more rapid that the growth of �o,c. This dif-
ference can readily be concluded from the critical parameters
of ordinary polymer solutions �see Table I� where �o,c

1/2

FIG. 9. �a� The reduced square gradient coefficient �c /�c�h�=0� as a func-
tion of h� for the FA model of equilibrium polymerization solutions. The
coefficient �c�h�=0� refers to a fluid that does not exhibit polymerization.
The circles correspond to Gaussian chains, while �, �, and � refer to
wormlike chains with the bond angles �=90°, 120°, and 150°, respectively.
�b� The reduced square gradient coefficient �c /�c�h�=0� as a function of h�

for the A0 model of equilibrium polymerization solutions. The symbols are
defined as in Fig. 9�a�.
��Rg� .

AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



144906-14 Rah et al. J. Chem. Phys. 124, 144906 �2006�
H. Width of the critical regime of equlibrium
polymerization solutions

Having determined the critical equilibrium and scatter-
ing properties for our models of equilibrium polymer solu-
tions, we now estimate how these properties affect the width
of the Ising critical regime, and we check whether these cal-
culations can explain the low experimental values of Gi
�10−4 for nonaqueous ionic fluids.63 A low Gi of this mag-
nitude implies that the fluid is “effectively mean field” in
character because of current limitations on the control of
temperature, the influence of gravitational effects, and other
complications that obviate measurements at smaller reduced
temperatures �. All previous attempts to elucidate the origin
of these small Gi values in ionic fluids have been
“unconvincing.”63 Since equilibrium polymerization is
prevalent in ionic fluids,31,32 these issues can be addressed
from a qualitative standpoint here by using the equilibrium
polymerization theory.

Figures 11�a� and 11�b� present the Ginzburg number Gi

FIG. 10. �a� The reduced correlation length amplitude �o,c /�o,c�h�=0� as a
function of the dimensionless interaction h� for the FA model of equilib-
rium polymerization solutions. The circles correspond to Gaussian chains,
while �, �, and �, refer to wormlike chains as in Fig. 9�a�. The inset
presents the average root mean square radius of gyration �Rg

2�c
1/2 at the criti-

cal point as a function of h� for the same polymer chain models as in the
main figure. �Rg

2�c
1/2 is normalized by the radius of gyration Rg,i=1 for a

monomer. �b� The relative correlation length amplitude �o,c /�o,c�h�=0� as a
function of h� for the A0 model. The symbols are defined as in Fig. 9�a�, and
the inset presents the average root mean square radius of gyration �Rg

2�c
1/2

�normalized as in Fig. 10�a�� as a function of h�.
�normalized by Gi for a binary mixture of small molecules�
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as a function of h�. The circles refer to Gausssian chains,
whereas the symbols ��, �, and �� correspond to wormlike
chains with bond angles �=90°, 120°, and 150°, respectively.
The reduced Ginzburg number for freely associating polymer
solutions drops from unity to small values where the rate of
decline is weaker for Gaussain chains. To better appreciate
the magnitude of Gi/Gi�h�=0�, the inset presents the data in
semilogarithm format. A similar behavior of Gi for solutions
of semiflexible polymers emerges for the A0 model where
Gi/Gi�h�=0� decreases precipitously from unity to small
values �delineated in the inset to Fig. 11�b�� as h� increases.
A shallow local maximum occurs in a region of intermediate
h�. All polymerization models in the strong coupling regime
exhibit a monotonic decrease in Gi/Gi�h�=0�, and this ratio
becomes on the order of 10−3–10−6 �depending on the angle
�� for h��35. Thus, the formation of long chains, due to a
strong associative interaction �hp relative to the van der
Waals interaction, leads to a generic tendency for the critical
regime to become small and ultimately unobservable for
large h�. Variation of chain stiffness �persistence length� of
the self-assembled polymers strongly affects the rate of de-

FIG. 11. �a� The Ginzburg number Gi as a function of h� for the FA model
of equilibrium polymerization using the notation of Fig. 9�a�. The Ginzburg
number Gi is normalized by the value of Gi�h�=0� for a monomer-solvent
system �Gi�h�=0��0.0063�. The inset presents data in a semilogarithmic
format to accentuate the rapid decrease of Gi/Gi�h�=0� in the high h� limit.
�b� The Ginzburg number Gi as a function of h� for the A0 model of equi-
librium polymerization. The symbols are defined as in Fig. 9�a�.
crease of Gi, however.
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V. CONCLUSIONS

We systematically explore how polymerization affects
the scattering properties of a fluid exhibiting equilibrium ag-
gregation. Composition fluctuations associated with phase
separation are superimposed on the dynamic clustering, and
the coupling between polymerization and phase transition
modifies the width of the critical regime, an important fea-
ture of many complex fluids �ionic fluids, microemulsions,
micellular fluids, and polar liquids, and protein solutions�
where particle clustering is prevalent. In particular, we cal-
culate the scattering length and correlation length of a poly-
merizing liquid by using the random phase approximation.
The scattering length is then employed to evaluate the Gin-
zburg number Gi describing how the thermodynamic and
scattering properties influence the width of the Ising critical
regime for phase separation. The polymerization models con-
sidered include the idealized freely associating �FA� model
in which chain segments can associate to form chains at
equilibrium without constraints and an activated polymeriza-
tion model A�� ,�� where chain polymerization is initiated
by an activated process as in the polymerization of sulfur.
The living polymerization system �chemically activated
equilibrium polymerization� is not considered since the ther-
modynamic properties for this case are quite similar to those
for activated polymerization where the initiator concentra-
tion plays a role analogous to the eqilibrium constant for
activation in the A model.

Our calculations indicate that both the scale � and inten-
sity S�0� for compositional fluctuations become enhanced by
polymerization, and the shape of the phase boundaries ap-
proaches those of increasing molecular mass polymer solu-
tions as the association enthalpy �hp for polymerization in-
creases relative to the strength �FH of the van der Waals
interactions. This increase of the correlation amplitude �o

with h���	�hp	 /R� / �2�FH� is also reflected in an increase of
the average chain length and the chain radius of gyration at
the critical point. These quantities are found to vary over one
to two orders of magnitude, depending on the sticking inter-
action h�, so that the scale and intensity of composition fluc-
tuations can be much larger in these complex fluids than in
simple nonassociating fluids. Our calculations for the width
of the critical regime �Gi� use this scattering information and
indicate the general approach to a vanishingly small tem-
perature range of Ising criticality for a large h�. However, the
approach to this limiting behavior can be nonmonotonic and
sensitive to the polymerization model.

Although the present paper does not describe the Ising
critical regime where mean field theory breaks down, the
properties calculated are required for a generalized crossover
treatment of both the mean field and Ising critical
regimes.27–29 In particular, careful studies of the criticality of
ordinary polymer solutions indicate that a sharp change in
the scattering properties occurs when the correlation length �
for the composition fluctuations becomes larger than
�Rg

2 /3�1/2, and the “mesoscopic characteristic scale” �o of the
theory has been clearly identified with �Rg

2 /3�1/2. The same
correspondence �o↔ �Rg

2 /3�1/2 makes sense for associating

fluids and allows us to predict critical properties over the
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entire accessible temperature range. While a treatment of the
Ising and crossover regimes is beyond the scope of the
present paper, our theory has conceptual value for under-
standing the emergence of these new characteristic scales
that have been observed for a range of important complex
fluids �nonaqueous ionic fluids,64 metal ammonium salt
mixtures,10,11 etc.13–15�.

Our illustrative calculations qualitatively accord with nu-
merous observations for complex fluids for which large scale
correlation length amplitudes and narrow regimes of Ising
criticality have been observed. The calculations thus provide
a natural framework for interpreting these observations and
for determining the interaction parameters describing particle
self-assembly processes that compete with phase separation.

Although substantial fragmentary data are available for
the critical properties of associating fluids and although these
data qualitatively accord with our model calculations, cur-
rently only limited data are suitable for quantitative compari-
son. Appropriate experimental systems for such a compari-
son must clearly conform to equilibrium polymerization
systems and should simultaneously undergo phase separation
in experimentally accessible temperature ranges. Systems of
this kind would include living polymer systems,65,66 such as
sulfur,67 and perhaps wormlike micelle solutions. Experi-
mental studies of these systems are much more difficult than
those of ordinary critical fluids because the polymerization
transition lines must be determined relative to the phase
boundaries for phase separation. Studies of even the poly-
merization transition lines for equilibrium polymerizing flu-
ids are still rather limited.55–57,65,66

Recently, we have established that equilibrium polymer-
ization theory provides a good description of the critical tem-
peratures and compositions of the Stockmayer fluid model of
dipolar fluids. The polymerization transition lines from com-
puter simulations for this system conform remarkably well to
those derived from the FA model.36,68 In order to extend this
comparison to include the scattering properties, it is neces-
sary to generate new simulations focusing on the scattering
properties of these systems and to employ improved sam-
pling methods as used in recent estimates of the polymeriza-
tion transition lines.36 These simulations are currently in
progress.69 We also plan to extend our equilibrium polymer-
ization model of the Stockmayer fluid to describe recent
simulations for the restrictive primitive model �charged hard
sphere fluids with equal numbers of positive and negative
ions�, generalized to include van der Waals interactions.70

The development of a fully quantitative theory for the critical
properties of associating fluids evidently requires significant
further analytic, simulation, and experimental studies.
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APPENDIX A: WORMLIKE CHAIN MODEL

The wormlike chain is defined as the limiting continuous

chain generated from a discrete chain composed of nb freely

AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



144906-16 Rah et al. J. Chem. Phys. 124, 144906 �2006�
rotating bonds of length lb and fixed bond angle � by impos-
ing the limits lb→0 and �→�, while keeping both lb / �1
+cos ����2��−1 and nblb�Lw constant. The length �2��−1 is
termed the persistence length. The radius of gyration Rg,i=1

for a �structured� monomer is estimated by using simple
physical arguments �see Sec. III� as

Rg,i=1
* �

Rg,i=1

acell
= 3. �A1�

In order to determine the bond length lb in the most consis-
tent way, we invoke the general definition of Rg,i

2 ,71,72

Rg,i
2 =

1

i2�
j

i

�
k�j

i

Rjk
2 , �A2�

where i is the number of monomers in the chain, j and k
label a pair of monomers, and Rjk is their separation. Using
this definition to evaluate Rg,i=2 yields

Rg,i=2
2 = 1

4 lb
2. �A3�

Equating the right hand sides of Eqs. �A3� and �42� for i
=2 provides the relation between lb and the Kuhn length lK

of the Guassian chains,

lb =
2
3

lK. �A4�

For our choice of lK=2Rg,i=1=23acell, the bond length lb of
the wormlike chains equals

lb
* � lb/acell = 4. �A5�
i=3
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The radii of gyration Rg,i
* =Rg,i /acell of the wormlike

i-mer chains �i�3� can be computed by approximating the
sums in Eq. �A2� by integrals. The general formula

�Rg,i
* �2 = �lb

*�2� i

6�lb
−

1

4��lb�2 +
1

4��lb�3i

+
1

8��lb�4i2 �e−2�lbi − 1�� �A6�

is cited in the literature.72 After simple algebra, Eq. �A6� is
written in a form more convenient for further analysis,

�Rg,i
* �2 = �lb

*�2�W0 + W1i + W2
1

i
− W3

1

i2 + W3
e−2�i

i2 � ,

�A7�
i � 3,

where the coefficients �Wj� �j=0,1−4� are functions of the
product ���lb,

W0 � −
1

4�2 , W1 �
1

6�
, W2 �

1

4�3 , W3 �
1

8�4 .

�A8�

Upon substituting Eqs. �A1�, �A3�, �A5�, and �A7� into Eq.
�38� and upon performing the summations over i, the dimen-
sionless square gradient coefficient �*=� /a2 emerges as
cell
�* =
�1/3��i=1

� �i�i�Rg,i
* �2�

��i=1
� i�i�2 +

�1/3��Rg,s
* �2

1 − �
=

�1 + �1
* + �16/3��CA2 + W0s0 + W1s1 + W2s2 − W3s3 + W3s4�

s2 +
1

1 − �
, �A9�
where

s � �
i=1

�

i�i = �1 + �1
* + �

i=2

�

i�i = �1 + �1
*

+
CA2�A2 − 3A + 4�

�1 − A�3 , �A10�

s0 � �
i=3

�

i�i =
CA3�4A2 − 11A + 9�

�1 − A�3 , �A11�

s1 � �
i=3

�

i2�i =
CA3�− 8A3 + 31A2 − 44A + 27�

�1 − A�4 , �A12�

s2 � �
�

�i =
CA3�− 2A + 3�

�1 − A�2 , �A13�
s3 � �
i=3

�
�i

i
=

CA3

1 − A
, �A14�

and

s4 � �
i=3

�
e−2�

i
�i =

CY3

1 − Y
, �A15�

with

Y � Ae−2�, � � �lb.

Equation �A9� applies to both the FA and A models, but in
the former case, the concentration �1

* of activated monomers
is set to zero in Eq. �A9�. The value �c

* of �* at the critical
point emerges from Eq. �A9� when the sums sj �j=0−4� are

*
evaluated for the critical parameters �1,c, �1,c, �c, and Tc.
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APPENDIX B: AVERAGE RADIUS OF GYRATION OF
EQUILIBRIUM POLYMERS

The mean-square average radius of gyration �Rg
2� of

equilibrium polymers is defined as

�Rg
2� =

�i=1
� �Rg,i�2ni

�i=1
� ni

, �B1�

where Rg,i is the radius of gyration of an i-mer �composed of
i monomers� and ni denotes the number of chains of this
species, which is related to the composition �i,

�i = ini/Nl. �B2�

Since the radii of gyration Rg,1 and Rg,1* of monomers M1

and M1
*, respectively, are estimated differently from those of

polymer chains �see Sec. III�, the monomer contributions to
�Rg

2� are separated from the sum in Eq. �B1�. This process, in
conjunction with replacing the variables ni by the corre-
sponding composition �i �using Eq. �B2�, leads to the gen-
eral expression

�Rg
2� =

�Rg,1�2�1 + �Rg,1*�2�1
* + �i=2

� �Rg,i�2�i/i

�i=1
� �i/i

, �B3�

which is valid for both Gaussain and wormlike chains. In the
former case, Eq. �B3� can easily be combined with Eq. �7�
defining the average chain length L and with Eq. �42� de-
scribing the radius of gyration of an individual chain in terms
of its polymerization index i and the Kuhn length lK. Thus,
the average mean square radius of gyration �Rg

2� is obtained
as

�Rg
2� =

1

6
lK
2 L +

�1��Rg,1�2 − lK
2 /6� + �1

*��Rg,1*�2 − lK
2 /6�

�1 + �1
* + CA2/�1 − A�

,

�B4�

where A��1Kp, C is given by Eqs. �4� and �14� for the FA
and A models, respectively, Rg,1=Rg,1* =3acell, and lK

=23acell.
The average mean square radius of gyration �Rg

2� for the
wormlike chains is evaluated upon substituting the corre-
sponding expression for Rg,i from Eqs. �A3� and �A7� into
Eq. �B3�. After performing the summations, the formula for
�Rg

2� emerges as a function of the persistence length param-
eter � and the bond length lb,

�Rg
2� =

�Rg,1�2�1 + �Rg,1*�2�1
*

�1 + �1
* + CA2/�1 − A�

+
lb
2C

�1 + �1
* + CA2/�1 − A�

� �A2

4
+ W0

A3

1 − A
+ W1

A3�− 2A + 3�
�1 − A�2

+ W2�− ln�1 − A� − A − A2/2� − W3�IA − A − A2/4�

+ W4�IY − Y − Y2/4�� , �B5�

where the coefficients Wj��� are defined in Appendix A, and
where

IA � − �A

d�
ln�1 − ��

�
, 0 � � � 1,
0
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IY � − �
0

Y

d�
ln�1 − ��

�
, 0 � � � e−2�,

Y �Ae−2�, ���lb, and lb=4acell. The integrals IA and IY

cannot be expressed in terms of elementary functions and
must be calculated numerically. The average mean-square
radius of gyration �Rg

2�c at the crtitical point simply follows
from Eqs. �B4� and �B5� by setting �1=�1,c, �1

*=�1,c
* , and

L=Lc.

1 V. L. Ginzburg, Sov. Phys. Solid State 2, 1824 �1960�.
2 M. A. Anisimov, S. B. Kiselev, J. V. Sengers, and S. Tang, Physica A

188, 487 �1992�.
3 A. Kostrowicka Wyczalkowska, J. V. Sengers, and M. A. Anisimov,
Physica A 334, 482 �2004�.

4 A. Kumar, H. R. Krishnamurthy, and E. S. R. Gopal, Phys. Rep. 98, 57
�1983�.

5 M. Fisher, Rev. Mod. Phys. 46, 597 �1974�; 70, 653 �1998�.
6 J. C. Le Guillou and J. Zinn-Justin, J. Physique 48, 19 �1987�; R. Guida
and J. Zinn-Justin, J. Phys. A 31, 8103 �1998�.

7 M. A. Anisimov, Critical Phenomena in Liquids and Liquid Crystals
�Gordon and Breach, Philadelphia, 1991�.

8 K. S. Pitzer, Acc. Chem. Res. 23, 333 �1990�; K. S. Pitzer, J. L. Bischoff,
and J. Rosenbauer, Chem. Phys. Lett. 134, 60 �1987�; K. S. Pitzer, J.
Phys. Chem. 90, 1502 �1986�; R. R. Singh and K. S. Pitzer, J. Chem.
Phys. 92, 6775 �1990�.

9 K. S. Pitzer, J. Phys. Chem. 99, 13070 �1995�.
10 P. Chieux and M. J. Sienko, J. Chem. Phys. 53, 566 �1970�.
11 P. Chieux, P. Damay, J. Dupuy, and J. F. Jal, J. Phys. Chem. 84, 1211

�1980�.
12 M. Buback and E. U. Franck, Ber. Bunsenges. Phys. Chem. 76, 350

�1972�.
13 B. M. Jaffar Ali and A. Kumar, Phys. Lett. A 237, 257 �1998�; J. Jacob,

A. Kumar, S. Asokan, D. Sen, R. Chitra, and S. Mazumder, Chem. Phys.
Lett. 304, 180 �1999�; B. M. Jaffar Ali and A. Kumar, J. Chem. Phys.
107, 8020 �1997�.

14 C. Ishimoto and T. Tanaka, Phys. Rev. Lett. 39, 474 �1977�.
15 X.-H. Guo and S.-H. Chen, Phys. Rev. Lett. 64, 1979 �1990�.
16 K. C. Zhang, M. E. Briggs, R. W. Gammon, and J. M. H. Levelt Sengers,

J. Chem. Phys. 97, 8692 �1992�.
17 K. Hamano, N. Kuwahara, T. Koyama, and S. Harada, Phys. Rev. A 32,

3168 �1985�; A. M. Bellocq, P. Honorat, and D. Roux, J. Phys. �France�
46, 743 �1985�; H. Seto, D. Schwahn, and S. Komura, J. Chem. Phys.
99, 5512 �1993�.

18 A. D. Kirshenbaum, J. A. Cahill, P. J. Gonigal, and A. V. Grosse, J. Inorg.
Nucl. Chem. 24, 1287 �1962�.

19 M. Corti, C. Minero, and V. Degiorgio, J. Phys. Chem. 88, 309 �1984�; V.
Degiorgio, R. Piazza, M. Corti, and C. Minero, J. Chem. Phys. 82, 1025
�1985�.

20 D. Blankschtein, G. M. Thurston, and G. B. Benedek, Phys. Rev. Lett.
54, 955 �1985�.

21 M. E. Fisher, J. Stat. Phys. 75, 1 �1994�.
22 H. Weingärtner and W. Schröder, Adv. Chem. Phys. 116, 1 �2001�.
23 T. Narayanan and K. S. Pitzer, Phys. Rev. Lett. 73, 3002 �1994�; T.

Narayanan and K. S. Pitzer, J. Phys. Chem. 98, 9170 �1994�; 102, 8118
�1995�.

24 D. Seto, D. Schwahn, M. Nagao, E. Yoko, S. Komura, M. Imai, and K.
Mortensen, Phys. Rev. E 54, 629 �1996�.

25 J. Jacob, A. Kumar, M. A. Anisimov, A. A. Povodryev, and J. V. Sengers,
Phys. Rev. E 58, 2188 �1988�; K. Gutkowski, M. A. Anisimov, and J. V.
Sengers, J. Chem. Phys. 114, 3133 �2001�.

26 J. Jacob, M. A. Anisimov, A. Kumar, V. A. Agayan, and J. V. Sengers,
Int. J. Thermophys. 21, 1321 �2000�.

27 M. A. Anisimov, A. A. Povodyrev, and J. V. Sengers, Fluid Phase
Equilib. 158–160, 537 �1999�; M. A. Anisimov, A. A. Povodyrev, V. D.
Kulikov, and J. V. Sengers, Phys. Rev. Lett. 75, 3146 �1995�; M. A.
Anisimov, J. Phys. C 12, A451 �2000�.

28 Y. B. Melnichenko, M. A. Anisimov, A. A. Povodrev, G. D. Wignall, J.
V. Sengers, and W. A. Hook, Phys. Rev. Lett. 79, 5266 �1997�; M. A.
Anisimov, V. A. Agayan, and E. E. Gorodetskii, JETP Lett. 72, 578
�2000�; M. A. Anisimov, A. F. Kostko, and J. V. Sengers, Phys. Rev. E

65, 051805 �2002�.

AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



144906-18 Rah et al. J. Chem. Phys. 124, 144906 �2006�
29 M. A. Anisimov, A. F. Kostko, J. V. Sengers, and I. K. Yudin, J. Chem.
Phys. 123, 164901 �2005�.

30 N. Bjerrum, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 7, 1 �1926�; H.
Friedman, J. Phys. Chem. 66, 1595 �1962�; K. S. Pitzer and D. R.
Schreiber, Mol. Phys. 60, 1067 �1987�; J. M. H. Levelt Sengers and J. A.
Given, ibid. 80, 899 �1993�; Y. Levin and M. E. Fisher, Physica A 225,
164 �1996�; K. S. Pitzer, J. Chem. Phys. 104, 6724 �1996�.

31 A. Z. Panagiotopoulos and M. E. Fisher, Phys. Rev. Lett. 88, 045701
�2002�; Q. L. Yan and J. J. de Pablo, ibid. 88, 095504 �2002�.

32 S. Bastea, Phys. Rev. E 66, 020801 �2002�; M. Gillian, B. Larsen, M. P.
Tosi, and N. H. March, J. Phys. C 9, 889 �2002�.

33 P. G. de Gennes and P. A. Pincus, Phys. Kondens. Mater. 11, 189 �1970�;
P. C. Jordan, Mol. Phys. 25, 961 �1973�; M. A. Osipov, P. I. Teixeira, and
M. M. T. da Gama, Phys. Rev. E 54, 2597 �1996�; P. I. Teixeira, J. M.
Tavares, and M. M. T. da Gama, J. Phys. C 12, R411 �2000�; J. M.
Tavares, M. M. T. da Gama, and M. A. Osipov, Phys. Rev. E 56, R411
�2000�; J. M. Tavares, J. J. Weis, and M. M. T. da Gama, ibid. 65,
061201 �2002�.

34 W. H. Stockmayer, J. Phys. Chem. 96, 4084 �1992�.
35 J. Dudowicz, K. F. Freed, and J. F. Douglas, Phys. Rev. Lett. 92, 045502

�2004�.
36 K. van Workum and J. F. Douglas, Phys. Rev. E 71, 031502 �2005�; 73,

031502 �2005�; Macromol. Symp. 227, 1 �2005�; Mater. Res. Soc. Symp.
Proc. �in press�.

37 These calculations minimize errors in nonuniversal properties, such as
the critical temperature and composition, by considering the ratios of
these quantities and those pertaining to a nonassociating reference fluid.

38 J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 119, 12645
�2003�.

39 J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 111, 7116
�1999�.

40 J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 112, 1002
�2000�.

41 J. Dudowicz, K. F. Freed, and J. F. Douglas, J. Chem. Phys. 113, 434
�2000�.

42 A. V. Tobolsky and A. Eisenburg, J. Am. Chem. Soc. 81, 780 �1950�;
ibid. 81, 2302 �1950�; ibid. 82, 289 �1960�; J. Colloid Sci. 17, 49
�1962�.

43 M. N. Artyomov and K. F. Freed, J. Chem. Phys. 123, 194906 �2005�.
44 The theory is readily extended to cases of unequal volumes, as described

in Ref. 38.
45 Equation �4� departs from expressions given in Ref. 38 since the factor

�z−1� is now absorbed in �sp and, thus, is included in the defintion of Kp.
46 Experiments indicate, however, that 	 often contains a temperature inde-

pendent portion that may significantly affect the phase behavior. This
entropic portion of 	 parameters arises naturally within the lattice cluster
theory as a quantity directly related to the monomer structures of the

components of the system �Ref. 73�.

Downloaded 24 Jun 2009 to 129.6.154.189. Redistribution subject to 
47 A. V. Tobolsky and A. Eisenberg, J. Am. Chem. Soc. 81, 780 �1959�.
48 J. Dudowicz, M. Lifschitz, K. F. Freed, and J. F. Douglas, J. Chem. Phys.

99, 4804 �1993�.
49 J. Higgins and H. Benoit, Polymers and Neutron Scattering �Oxford Uni-

versity Press, New York, 1994�.
50 K. S. Schweizer and J. G. Curro, J. Chem. Phys. 91, 5059 �1989�.
51 A. P. Andrews, K. P. Andrews, S. C. Greer, F. Boue, and P. Pfeuty,

Macromolecules 27, 3902 �1994�.
52 A. D. Mackie, A. Z. Panagiotopoulos, and S. B. Kumar, J. Chem. Phys.

102, 1014 �1995�.
53 J. M. H. Levelt Sengers and J. V. Sengers, in Perspectives in Statistical

Physics, edited by H. J. Raveche �North-Holland, Amsterdam, 1981�,
Chap. 14.

54 A. A. Povodyrev, M. A. Anisimov, J. V. Sengers, Physica A 264, 345
�1999�.

55 S. C. Greer, J. Phys. Chem. B 102, 5413 �1998�.
56 S. C. Greer, Adv. Chem. Phys. 94, 261 �1996�.
57 S. C. Greer, Annu. Rev. Phys. Chem. 53, 173 �2002�.
58 P. J. Flory, Principles of Polymer Chemistry �Cornell University Press,

Ithaca, 1953�.
59 W. D. B. Jenkins and Y. Marcus, Chem. Rev. �Washington, D.C.� 95,

2695 �1995�.
60 These temperatures become equal for living polymerization systems,

leading to this misinterpretation.
61 P. G. De Gennes, J. Phys. �Paris�, Lett. 38, L441 �1977�.
62 K. Binder, J. Chem. Phys. 79, 6387 �1983�; Phys. Rev. A 29, 341 �1984�.
63 M. E. Fisher and B. P. Lee, Phys. Rev. Lett. 77, 3561 �1996�; M. E.

Fisher, J. Phys. C 8, 9103 �1996�.
64 M. A. Anisimov, J. Jacob, A. Kumar, V. A. Agayan, and J. V. Sengers,

Phys. Rev. Lett. 85, 2336 �2000�.
65 S. C. Greer, Phys. Rev. Lett. 64, 1983 �1990�; K. M. Zheng, S. C. Greer,

L. Rene Corrales, and J. Ruiz-Garcia, J. Chem. Phys. 98, 9873 �1993�.
66 S. C. Greer, Phys. Rev. Lett. 64, 3204 �1990�.
67 R. L. Scott, J. Phys. Chem. 69, 261 �1965�; J. A. Larkin, J. Katz, and R.

L. Scott, J. Chem. Phys. 71, 352 �1967�.
68 J. Stammbaugh, K. van Workum, J. F. Douglas, and W. Losert, Phys. Rev.

E 72, 031301 �2005�.
69 C. Miller, J. J. de Pablo, and J. F. Douglas �unpublished�.
70 A. Diehl and A. Z. Panagiotopoulos, J. Chem. Phys. 118, 4993 �2003�; J.

C. Shelly and G. N. Patey, ibid. 103, 8299 �1995�; J. M. Romero-
Enrique, L. F. Rull, and A. Z. Panagiotopoulos, Phys. Rev. E 66, 041204
�2002�.

71 K. F. Freed, Renormalization Group Theory of Macromolecules �Wiley,
New York, 1987�.

72 H. Yamakawa, Modern Theory of Polymer Solutions �Harper & Row,
New York, 1971�.

73
 K. F. Freed and J. Dudowicz, Macromolecules 31, 6681 �1998�.

AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp


