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Direct computation of characteristic temperatures and relaxation times
for glass-forming polymer liquids
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Characteristic temperatures and structural relaxation times for different classes of glass-forming
polymer liquids are computed using a revised entropy theory of glass formation that permits the
chain backbone and the side groups to have different rigidities. The theory is applied to glass
formation at constant pressure or constant temperature. Our calculations provide new insights into
physical factors influencing the breadth of the glass transition and the associated growth of
relaxation times. © 2005 American Institute of Physics. �DOI: 10.1063/1.2035087�
Numerous observations indicate a strong correlation be-
tween glass formation and a rapid drop of fluid entropy upon
cooling.1–4 Gibbs and DiMarzio5 �GD� first formulated a
thermodynamic theory of glass formation in polymer fluids,
based on the identification of an “ideal” glass transition with
the vanishing of the configurational entropy in a mean-field
Flory-Huggins lattice model for a melt of semiflexible poly-
mers. The configuration entropy s�T� characterizes the num-
ber of distinct fluid conformational states and excludes the
contributions from vibrational motions that are present in the
experimentally measured fluid entropy. The lack of a clear
relation between s�T� and the measured entropy has led to
persistent uncertainties in experimental tests of the entropy
theory of glass formation �see below�. Further progress in the
entropy theory of glass formation emerged from the Adam–
Gibbs �AG� relation between the rate of structural relaxation
and the configurational entropy.3 Despite some idealizations,
these theories still provide the foundation for many current
ideas about glass formation.

Although the GD theory claims numerous successes in
rationalizing trends in the glass transition temperature Tg

with molecular structure,5 its prediction of a vanishing s�T�
at a finite temperature T0 has been questioned,6,7 casting
doubt on the existence of an ideal glass transition. In our
view, the question of whether s�T� vanishes for T0�0 K is
academic since it is impossible to equilibrate fluids at tem-
peratures below Tg where the fluid entropy and s�T� extrapo-
late to zero. Thus, we have developed a new entropy theory
that focuses on the temperature regime above Tg where these
conceptual difficulties do not arise and where a thermody-
namic description of polymer melts is reliable. Our theory
does not invoke the existence of an entropy catastrophe to
define the glass transition, but still retains the notion of a
temperature T0 at which s�T� extrapolates to zero as found
experimentally for the total fluid entropy. Our entropy theory
emphasizes the short-range correlations in the fluid that stem
from chain connectivity, semi-flexibility of the chain back-
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bone and side groups, and monomer structure. These vari-
ables are clearly relevant to describing how molecular struc-
ture affects the rate of structural relaxation in real polymer
melts. This more realistic treatment of the thermodynamics
of polymer melts is achieved through a lattice cluster �LCT�
generalization of the Flory theory of semiflexible polymer
melts.8

According to the Adam–Gibbs theory,3 the structural re-
laxation time of a polymer fluid is related to s�T� through the
well-known AG relation,

� = �o exp�����s*/s�T��� , �1�

where �o is the high-temperature limiting relaxation time in
the fluid, �� is a �property and system dependent� activation
energy at high temperatures, and s* is the postulated high-
temperature limit of s�T�. The AG equation for � implies that
the “fragility” of glass-forming liquids is related to the rate
of change of s�T� and to the strength of the van der Waals
interactions and other microstructure effects through ��.

A crucial modification of the classic entropy theory lies
in our identification of s in Eq. �1� with the configurational
entropy sc per lattice site �an entropy density� rather than
with the entropy sc,m per unit mass, as commonly assumed in
analyzing experiments.9 This identification enables us to ex-
plain many aspects of the thermodynamics and dynamics of
glass formation over the entire temperature range of this pro-
cess and is consistent with the simulations of diffusion in
lattice models of polymer melts by Binder et al.6 Since the
complex changes in the dynamics of glass-forming liquids
often initiate for T�2Tg, it is important to determine the
breadth of this transition by estimating the temperatures
characterizing the beginning, middle, and end of this broad
transition phenomenon. Thus, we not only distinguish be-
tween Tg and the extrapolated temperature T0, but also evalu-
ate the onset temperature TA for the supercooled regime �be-
low which � no longer displays an Arrhenius temperature
dependence� and the crossover temperature �TI in our nota-
tion� separating well-defined temperature regimes in which

both sc and � exhibit a rather distinct temperature depen-
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dence. The characteristic temperatures TA ,TI, and T0 are de-
termined from the maximum sc

* of sc, the inflection point in
sc�T�T, and the extrapolated vanishing of sc�T�, respectively.
The kinetic glass transition temperature Tg is calculated from
a Lindemann-type relation10 for the instability of the solid
�glass� to liquefaction when the mean interparticle separation
increases by 12.5%–15% over the value for the “solid” at T0,

��P,T = Tg� − ��P,T = T0�
��P,T = Tg�

= �0.027 F-S class

0.016 F-F class,
�

where � denotes the specific volume and the F-S and F-F
polymer classes are defined below. Elsewhere, we discuss the
application of this Lindemann criterion in detail.11

Previous attempts at comparing the entropy theory to
experiments are complicated by the difficulty of estimating
s�T� for real fluids. For instance, Richert and Angell9 suggest
that the AG model generally “breaks down” for temperatures
20-30 K above Tg. On the other hand, molecular-dynamics
simulations for model liquids12 and Monte Carlo simulations
of diffusion in lattice polymer fluids6 both claim consistency
with the AG model at temperatures far above Tg. These con-
flicting conclusions are perhaps not surprising given that ex-
periments and simulations invoke completely different mea-
sures of “configurational entropy.” The experimental studies
identify s�T� of the AG theory with the molar fluid entropy
Sexc relative to the crystalline or low-temperature glass state,
while the simulations’ estimate of s�T� are obtained from the
number of accessible configurational states. Since Sexc con-
tains a substantial vibrational contribution, it is entirely
unclear13 if Sexc provides a good estimate of the s�T� that
appears in Eq. �1�. Below we suggest a simple logical alter-
native that establishes consistency between experimental and
simulated estimates of the configurational entropy.

Experimental studies14,15 of the structural origin of fra-
gility in polymers suggest that polymers with simple side
branch structures �e.g., polybutadienes and many polyole-
fins� are rather strong, while polymers with bulky, rigid side
groups �e.g., polystyrene� are more fragile. Since the relative
rigidity of the side groups and the chain backbone is the
essential parameter governing the nature of glass formation
in polymers, we assign different bending energies Eb and Es

for a pair of chain backbone and side group bonds, respec-
tively, when two semiflexible bonds lie in orthogonal direc-
tions �gauche bonds�. Calculations are performed for two
generic categories of polymers: chains with flexible
backbone and flexible side groups and chains with flexible
backbone and rigid side branches, termed the F-F and F-S
polymer classes, respectively. For simplicity, a common
united atom monomer structure �shown in the inset to Fig. 1�
is used in both classes. The F-F class is specified by Eb /kB

=Es /kB=400 K. The same Eb /kB=400 K is assigned to the
F-S chains, but a relatively large Es /kB=4000 K represents
the stiff side groups. All computations refer to a pressure of
P=1 atm �0.101 325 MPa�, unless otherwise specified, and
are performed for the nearest-neighbor van der Waals inter-
action energy � /kB=200 K �a typical value for poly
��-olefins�� and the unit volume as vcell=acell

3 = �2.7�3 Å3.
One trans and two gauche conformations are assumed for

8
each backbone and side chain bond pair.
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Figure 1 compares sc�T� and sc,m�T� for the F-F and
F-S polymer classes. Both configurational entropies almost
coincide for T	TI, but they differ appreciably at higher tem-
peratures. The bifurcation in the configurational entropies in
Fig. 1 is remarkably similar in form to the deviation ob-
served between the experimentally determined excess fluid
entropy Sexc and the configurational entropy s, as estimated
by fitting dielectric relaxation-time data9 to Eq. �1�. Because
sc�T� is an entropy density, the maximum in sc�T� derives
from an interplay between changes in the entropy and the
fluid density with temperature.

While Binder et al.6 have previously shown that the AG
theory provides a good description of the temperature depen-
dence of diffusion in polymer melts when s�T� is identified
with the site configurational entropy, they do not mention
that this choice substantially departs from the use of Sexc in
experimental tests of the AG theory. The tendency of sc to
increase slowly at high temperatures in the simulations of
Binder et al. is broadly mirrored in constant volume land-
scape configurational entropy sc,L calculations that likewise
claim general accord with the AG theory when the s�T� of
Eq. �1� is replaced by sc,L. Our theory indicates that sc�T� can
exhibit a maximum at constant pressure, while the entropy at
constant volume cannot. These observations strongly suggest
that better consistency between the AG theory and experi-
ments might be obtained simply by normalizing Sexc by the
fluid molar volume �i.e., by using the entropy density rather
than Sexc alone�. However, even with this change in normal-
ization, the subtraction of the residual vibrational contribu-
tions from the fluid entropy is necessary for reliably testing
the validity of AG theory.

The temperature dependence of sc naturally divides into
high- and low-temperature regimes of glass formation, sepa-
rated by the crossover temperature TI in Fig. 1. Below TI, the
product scT scales nearly proportional to the reduced tem-
perature 
T0= �T−T0� /T0, which in combination with Eq. �1�
implies �=�o exp�1/ �Ks
T0��, for Tg	T	TI, where the con-

FIG. 1. Comparison of the LCT configuration entropies per site �sc

	Sc /Nl� and per united atom group �sc,m	Sc / �nM�� for constant pressure
P=1 atm polymer fluids �M =40 001�. Nl, n, and M are the numbers of
lattice sites, polymer chains, and united atom groups in a single chain,
respectively. The molar mass is proportional to M. The inset depicts the
monomer structure used in our calculations.
stant Ks characterizes the fragility at low temperatures. The
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former equation for � is just the well-known Vogel–Fulcher–
Tammann–Hesse �VFTH� equation16 and was theoretically
rationalized by Adams and Gibbs.3 A very different tempera-
ture dependence of scT emerges from our calculations for
T�TI, however.

The ratio z*=sc
* /sc�T� in Eq. �1� for � is generally inter-

preted as the average number of monomer elements in the
dynamic cooperatively rearranging regions, structures that
are hypothesized to form in cooled glass-forming liquids and
that are associated with a growing activation energy barrier
for transport. Figure 2 presents z* as a function of the re-
duced temperature 
TA	
T−TA
 /TA. While z* is unity at TA,
it grows upon cooling, becoming about 2 near TI and about 4
or 5 near Tg. The fit to z* as a function of 
TA in Fig. 2 is
parabolic to a high degree for both polymer classes, i.e., z*

−1=Cs�
TA�2 for TA−100 K	T	TA, where Cs depends on
polymer mass and polymer class. A similar scaling of z* for
T�TA emerges from the theory of Schweizer and
Saltzman.17 Remarkably, the LCT estimates of z* are also
compatible with recent experimental estimates of the reduced
activation energy barrier E /E�T�TA� for diverse fluids by
Kivelson et al.,18 although with a somewhat larger exponent
�8/3�. Figure 2 shows that Cs is larger for F-S polymers,
which in combination with Eq. �1� implies that � has a stron-
ger temperature variation for the more fragile F-S polymers.
The parameter Cs provides a measure of fragility in the high-
temperature regime of glass formation, complementing the
fragility parameter Ks appropriate to the low-temperature re-
gime of glass formation.

Our extension of the entropy theory is combined with an
empirically motivated relation between �� and TI, namely,
�� /kB�6TI, which enables explicit computation of � with-
out adjustable parameters beyond the molecular parameters
inherent in the LCT model. The resultant empirical connec-
tion between dynamic quantities and microscopic parameters
of the LCT also permits us to explore the structural origins of
fragility in glass-forming liquids, as will be described else-
where. The approximate relation �� /kB�6TI is based on the
molecular-dynamics simulations for both binary Lennard-
Jones glass-forming liquids19 and a Lennard-Jones bead
model of polymer melts20 for which TI is identified with the
fitted mode-coupling temperature Tmc. Comparisons of direct

FIG. 2. LCT estimates for the size z*=sc
* /sc �where sc

*	sc�TA�� of the co-
operative rearranging regions in constant pressure �P=1 atm� glass-forming
polymer fluids as a function of 
TA	
T−TA
 /TA.
LCT computations for TI /Tg and ��T=TI� with literature
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estimates21,22 of Tmc/Tg and ��T=Tmc�, respectively, confirm
this identification of TI with Tmc. The relation is also sup-
ported by viscosity data for a wide range of glass-forming
salts,23 where the high-temperature regime above TI is ex-
perimentally accessible.

The revised entropy theory also provides detailed predic-
tions for the dependence of � on temperature, pressure, molar
mass, and monomer structure over the entire glass-formation
temperature region from T0 to TA. Figure 3 illustrates the
computed � as a function of the reduced inverse temperature
Tg /T for F-S and F-F polymer class fluids at P=1 atm. We
predict that ��T=TA� at the onset of glass formation is on the
order of a few picoseconds for both polymer classes, while
��T=TI� is generally a few orders of magnitude larger, i.e.,
O�10−8±1 s�. The predictions in Fig. 3 agree reasonably well
with recent tabulated estimates22 of � at the nominal mode-
coupling temperature �the analog of TI� for a wide variety of
glass-forming liquids where � is O�10−7±1 s�.24 Figure 3 fur-
ther exhibits � as increasing rapidly for T	TI, with ��T
=Tg� becoming as large as 103 s, as is typical for glass-
forming liquids.22 �Alternatively, Tg could be defined by
��Tg�=103 s, and the resulting Tg could be used to derive the
Lindemann criterion.� For both F-F and F-S polymer
classes, � varies similarly with temperature, although the
steepness of the rise in � at low temperatures is less pro-
nounced for F-F polymers, reflecting the “stronger” nature
of this class of fluids.

Glass formation can also be induced by increasing pres-
sure at constant temperature.25,26 Specifically, an empirical
pressure analog of the VFTH equation has been used to de-
scribe data for ��P ,T=const� at variable pressures.25,26 This
pressure analog, ��P�=��P=1 atm�exp�aP / �P0− P��, where
a=a�T� is a constant, exhibits an apparent singularity at a
critical pressure P0 which is the counterpart of the “Vogel
temperature” T�=T0 of the original VFTH equation. We rep-
resent � at fixed T and variable P as a generalization of Eq.
�1� by ��P�=�o exp�� EAG�P��, with EAG�P� written equiva-
lently as

EAG�P� = ���sc
*/sc,o��sc,o/sc�T,P�� , �2�

where sc,o	sc,o�T� is the site configurational entropy at P
*

FIG. 3. The calculated structural relaxation time � for P=1 atm high molar
mass �M =40 001� F-S and F-F polymer fluids as a function of Tg /T. Dotted
lines refer to the high-temperature regime T�TA, where an Arrhenius rela-
tion applies. The high temperature limiting � is taken as �o=10−13 s.
=1 atm and where a weak pressure dependence of �� and sc
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is neglected.27 The equation for ��P� can be rearranged as

��P� = ��P = 1 atm�exp�� EAG�P = 1 atm�
sc� , �3�

where 
sc	�sc,o /sc�T , P��−1. The consistency of Eq. �3�
with the empirical correlation for ��P� requires that 
sc is
inversely proportional to the reduced pressure 
P
= 
P− P0
 / P as shown in Fig. 4 for an isothermal F-S poly-
mer melt. Thus, the origin of the pressure analog of the
VFTH equation25 naturally follows from the entropy theory.
The inset to Fig. 4 presents the critical pressure P0 as scaling
linearly with temperature, in agreement with experiments.28

Generally P0 is a function of T ,� ,Eb ,Es, and monomer
structure.

In summary, our analytic theoretical framework for both
equilibrium and relaxation properties of glass-forming poly-
mers provides a recipe for calculating the multiple character-
istic temperatures of glass formation in polymer fluids and
generates an understanding of the regularities observed in the
magnitude of � at these temperatures. This is the first ana-
lytical theory describing these aspects of glass formations in
polymer fluids. Moreover, the theory is the first to explain

FIG. 4. LCT computations for the 
sc of Eq. �3� as a function of the recip-
rocal of 
P= 
P− P0
 / P for a high molar mass �M =40 001� F-S polymer
fluid at T=388 K. The inset illustrates the temperature dependence of P0

�symbols�. The line is a least-squares fit P0=a+bT with a=−378.6 MPa and
b=1.0825 MPa/K.
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the impact of different side group and backbone chain rigidi-
ties on glass formation and provides a theoretical basis for
the pressure analog of the VFTH equation for �.
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