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The kinematics of oscillatory cross flow has been studied numerically as a means for generating
chaotic mixing in microfluidic devices for both confined and continuous throughput flow
configurations. The flow is analyzed using numerical simulation of the unsteady Navier–Stokes
equations combined with tracking of single and multispecies passive tracer particles. Two
characteristics of chaotic flow are demonstrated: the stretching and folding of material lines leading
to particle dispersion and a positive “effective” Lyapunov exponent. The primary mechanism for the
generation of chaotic flow is a periodic combination of stretching �which occurs via shear in the
channels� and rotation �which occurs via the timing of the oscillations�, making these systems
effective tendril-whorl type flows. First, the case of confined mixing is studied. It is shown that
chaotic flow is generated in a cross-cell device when sinusoidally driven, out-of-phase,
perpendicular fluid streams intersect in the flow domain. Calculations indicate that the flow becomes
chaotic in the center region starting at a Strouhal number on the order of 1. A degree of mixing based
on a relative mixing entropy as high as 91% is obtained. Approximately 10–15 sinusoidal cycles are
needed in order to effectively mix different groups of passive tracer particles. In the second phase
of the analysis, the cross flow mixing mechanism is utilized in a continuous operation by combining
a throughput channel flow with an oscillatory cross flow in a configuration called the star-cell
geometry. It is shown that the oscillatory flow remains chaotic even in combination with the
throughput flow, and a degree of mixing in the 80%–90% range is obtained for the range of
parameters studied here. �DOI: 10.1063/1.2830550�

INTRODUCTION

Mixing is an important issue in many chemical and bio-
logical applications using microfluidic devices1 for a variety
of reasons, including initiation of chemical reaction, chemi-
cal treatment of biological species, emulsification of immis-
cible components, and dispersion of gas phase bubbles or
solid particles in liquid streams. While mixing is most natu-
rally achieved through turbulent flow, microfluidic flows are
normally low Reynolds number �Re� due to the very small
length scales at which these devices are fabricated. This
makes turbulent flow virtually impossible to achieve, and the
mixing of fluids is generally “slow” and diffusion-controlled.
The problem is further compounded by the fact that the Pe-
clet number �Pe� for diffusion is usually rather large �10
�Pe�105� in these systems,1,2 making the required length
scale for mixing in the streamwise �or throughput� direction
unduly large.

Mixing can be greatly enhanced in laminar flow by sub-
jecting the fluid to chaotic flow kinematics. The theory of
chaotic mixing has been well developed due to the pioneer-
ing work of Ottino and co-workers, e.g., Refs. 3–17, as well
as Aref and co-workers, e.g., Refs. 18–23. Recent works
highlight the application of these principles to

micromixing.2,11,23 In chaotic advection, a term coined by
Aref,22 material lines undergo complex patterns of stretching
and folding characterized mathematically as a horseshoe
map.3,5–7,9 Practically speaking, chaotic kinematics have a
twofold effect on the mixing process. Nearby particle trajec-
tories separate at an exponential rate described by a positive
Lyapunov exponent,24
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where �x�0� and �x�t� represent the separation of two par-
ticles at times 0 and t, respectively. Thus, as viewed from the
Lagrangian sense, chaotic flow fields tend to lead to fluid
particles becoming homogeneously dispersed via a mecha-
nism due only to kinematics. The positive exponent also
plays a role as viewed from the standpoint of the stretching
of material lines and surfaces.3,6 For two-dimensional �2D�
flows, the stretching of a material element in a chaotic flow
field may be expected to scale according to L�L0e�t, while
due to conservation of mass, it may be expected to thin nor-
mal to the stretching direction according to W�W0e−�t. The
increase in interfacial area and the reduction in striation
thickness serve to further improve the mixing process by
either enhancing diffusion between miscible components, or
via a breakup process leading to drop formation in immis-
cible systems.25–27

In macroscopic flows, chaotic mixing is often generated
using temporally controlled moving boundaries as a driving
force, an approach sometimes referred to as active mixing.
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However, this is not easily replicated in microfluidics, as
production of miniature devices with moving boundaries can
be expected to be unduly expensive compared to traditional
microfluidic fabrication techniques, and in practical terms,
more difficult to control. Given this limitation, generation of
chaotic flow in the laminar channel flows inherent to micro-
fluidic devices requires either geometric or some other
means of temporal manipulation of the flow.6,10 A number of
different methods utilizing these principles have been ap-
plied to enhance mixing in microfluidic devices by creating
or attempting to create chaotic flow fields. Devices that rely
on geometric manipulation are generally called passive mix-
ers, and some examples include patterned surfaces,28–31 sinu-
soidal and serpentine flows,32–36 and split and recombine
flows;37–39 devices that rely on temporal manipulation are
called active mixers with some examples being exploitation
of secondary flows40–44 and oscillatory flow.45–51

A summary of heuristics for generating chaotic flow is
listed in Ottino et al.6 In application to the present problem,
probably the most important of these is the condition that the
flow streamlines at successive times, say t and t+�t, inter-
sect each other in the flow domain. Linked twist map �LTM�
flows, such as the “blinking vortex,”22 in which the stream-
lines of two annular regions intersect each other, are an ex-
ample of this.5 In this work, we consider application of the
“crossing-streamline” principle to conduct a numerical study
of chaotic mixing in microfluidic channel geometries that
have fixed boundaries, in which chaotic conditions are
achieved via temporal manipulation using oscillatory bound-
ary conditions.45–51 The seminal works of Truesdell et al.,45

Tabeling et al.,46,47 and Mezic et al.,49 are encompassed here
as limiting cases of a family of such flows.

The crossing streamlines utilized in this study are dis-
tinctly different from the intersecting annular streamlines of
an LTM. Rather, we consider the case of intersecting chan-
nels, the simplest case of which is a cross-flow mixer �CFM�
depicted in Fig. 1�a�. Defining a Strouhal number as St
=U /L�, where U, L, and � are the characteristic velocity,
length, and frequency, respectively, the results indicate that
for purely oscillatory flow, chaotic mixing is achieved in the
CFM starting at about a Strouhal number of O�1�, and that
the mechanism for chaos is a type of tendril-whorl �TW�
flow,3,12 a model flow known for the generation of chaotic
mixing. The CFM may be viewed as the simplest prototype
flow for producing chaotic flows in purely oscillatory motion
�i.e., zero net throughput flow� in channels. There are a num-
ber of ways in which the CFM mixing mechanism may be
exploited to produce a well-mixed throughput stream. As an
example, we consider superimposing a lateral throughput
flow with the oscillatory cross-flow motion in a configuration
called the star-cell, depicted in Fig. 9.

A kinematics-based approach is used to study the mixing
process in these cells. Flow is modeled via numerical simu-
lation of the unsteady Navier–Stokes equations. Using the
kinematics obtained from the simulation, the deformation of
material lines and blobs composed of passive tracer particles
is used to identify chaotic regions and quantify the degree of
mixing. The analysis proceeds as follows. First, we outline
the parameters and numerical techniques used to analyze the

flow. Then, confined mixing produced by purely oscillatory
motion in the CFM is modeled. This allows identification of
parameter regimes that are viable for producing chaotic mix-
ing and enables us to identify the TW flow mechanism. Fi-
nally, the effect of combining a fixed throughput flow with
oscillatory motion in the star-cell configuration as a means
for generating continuous mixing is examined. It is found
that a peak degree of mixing equal with that obtained for the
purely oscillatory case can be achieved, indicating a synergy
between the throughput and oscillatory motion under certain
conditions. Some simple residence time distribution observa-
tions are employed to help explain some of the other system
behavior. In the discussion, we examine the relationship of
the mixing mechanism in the CFM and star-cell configura-
tions to those in other oscillatory flows, particularly that of
Tabeling et al.46,47 and Mezic et al.,49 and we show that TW
flow is also inherent to other oscillatory flows, but that the
mechanism can occur by either continuous or discrete means.
This should lend insight to the future design of oscillatory
flow mixers.

MODELING

The governing equations used to model the flow are the
unsteady Navier–Stokes equations together with the incom-
pressible condition

�
�v�
�t

+ �v� · �v� = − �p + ��2v� , �2�

� · v� = 0, �3�

where v� is the velocity, p is the pressure, and � and � are the
viscosity and density, respectively. Numerical solutions were
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FIG. 1. �Color online� �a� Flow geometry and boundary conditions for the
cross flow mixer �CFM�. The channel widths were scaled to unity for all
calculations. �b� Initial condition for material line stretch calculations pic-
tured in Figs. 2 and 3. The line consists of 25000 individual particles and
lies along the x axis between �−1.5,0.5�.
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obtained using the commercial52 finite-element package
COMSOL MultiPhysics �COMSOL MP�.53

To evaluate the ability of a given flow configuration to
produce chaotic motion, the deformation of material lines
and blobs composed of passive tracer particles were tracked
in a manner analogous to flow experiments using tracer dyes.
Particle plots were obtained using MATLAB

54 scripting codes
with the exported COMSOL MP solution, where the rate of
change of the individual particle positions is governed by the
Eulerian velocity field according to

dx

dt
= vx�x,y,t� =

��

�y
,

�4�
dy

dt
= vy�x,y,t� = −

��

�x
.

Two types of particle tracking analyses were conducted:
single and multispecies. Single-species tracking is used to
identify chaotic flow by three means. First, the equations
describing the particle trajectories in 2D fluid flow formally
fit the form of a Hamiltonian dynamical system in which the
stream function, �=��x ,y , t�, acts as the Hamiltonian.9 In
such systems, chaotic regions are separated from nonchaotic
regions along well-defined lines called Kolmogorov–
Arnold–Moser �KAM� curves.24 Thus, the particle plots
serve as qualitative indicators of chaotic flow kinematics by
identification of regions of homogeneous particle dispersion
within the flow domain. A second qualitative signature of
chaos related to the visual particle dispersion is ergodicity.55

That is, no matter what initial configuration of particles is
chosen, after a large number of cycles, the final states are
indistinguishable from one another. A final semiquantitative
signature of chaos comes from monitoring the growth of a
material line. Exponential stretch of material lines is a char-
acteristic of chaotic systems,3 and may be used to infer the
existence of chaotic kinematics. The exponent in this case
can be thought of as a “finite time” or “effective” Lyapunov
exponent.

Multispecies particle tracking is used to define a quanti-
tative degree of mixing based on the concept of mixing en-
tropy. The procedure followed here is the same as is defined
in Kang and Kwon,56 and has been employed in a number of
studies, e.g., Stone and Stone.36 In this method, a mixing
zone is specified and divided into a number of discrete flow
cells. The mixing zone may encompass either all or part of
the flow domain. A number of particle species �distinguished
visually by color� are then introduced into the flow and al-
lowed to mix. A mixing entropy for the particles may be
defined as

S = − �
i=1

Nc �wi�
j=1

Ns

�ni,j log ni,j�	 , �5�

where Nc is the number of flow cells, Ns is the number of
species, ni,j is the fraction of species j in the flow cell i, and
wi is a weighting function with a value of zero in cells that
contain only a single species, and unity in cells that contain
multiple species. Based on this, a degree of mixing may be
defined as

Dm =
S

Smax
, �6�

where Smax is the maximum obtainable entropy for the sys-
tem and is given by

Smax = Nc log
1

Ns
. �7�

The value of Dm is thus a dimensionless value bounded by
�0,1�, where a value of zero represents a complete segrega-
tion of species, and unity represents perfectly uniform mix-
ing. It was found by trial and error that one issue with this
method is the number of flow cells used to discretize the
mixing zone. If the discretization is too coarse, an artificially
high degree of mixing is obtained; if it is too fine, an artifi-
cially low degree of mixing may be obtained. The procedure
followed here was to refine the number of flow cells until
successive calculations yielded ostensibly the same result. In
general, it was found that the calculation converged rela-
tively quickly, and the exact number of cells used is reported
below on a case by case basis.

An issue in any particle tracking scheme is collision of
particles with the boundary, and since the streamlines do not
intersect the boundary, this must be regarded as an integra-
tion error. Nevertheless, it is difficult to avoid in some degree
when the flow becomes strongly chaotic. Boundary colli-
sions do not strongly influence the overall dispersion patterns
seen in any of the simulations �although some fine details
may vary on a localized scale�, however they have to be
completely eliminated in order to calculate an effective
Lyapunov exponent, and highly minimized ��0.1% � in the
degree of mixing calculations. In the present work, boundary
collisions become an issue when the Strouhal number is
about double the value at which the transition to chaos oc-
curs. To eliminate collisions, unacceptable calculations were
first repeated with greater temporal resolution, and if that
proved insufficient, greater spatial resolution as well. Thus,
the size of the time step used in the simulations varied any-
where from 80 to 800 time steps per sinusoidal cycle, with a
greater number being used as the Strouhal number increased.

The majority of the calculations were carried out on a
Dell PC workstation, with a 3 GHz processor and 2 Gb of
RAM. Computation times for the finite-element calculation
of the flow field were very robust, with the longest CPU time
being on the order of 20 min. Computation time for particle
dispersion plots and computation of stretching exponents de-
pended greatly on how many time steps were used. Approxi-
mately four hours per plot were needed for a 15 cycle calcu-
lation, at 400 time steps per cycle. By far the degree of
mixing plots calculations was the most time consuming of all
the analyses, approximately three to four times longer than
the particle plots for a grid of 400 flow cells due to the
time-consuming nature of interpolating particle positions on
the mixing grid.
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CONFINED MIXING: CROSS-FLOW MIXER „CFM…

Flow geometry and boundary conditions

The CFM geometry with boundary conditions is shown
in Fig. 1. The figure indicates that the flow oscillates in the
vertical direction according to a cosine function, with oscil-
lations in the horizontal direction being 90° out of phase.
Thus, the oscillatory flow in the system is balanced so as not
to produce any net throughput flow, and successive sets of
temporal streamlines cross normal to each other every quar-
ter period at the center of the geometry �as required for chaos
per the crossing-streamline principle�, also indicated in the
figure. The velocity profile at all the inlets is assumed to be
parabolic, where the magnitude of the maximum oscillatory
velocity component is given by vT. The sinusoidal oscilla-
tions imposed on the system are characterized by an angular
frequency �=2	 /T, where T is the period. Based on this, the
dimensionless groups governing the flow are the Reynolds
number, Re=�vTLc /�, and a Strouhal number, St=vT /Lc�,
where Lc is a characteristic length taken here to be equal to
the channel width. For all calculations, Lc and � were scaled
to unity, the frequency was set at �=	 /2, and the viscosity
was set to 1000·�. Since � /�=0.001, Lc=1, and the maxi-
mum velocity used in any calculation is vT=5 at St=3.2, the
Reynolds number is always small enough that inertia can be
considered to be negligible.

Onset and characteristics of chaotic flow

The basic characteristics of the deformation induced by
the flow as a function of Strouhal number in the CFM are
shown in Fig. 2. This depicts results for the stretching of a
material line after N=15 cycles �where the absolute time t
=N*T� for successively doubling St values of St
= �0.16,0.32,0.64,1.28�. The line is composed of 25000
points, and is initially stretched along the x axis between
�−1.5,0.5� as shown in Fig. 1�b�. In Fig. 2�a�, for St=0.16,

the line shows neither a high degree of stretching nor evi-
dence of chaotic behavior, but it has deformed into a charac-
teristic S shape, which is a signature of the mapping induced
by this flow field. For St=0.32, in Fig. 2�b�, an S-type fold-
ing is again evident, but in this case the line has wrapped up
upon itself several times, as evidenced by striation layers. In
Figs. 2�c� and 2�d�, traces of the initial line are no longer
apparent, and a transition to seemingly chaotic behavior is
evident. In the Appendix, it is shown that the chaotic region
continues to grow in size as St increases in a pattern mirror-
ing that seen in Fig. 2�d�, although additional islands appear.
Videos of the deformation depicted in Figs. 2�b� and 2�d� are
also available. N.B., in this plot, and all that follow, the back-
ground color map indicates the magnitude of the velocity at
the current value of time, with magenta indicating a maxi-
mum, and light blue a minimum.

Details of the transition for St=1.28 are examined in Fig.
3, which shows the stretch of the line at times of N
= �1,2 ,5 ,15� cycles. The figure indicate that the line con-
tinually stretches and folds upon itself, and gradually, the
individual particles become scattered within the region over
which the line is folded. A semilog plot of �L /L0� vs time for
the simulation shown in Fig. 3 is shown in Fig. 4, where L0

is the initial length of the line. The plot shows that the data
very closely fit an exponential relationship with an exponent
value of �=0.41, indicating a positive “effective” Lyapunov
exponent. The collective behavior exhibited in Figs. 3 and 4
is characteristic of that in a Hamiltonian system in which
material lines undergo exponential stretching and folding
leading to particle dispersion,24 and we conclude that the
motion induced by the intersecting sinusoidal oscillations is
chaotic.

Using the multiparticle analysis method outlined above,
the degree of mixing was calculated for the CFM at a range
of Strouhal numbers. The initial condition depicting two
rectangular patches of “red” and “blue” particles is shown in
Fig. 5�a�. Each patch consists of 10201 particles. The patches

a) b)

c) d)

St=0.32St=0.16

St=0.64 St=1.28

15 cycles 15 cycles

15 cycles 15 cycles

FIG. 2. �Color online� Stretching of a material line in the CFM as a function
of Strouhal number after 15 cycles for the initial condition shown in Fig.
1�b�. �a� St=0.16, �b� St=0.32, �c� St=0.64, �d� St=1.28 �enhanced online�.

a) b)

c) d)

St=1.28St=1.28

St=1.28 St=1.28

1 cycle 2 cycles

5 cycles 15 cycles

FIG. 3. �Color online� Stretching of a material line in the CFM for St
=1.28 as a function of cycle time. �a� N=1, �b� N=2, �c� N=5, �d� N=15.

023101-4 Phelan, Jr., Hughes, and Pathak Phys. Fluids 20, 023101 �2008�

Downloaded 06 Feb 2008 to 129.6.154.8. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

http://link.aip.org/link/mm/doi=10.1063/1.2830550&filename=006801phf2b.avi
http://link.aip.org/link/mm/doi=10.1063/1.2830550&filename=006801phf2d.avi


are initially positioned on opposite sides of center of the flow
channel to mimic the impingement of different species; e.g.,
see Refs. 45–47. The mixing zone is defined as the central
square stagnation region of the geometry, and for all data
reported here it consisted of a 20
20 grid of flow cells.
Figure 5�b� shows the mixing of the blobs after 30 cycles for
St=1.28. The particles appear homogeneously dispersed ex-
cept for a small island region in the center. A plot of degree
of mixing versus cycle time for St= �0.96,1.28,1.6,1.92� is

shown in Fig. 6. The plot shows that the degree of mixing
increases with the Strouhal number up to a peak value of
approximately Dm
0.91 at St=1.28, after which it begins to
decline due to the growth of the island in the center region of
the geometry.

Tendril-whorl flow mechanism

The mechanism by which chaotic flow is generated can
be ascertained in part by examining the initial stretching of
the line in the CFM at quarter cycles times of N
= �0.25,0.5,0.75,1�, as shown in Fig. 7, again for St=1.28.
The initial deformation of the line, shown in Fig. 7�a�,
stretches the line nonuniformly in the y direction creating a
horseshoe-shaped fold. Labeling two points near bends in the
line as “a” and “b,” the relative positions of these points are
tracked in the next three frames, Figs. 7�b�–7�d�. The figures
show that an arrow drawn between the two points undergoes

CFMLine Stretch (L/L0)

y= 0.8677e0.4141x
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FIG. 4. �Color online� Semilog plot of the line stretch �L /L0� vs time for the
stretching of a material line in the CFM at St=1.28. The line shows a
constant exponential stretch rate of �=0.41.

a)

b)

Mix Zone

St=1.28 30 cycles

FIG. 5. �Color online� �a� Initial condition for multispecies mixing calcula-
tions in the CFM. Each rectangular patch consists of 10201 particles. The
mixing zone is defined as the square center region of the geometry. �b�
Multispecies mixing in the CFM for St=1.28 after 30 cycles.

Cross FlowMixer

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

Cycle

D
eg
re
e
of
M
ix
in
g

(D
m
)

St=0.96
St=1.28
St=1.6
St=1.92

FIG. 6. �Color online� Degree of mixing as a function of cycle time obtained
from multispecies mixing entropy calculations in the CFM for various val-
ues of the Strouhal number.

a) b)

c) d)

St=1.28St=1.28

St=1.28 St=1.28

0.25 cycles 0.5 cycles

0.75 cycles 1 cycle

FIG. 7. �Color online� Illustration of the tendril-whorl flow mechanism in
the CFM at St=1.28 as shown by the initial stretching of a material line at
quarter cycle times. �a� N= 1

4 , �b� N= 1
2 , �c� N= 3

4 , and �d� N=1.
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a continuous counterclockwise rotation as cycle time in-
creases. Thus, a twofold deformation mechanism is present
in the flow: portions of the material line are stretched in the
channels via shear flow, while the timing of the shear flow
oscillations acts to continuously rotate the line counterclock-
wise.

A flow that combines periodic stretching and rotation to
produce chaotic mixing is characteristic of a tendril-whorl
�TW� flow.3,12 Characteristics of a specific tendril-whorl flow
using kinematics from Ottino3 are shown in Fig. 8. In addi-
tion to the common mechanism shown in Fig. 7, the results
for the CFM in Fig. 3 show at least three qualitative common
characteristics with the theoretical TW flow: an initial stage
in which horseshoe- or S-shaped folds are generated; a sec-
ond stage in which the line continually folds upon itself cre-
ating striation layers; and a final long-time behavior in which
the initial line structure is no longer evident and the particles
become dispersed within the region in which the stretching
and folding occurs. The sum of these qualitative similarities
strongly suggests that the mechanism for mixing in the CFM
is indeed a type of TW flow.

CONTINUOUS MIXING: STAR-CELL GEOMETRY

Geometry and boundary conditions

In order make use of the CFM mixing mechanism in a
continuous throughput operation, the star-cell geometry
shown in Fig. 9 is introduced. In this flow, a continuous
throughput channel flow is superimposed on an oscillatory
cross flow with the idea being for the oscillatory flow to
provide chaotic mixing �as it does in the CFM�, and for the
continuous flow to carry the mixed species downstream. The
adjacent arms of the star-cell are arranged at 60 deg to one
another. In the orientation shown, the horizontal arms repre-
sent the throughput direction �from left to right�, and the

transverse arms are used to mix the fluid via oscillatory mo-
tion. Flow in the transverse channels is cross-balanced as per
the CFM, with the upper left channel and lower right channel
oscillating according to a cosine function, and the upper right
and lower left oscillating according to a sine function. This
cross-balancing creates a streamline crossing point at the
center of the cell every quarter cycle, as indicated. A steady
lateral component of velocity is indicated along the horizon-
tal axis of the channel.

As for the CFM, in all the calculations, the inlet velocity
profiles were assumed to be parabolic, with the maximum
velocity of the oscillatory velocity component indicated by
vT, and the maximum velocity of the lateral throughput ve-
locity indicated by vL. The values of �, �, Lc, and � were the
same as used for the CFM. The introduction of the lateral
velocity component introduces another dimensionless group
to the system. While it is natural to introduce the velocity
ratio Rv=vL /vT, it was found in the course of analysis that it
is more useful to characterize results in terms of the product
of the Strouhal number and the velocity ratio, which is itself
dimensionless throughput velocity given by U=St·Rv
=vL /Lc�.

Oscillatory flow

The oscillatory flow channels of the star-cell are oriented
at a slightly different angle than they are for the CFM. Thus,
we first analyze mixing for purely oscillatory motion to show
that the mixing characteristics are not significantly altered by
the angle change, and to establish a baseline against which
throughput mixing can be compared.

The characteristics of the deformation of a single species
material line induced by purely oscillatory flow in the star-
cell are shown in Figs. 10 and 11. The line is composed of
25000 points, and is initially centered along the x axis from
�−1,1�. Figure 10 depicts results for the stretching of the line
after N=15 cycles, for successively doubling St values of
St= �0.16,0.32,0.64,1.28�. Figure 11 shows the time-
dependent deformation of the line at times of N
= �0,2 ,5 ,15� cycles for the case of St=1.28, and is available
as a video in supplementary material. It is apparent that the

a) Initial Condition b) “S” folding

c) Folding/Striation d) Dispersion

FIG. 8. �Color online� The stretching of a material line of 1000 particles in
a theoretical tendril-whorl flow with the kinematics v� = ��̇x ,−�̇y� for 0� t
�Text and v�=−Br2e−r /Trot for Text� t�Text+Trot, for �̇=0.1, B=0.5, Text

=1, and Trot=1. �a� Initial condition, �b� 25 cycles, �c� 100 cycles, �d�
750 cycles.

cos( )Tv v t��

cos( )Tv v t��

sin( )Tv v t��
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Lv v�
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Lv v�

FIG. 9. Flow geometry and boundary conditions for the star-cell mixer.
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stretching mechanism that leads to chaotic behavior in the
CFM with increasing Strouhal number is also present in the
star-cell, cf. Figs. 2 and 10 and Figs. 3 and 11. For both
cases, the low St behavior is characterized by the introduc-
tion of S-shaped folds into the line, followed by a folding/
striation layer regime at intermediate St, and ultimately, a
dispersion regime at high St. In addition, examination of the
time sequences in Fig. 11 illustrates the same mechanism for
chaotic mixing in which stretching and folding lead to par-
ticle dispersion. The effective Lyapunov exponent calculated from the change in length of the line at St=1.28 �i.e., the

same Strouhal number as used in the exponent calculation
for the CFM, cf. Fig. 4� yields a value of �=0.25 as shown in
Fig. 16 �n.b., for the exponent calculation a slightly shorter
line initially centered along the x axis from �−0.25,0.25� was
used�. The dispersion patterns seen in Figs. 10 and 11, and
the positive stretching exponent calculated from the line
stretch, indicate that the flow is chaotic.

Results from multispecies particle tracking simulations
to characterize the degree of mixing are shown in Figs. 12
and 13. The initial condition for the particles is shown in Fig.
12�a�. Each rectangular patch consists of 10201 particles.
The position of the mixing zone is also indicated in the figure
and consisted of a 20
20 grid of flow cells. Figure 12�b�
shows an example of the mixing of the two groups for St
=1.28 at N=30 cycles. It is evident that the particles are very
homogeneously dispersed, except for the island region near
the center. The degree of mixing for a range of Strouhal
numbers is shown in Fig. 13. The peak degree of mixing
achieved in the purely oscillatory star-cell is approximately
Dm
0.9, and occurs at about St=1.28, which is very similar
to the results for the CFM. However, the drop in degree of
mixing with increasing Strouhal number for the star-cell is
not nearly as sharp as it is for the CFM, in part because the
size of the island near the center grows at a slower rate. For

a) b)a) b)a) b)a) b)

c) d)c) d)c) d)c) d)

St=0.32St=0.32St=0.32St=0.32St=0.16St=0.16St=0.16St=0.16

St=0.64 St=1.28St=0.64 St=1.28St=0.64 St=1.28St=0.64 St=1.28

15 cycles 15 cycles15 cycles 15 cycles15 cycles 15 cycles15 cycles 15 cycles

15 cycles 15 cycles15 cycles 15 cycles15 cycles 15 cycles15 cycles 15 cycles

FIG. 10. �Color online� Stretching of a material line in the star-cell as a
function of Strouhal number after 15 cycles for the initial condition shown
in Fig. 11�a�. The line is composed of 25000 points, and is initially centered
along the x axis between �−1,1�. �a� St=0.16, �b� St=0.32, �c� St=0.64, �d�
St=1.28.

a) b)a) b)a) b)a) b)

c) d)c) d)c) d)c) d)

St=1.28St=1.28St=1.28St=1.28St=1.28St=1.28St=1.28St=1.28

St=1.28 St=1.28St=1.28 St=1.28St=1.28 St=1.28St=1.28 St=1.28

Initial 2 cyclesInitial 2 cyclesInitial 2 cyclesInitial 2 cycles

5 cycles 15 cycles5 cycles 15 cycles5 cycles 15 cycles5 cycles 15 cycles

FIG. 11. �Color online� Stretching of a material line in the star-cell for St
=1.28 as a function of cycle time. �a� N=0, �b� N=2, �c� N=5, �d� N=15
�enhanced online�.

a)a)a)a)

b)b)b)b)

Mix ZoneMix ZoneMix ZoneMix Zone

St=1.28 30 cyclesSt=1.28 30 cyclesSt=1.28 30 cyclesSt=1.28 30 cycles

FIG. 12. �Color online� �a� Initial condition for multispecies mixing calcu-
lations in the star-cell. Each rectangular patch consists of 10201 particles.
The mixing zone is outlined as the center rectangular region of the geom-
etry. �b� Multispecies mixing in the star-cell for St=1.28 after 30 cycles.
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all cases, it is reasonable to conclude that greater than 10 but
closer to 15 cycles are needed to effectively mix two imping-
ing fluid streams.

The mechanism for chaotic flow in the CFM was shown
to be a type of tendril-whorl flow, in which portions of the
material line are stretched in the channels via shear flow,
while the timing of the shear-flow oscillations continuously
rotates the line counterclockwise. We show this for the star-
cell as well in Fig. 14, again at St=1.28. The initial position
of the line is shown in Fig. 14�a�. Two points on the line are
labeled as “a” and “b,” and the relative positions of these
points are tracked in the next three frames, Figs.
14�b�–14�d�, which correspond to cycle times of N=0.5, 1.5,
and 2.75. The figures show that an arrow drawn between the
two points undergoes a continuous counterclockwise rotation
as cycle time increases, where the rate of rotation at this
Strouhal number is about one transverse channel per cycle.

Continuous mixing at fixed St

To evaluate the effect of combining throughput flow
with oscillatory motion, line stretch calculations were per-
formed for the star-cell geometry, at fixed values of St, and
increasing values of the dimensionless throughput velocity
U. For the calculations shown, the Strouhal number was
fixed at St=1.28 as this was the near-optimal value for mix-
ing in both the CFM and the star-cell with zero throughput
flow.

Figure 15 shows dispersion patterns based on the defor-
mation of a material line in the star-cell geometry, for St
=1.28 and values of U= �0.04,0.08,0.16,0.32�. The initial
condition is the same as for Figs. 10 and 11. Ideally, the
dispersion pattern would uniformly fill the entire down-
stream space of the effluent, just as they fill the center region
of the flow cell in purely oscillatory motion. However, some
deviations from the ideal case scenario are evident. At the
smallest value of U, while the dispersion pattern is uniform,
particle segregation to the upper side of the downstream
channel is evident. As U further increases, the segregation
effect disappears and the particles in the effluent more ho-
mogeneously fill the cross section of the output channel.
However, the disappearance of segregation is accompanied
by an increase in the size of the unmixed island regions in
the downstream dispersion pattern, with the size of the is-
lands increasing with throughput rate. Thus, for a fixed
Strouhal number, there appears to be an optimal throughput
ratio at which segregation is eliminated, and islands are
minimized. By visual inspection, at a fixed value of St
=1.28, the optimal value of U for the star-cell appears to be
either U=0.08 �Fig. 15�b�� or U=0.16 �Fig. 15�c��.

Figure 16 compares plots of log�L /L0� vs t for the star-
cell geometry at St=1.28 for the cases U=0 and U=0.16, the
latter for the initial condition shown in Fig. 15. In the plot for
the throughput cases, there is a relatively low slope region at
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FIG. 13. �Color online� Degree of mixing as a function of cycle time ob-
tained from multispecies mixing entropy calculations in the star-cell for
various values of the Strouhal number.
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FIG. 14. �Color online� Illustration of the tendril-whorl flow mechanism in
the star-cell geometry at St=1.28 as shown by the stretching of a material
line at various cycle times. �a� N=0, �b� N=0.5, �c� N=1.5, and �d� N
=2.75.
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FIG. 15. �Color online� Particle dispersion as seen in the stretch of a mate-
rial line in the star-cell geometry for St=1.28 at a cycle time of N=10 as a
function of the dimensionless throughput velocity �U�. �a� U=0.04, �b� U
=0.08, �c� U=0.16, and �d� U=0.32.
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the start that corresponds to the convection of the down-
stream particles into the mixing region, followed by a rapid
increase in slope when the particles have fully entered the
mixing region. The plot for the oscillatory flow portion fits
an exponential relationship in which the effective Lyapunov
exponent has a value of �=0.26. This is for all intents and
purposes unchanged relative to the purely oscillatory case, as
can also be seen by comparing the slopes in the figure. The
dispersion patterns of Fig. 15 and the positive exponent of
Fig. 16 indicate that chaotic flow is maintained, even under
throughput conditions.

Continuous mixing at fixed throughput rate

To quantitatively evaluate the degree of mixing of two
different fluid streams in the star-cell under continuous flow
conditions, multispecies particle mixing was modeled for
fixed values of the dimensionless throughput velocity U and
increasing values of St. The initial condition and mix zone
used to evaluate the degree of mixing for these simulations
are shown in Fig. 17�a�. The initial condition consists of two
lines of particles, one blue and the other red, each with 1000
points, and each positioned slightly above and below the
injection midline, respectively. In addition to the initial par-
ticles, points along the inlet boundary but on opposite sides
of the injection midline allow for the continuous injection of
particles of different species. The mix zone was taken to be
the entire length of the outlet channel, and consisted of a
40
10 grid of flow cells. The degree of mixing is computed
after each sinusoidal cycle, which we deem sufficient due to
the fact that the oscillations do not significantly affect the
downstream particle dispersion. An example of a multispe-
cies result for U=0.16 and St=1.28 is depicted in Fig. 17�b�,
at a cycle time of N=20. The effluent appears quite uniform
with respect to species.

The degree of mixing across a range of Strouhal num-
bers at values of U= �0.16,0.32� is shown in Figs. 18�a� and
18�b�, respectively. For these calculations, one new particle
of each species was added to the flow at each time step at the
points �−5,0.01� and �−5,−0.01�, respectively. The maxi-
mum values of Dm for each case are plotted in Fig. 19. The

calculations show that at fixed throughput, increasing the
Strouhal number drives the degree of mixing up to a maxi-
mum, at which point it levels off to an ostensibly steady
plateau value that is slightly lower but commensurate with
the maximum. For U=0.16, the maximum is Dm=0.91 and
occurs at St=1.28, with a plateau value on the order of Dm


0.9. For U=0.32, the maximum is Dm=0.81 and occurs at
St=1.92, and the plateau value is on the order of Dm
0.8.

From these data, a number of observations can be made.
First, it can be seen that the maximum degree of mixing for
the case of throughput flow in the star-cell for U=0.16 and
St
1.28 �Fig. 19� is essentially equivalent to the maximum
achieved for purely oscillatory flow. Thus, these conditions
can be taken to be very close to optimal. However, it is also
observed that both the maximum and plateau degree of mix-
ing values are slightly decreasing functions of the dimen-
sionless throughput rate, and that the Strouhal number re-
quired to achieve the max/plateau level increases as U
increases. Therefore, since the mixing depends on two di-
mensionless groups �St and U�, which for a geometry of
fixed size depend on three independent quantities �vT, vL,
and ��, to maintain the 90% mixing level when changes in
the actual throughput rate are required, the transverse flow
rate and frequency must also be simultaneously and appro-
priately adjusted. If this is not done, then the degree of mix-
ing will drop, as indicated by Fig. 19.

Star-Cell Line Stretch (L/L0)

y = 1.5777e0.2475x

y = 0.3414e0.2598x

1

10

100

1000

0 5 10 15 20 25

Time

St
re
tc
h
R
at
io

Oscillatory

U=0.16

FIG. 16. �Color online� Semilog plots of �L /L0� vs time in the star-cell
geometry at St=1.28 for purely oscillatory and continuous flow conditions.
�a� U=0, �b� U=0.16.
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FIG. 17. �Color online� �a� Initial condition and mix zone for multispecies
mixing calculations in the star-cell under continuous flow conditions. Each
initial line consists of 1000 particles of a single species and are positioned
�� above and below the centerline, respectively, with �=0.01 �blue above,
red below�. In addition, one new particle of each species was added to the
flow at each time step along the inlet boundary at points �� above and
below the injection centerline. The mixing zone is outlined and is defined as
the outlet flow channel of the geometry. �b� Multispecies mixing in the
star-cell for St=1.28 and U=0.16 after 20 cycles �enhanced online�.
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Another noteworthy aspect of the calculations is that
combining throughput flow with the oscillatory flow appears
to have a synergistic effect under some conditions. The first
observation in this regard is that the maximum degree of
mixing for the case of throughput flow at U=0.16 and St
=1.28 is actually about 1% higher than for the oscillatory
flow. Another example has to do with high St oscillations. It
was shown earlier that increasing the Strouhal number past
approximately St=1.28 has a deleterious effect on purely os-
cillatory mixing in both the CFM and the star-cell. However,
the throughput case shows a different Strouhal number de-
pendence in that a high degree of mixing levels can be main-
tained well past St=1.28. A plausible explanation for these

cases is that the throughput flow under some conditions acts
to suppress the islands that are naturally formed under purely
oscillatory conditions. This raises the speculative possibility
that the use of mixed frequency or multifrequency wave-
forms more complex than the simple sinusoidal oscillations
employed here might also be effective in increasing the
maximum degree of mixing for both oscillatory and through-
out flow.

Residence time distribution

Some of the behavior that is seen in the continuous mix-
ing calculations may be explained in part by observations
related to the residence time behavior of the particles. First,
we examine the behavior of individual particles as they move
in the central mixing region. Figure 20�a� shows a typical
path of a single particle for purely oscillatory flow in the
star-cell geometry at St=1.28 for N=15 cycles. The particle
is initially positioned at the “
” marker just to the right of
the center of the cell, and finishes at the “*” marker at the
lower left. The figure indicates that the particle traverses all
the transverse flow arms on a continual basis, and that the
flow path is irregular and changes from cycle to cycle. It is
this type of complex, nonrepeating kinematics that is respon-
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FIG. 18. �Color online� Degree of mixing as a function of cycle time ob-
tained from multispecies mixing entropy calculations in the star-cell for
fixed throughput velocity �U� and various values of the Strouhal number. �a�
U=0.16, �b� U=0.32.
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FIG. 19. �Color online� The maximum degree of mixing vs Strouhal number
as a function of throughput velocity.
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FIG. 20. �Color online� �a� Typical particle path for purely oscillatory flow
in the star-cell geometry at St=1.28 for N=15 cycles. The particle is ini-
tially positioned at the “
” marker just to the right of the center of the cell,
and finishes at the “*” marker at the lower left. �b� Paths of two particles
entering from upstream at the same horizontal position, but separated verti-
cally on opposite sides of the centerline in the star-cell geometry at St
=1.28 and a finite throughput rate.
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sible for producing chaotic behavior for the purely oscilla-
tory case. For the case of throughput flow, Fig. 20�b� shows
the paths taken by two particles entering from upstream at
the same horizontal position, but separated vertically on op-
posite sides of the centerline. The lower particle �depicted by
the blue line� is only slightly deflected and passes quickly
through to the downstream region, whereas the upper particle
�red line� makes an entire orbit in the chaotic region, making
passes in all four transverse channels, before flowing down-
stream. Initial conditions that produce particle residence
times that last for multiple orbits are also possible to show.
This indicates that for the case of throughput flow, the time
of flight spent in the mixing regime in which particles un-
dergo chaotic orbits follows a distribution of residence times
�RTD�, with some passing through quite quickly and others
taking much longer. This is in contrast to the zero throughput
case in which all particles spend equal amounts of time in the
chaotic regime. Based on this, it seems reasonable to specu-
late that the general decrease in the maximum degree of mix-
ing with increasing throughput rate may be traceable in part
to the nonuniform RTD, with broadening or skewing at the
low end of the distribution under certain parameter condi-
tions �i.e., quickly exiting particles� acting as a limiting
factor.

Another factor that is observed to have some effect on
the mixing in the star-cell is related to the average residence
time. By comparing the relative particle densities in the cen-
ter mixing region in Figs. 15�a�–15�d� �which all correspond
to 10 cycles� it is observed that at constant Strouhal number,
the particle holdup �which is related to the average residence
time� drastically decreases as the throughput rate increases.
The conditions in Figs. 15�c� and 15�d� correspond to data
points on the upper and lower curve in Fig. 19 at St=1.28,
where the lower rate �Fig. 15�c�� has the higher degree of
mixing. The decreasing holdup, therefore, is linked with a
decrease in the degree of mixing. Thus, it seems reasonable
to hypothesize that good mixing is observed when the Strou-
hal number is large enough to produce a highly chaotic flow
and the average residence time is sufficient to allow enough
time for the fluid elements to mix. Since the particle hold up
also increases as the Strouhal number increases at constant
U, this helps explain why the degree of mixing recovers to
some extent for U=0.32 and St
1.92, with full recovery not
occurring, possibly due to the speculated distribution broad-
ening with increased rate.

DISCUSSION

The primary goal in this work was to investigate the
means of generating chaotic flow in microfluidic channels
that are geometrically simple, where active chaotic mixing is
achieved through temporal manipulation of the flow field.
Because the boundaries are restricted to being simple, to
achieve temporal manipulation we make use of oscillatory
flow boundary conditions, similar to those cited in previous
studies, but in a manner leading to a related but slightly
different class of flows, as is discussed in more detail below.

Ottino and Wiggins11 recently wrote in the context of
designing optimal micromixers that, “microfluidic applica-

tions can benefit by a closer linkage and use of basic theory.”
In keeping with the spirit of this idea, the starting point in
this work was the consideration of how the principle of
crossing spatio-temporal streamlines—a necessary condition
for generating chaotic flow6—could be applied in the context
of microfluidics. Because channel flows are the inherent fea-
ture of microfluidic flows, it was reasoned that the simplest
and most straightforward way to bring about the generation
of crossing streamlines was through the use of intersecting
channels.

The results presented here are naturally divided into two
categories, the confined flow mixing achieved in the CFM,
and the continuous mixing achieved in the star-cell. For the
CFM, the primary goal of generating chaotic flow in a con-
fined geometry without moving parts using the principle of
spatio-temporal crossing streamlines has been realized, quite
successfully. The results show that oscillatory flow in inter-
secting channels becomes chaotic at a Strouhal number of
about unity, and that the size of the chaotic region continu-
ally increases with Strouhal number �although the overall
quality of mixing does not necessarily increase due to the
growth of islands�. The flows are shown to be chaotic by
visual inspection of particle dispersion when material lines
undergo stretching and folding, and by the computation of
positive “effective” Lyapunov exponents. Although it has not
been specifically discussed, the ergodic property of the flow
can readily be seen by comparison of dispersion patterns
obtained from line stretch and multispecies blob mix calcu-
lations, cf. Figs. 3�d� and 5�b�. A peak degree of mixing of
about 91% is achieved in the CFM at St=1.28. This flow
configuration represents a new result that to our knowledge
has not previously appeared in the literature �although we
note that the result is similar conceptually, but not in detail,
to the work of Raynal et al.57�, and provides a unique means
for producing and observing confined flow mixing in micro-
fluidic applications. In this context, the CFM can be consid-
ered as a microfluidic analog of the blinking vortex or peri-
odic cavity flow configurations and could be useful in a
number of applications involving material study in microflu-
idic devices.23,57–59

In the star-cell geometry, a throughput channel flow is
combined with an oscillatory cross flow in order to utilize
the CFM mixing mechanism in a continuous mixing opera-
tion. This is a perfectly reasonable path to follow and is
prevalent in the literature. For example, the eccentric helical
annular mixer is a 3D throughput application of the mixing
mechanism that generated in a 2D journal bearing flow.14 In
general, all the signatures of chaotic flow present in the CFM
are also present in the star-cell, that is, stretching and folding
of material lines leading to particle dispersion, positive
stretching exponents, and a high degree of mixing.

Two cases were studied for the star-cell, variable
throughput rate at a fixed Strouhal number, and fixed
throughput rate with variable Strouhal number. Although it
might be argued that the latter is the more natural way in
which to study the system, there is good reason for studying
the former. For purely oscillatory flow in both the CFM and
star-cell, a peak degree of mixing was achieved in the system
at about St=1.28. Thus, it might be reasoned a priori that the
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best conditions for continuous mixing in the star-cell would
be obtained by using a relatively low throughput rate, at the
optimal oscillatory value of St. However, this was found not
to be true. At a fixed value of St=1.28, the output stream
suffered from segregation effects at low throughput rates,
while the high output rates suffered from islands. Thus,
based on the particle plots it was reasoned that an interme-
diate rate gave the best degree of mixing, and this proved
true in the degree of mixing calculations.

The fixed throughput, variable St case was used to char-
acterize the degree of mixing for the star-cell. It was found
that under these conditions, the degree of mixing increases
with Strouhal number until a maximum is reached, followed
by plateau regime in which the value of Dm is commensurate
with the maximum and changes only very weakly with St.
The best mixing was obtained in the star-cell for U=0.16,
where the maximum is Dm=0.91 at St=1.28, with a plateau
value on the order of Dm
0.9 for St
1.28. The max/plateau
level for the degree of mixing appears to be roughly bounded
at the high end by the value of Dm obtained in oscillatory
flow, and is a slightly decreasing function of the dimension-
less flow rate, U. In the plateau regime good mixing is main-
tained at Strouhal numbers much higher than the optimal
oscillatory flow value, indicating that under some conditions
there is a synergistic interplay between the throughput and
oscillatory flow.

It was observed in the calculations that at the higher
throughput rate U=0.32, the ultimate mixing level was be-
low that achieved for U=0.16, and it took a higher Strouhal
number to reach the max/plateau region. A number of ideas
related to residence time were looked at to explain this be-
havior. Tracking of individual Lagrangian particles was used
to show that under throughput conditions, the particles have
a distribution of residence times, in which some particles
undergo multiple orbits in the chaotic mixing regime, while
others pass through almost immediately. The oscillatory re-
gion, therefore, acts in some sense as a temporary “trap” for
the particles, where they are mixed for a certain amount of
cycles before being convected downstream. Based on this, it
seems plausible that the general decrease in the maximum
degree of mixing with increasing throughput rate may be
traceable in part to a broadening of the RTD with increasing
flow rate. Another factor that seems to be important is the
average residence time of the particles in the mixing region.
It was observed that at constant Strouhal number, the particle
holdup in the center mixing region dramatically decreases as
the throughput rate increases and that the decreasing holdup
is linked with a decrease in degree of mixing, e.g., as occurs
when the flow rate is increased from U=0.16 to 0.32 at St
=1.28. Since the holdup increases with increasing Strouhal
number at constant flow rate, this idea is consistent with the
observation that the Strouhal number required to achieve the
max/plateau level increases as U increases.

Oscillatory boundary conditions have also been used in
other mixing studies, and it is important to understand the
relation between various works. A common element we have
found is that the TW mechanism is also present in other
types of pressure-driven oscillatory flows, but that it occurs
in a slightly different manner. For example, we looked for

the TW mechanism in the flow discussed by Tabeling46,47

�see Fig. 21�, where the flow is sinusoidal in the vertical
direction and steady in the lateral direction. The deformation
of a material line �initially centered upstream� passing
through the oscillatory section is shown in Fig. 21 for the
case of St=1.28 and a ratio of lateral to oscillatory velocity
of Rv=0.125. The TW mechanism is clearly present as ten-
drils are formed in the line as it passes through the middle of
the oscillatory section, and then each tendril alternately ro-
tates either �120° �for these particular parameters� as it
passes to the downstream flow. For a single oscillatory chan-
nel, this produces a wavy interface. However, when multiple
oscillatory units are used and the TW mechanism is repeated,
the flow becomes chaotic, as has been shown by Mezic
et al.49 This, more than anything else, can help us to under-
stand the similarities and differences between the two cases.
The kinematics produced by the two intersecting oscillating
streams in the CFM/star-cell type mixer act to create what
might be termed a continuous TW flow, whereas the flows
based on a single oscillating stream produce a discrete
amount of stretching and rotation with each pass through an
oscillatory section. Thus, in terms of net stretching and rota-
tion, there is an equivalence between a fluid spending mul-
tiple cycles in the mixing region of the CFM type flow, and
passing through multiple oscillatory sections in the latter.

A number of items might be the object of future work. It
does not appear that brute force extension of the calculations
up to much higher Strouhal numbers is warranted. The
present calculations up to a value of St=3.2 were more than
adequate to demonstrate the basic physics of the transition to
chaos and trends that are seen with increasing throughput
flow. These calculations show that to a large extent, the best
mixing conditions seem to revolve around the optimal oscil-
latory value of St=1.28. Therefore, a more detailed sweep of
the parameter space in this region might be in order, as these
might reveal some local maxima. An exception to this might
be the mixing of immiscible components in the system. Un-
der those conditions, the greater draw ratios achieved using

FIG. 21. �Color online� Illustration of the tendril-whorl flow mechanism in
the oscillatory flow defined by Tabeling et al. �Refs. 46 and 47� and Mezic
et al. �Ref. 49� for St=1.28 and Rv=0.125.
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higher Strouhal numbers might be beneficial to interface
breakup.

Another idea that warrants investigation in future work
is the use of mixed frequency or multifrequency waveforms
more complex than the simple sinusoidal oscillations em-
ployed here. This approach is suggested by the synergy that
is sometimes observed between the throughput and oscilla-
tory flow for continuous mixing in the star-cell, and may be
especially helpful for the case of confined mixing in the
CFM, which is limited at high St by the growth of islands. If
such means can be used to increase the degree of mixing in
the CFM, it might also provide improvement in the star-cell
as well. A final idea that is interesting from a theoretical
viewpoint is to use the third direction normal to the spatio-
temporal oscillations in the 2D plane as the throughput di-
rection for continuous mixing, i.e., a 3D flow configuration.
While this brings us slightly out of the simple planar flows
most often seen in microfluidics, it has been shown to be
effective in the past. For example, this was the means for
extending confined mixing in the journal bearing flow to
continuous mixing in the eccentric helical annular mixer.14

SUMMARY AND CONCLUSIONS

The kinematics of oscillatory flow in intersecting chan-
nels has been studied numerically as a means for generating
chaotic mixing in microfluidic devices for confined mixing
in a cross-flow mixer, and continuous mixing in the star-cell
geometry. Chaotic flow is generated in both configurations
by a tendril-whorl flow mechanism, which is created when
sinusoidally driven, out-of-phase fluid streams cross each
other in the flow domain, consistent with the principle of
crossing spatio-temporal streamlines as a necessary condi-
tion for generating chaos. The study of purely oscillatory
motion allowed identification of boundary condition regimes
that are viable for producing chaotic mixing and represents
the maximum possible effective mixing that can be obtained
from a given flow configuration. Calculations show that the
CFM provides a simple and convenient means to generate
chaotic flow in microfluidic devices under confined condi-
tions, and has a peak degree of mixing on the order of 90%.
In the star-cell configuration, the effect of combining a fixed
throughput flow with oscillatory motion as a means for gen-
erating continuous mixing was examined, and it was shown
that a degree of mixing in the 80%–90% range can be
achieved. The max/plateau level for the degree of mixing

appears to be roughly bounded at the high end by the value
of Dm obtained in oscillatory flow, and is a slightly decreas-
ing function of the dimensionless flow rate, U. A maximum
Dm on the order of 90% was obtained for U=0.16 and St

1.28. The study suggests a number of ideas that might be
pursued in future work, including multifrequency oscilla-
tions, 3D flow, as well as experimental inquiry.

APPENDIX: PARTICLE DISPERSION IN THE CROSS-
FLOW MIXER AT HIGHER STROUHAL NUMBERS

In Figs. 2�a�–2�d�, the stretching of a material line in the
CFM as a function of Strouhal number is used to show the
transition to chaotic behavior as the Strouhal number in-
creases. Figures 22 and 23 depict the particle dispersion after
15 cycles at higher Strouhal numbers, St=1.92 and 2.88, re-
spectively. The figures show that the chaotic region contin-
ues to expand along the length of the channel as St increases.
However, the overall growth in size of the chaotic region is
accompanied by an increase in the size of existing islands
and the growth of new ones. In particular, the eyelet islands
near the tips of the chaotic region �cf. Fig. 2�d�� are appre-
ciably larger in Figs. 22�a� and 23�a�. In addition, a new
island emerges at the center of the geometry that grows ap-
preciably in size as indicated in part �b� of the figures. The
growth of the center island is the main reason for the decline
in the degree of mixing for St�1.28.
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