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A ubiquitous domain pattern is observed in two-phase viscoelastic fluids falling within the simple paradigm
of soft viscoelastic domains suspended in a less viscoelastic fluid under shear flow. Three strikingly different
complex fluids exhibit the same shear-induced domain structure, which we relate to the elasticity of the
dispersed phase via an approximate Weissenberg number. We suggest a physical mechanism for the formation
of this pervasive pattern, independent of the dynamic origin of the elasticity of the suspended phase.
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I. INTRODUCTION

Multiphase fluids with well-defined interfaces are encoun-
tered in a variety of applications, from plastics engineering
and pharmaceuticals to paints, cosmetics, and food products.
The use of hydrodynamic forces to process and homogenize
these inherently soft materials is also ubiquitous, with simple
shear serving as a useful reference point for understanding
how the multiphase structure deforms and ruptures in flow.
Due to the frequent incorporation of macromolecules within
distinct phases, it is common for such fluids to be themselves
viscoelastic, apart from any interfacial contribution, which
has profound implications for processing. Here, we report
striking similarities in the domain structure exhibited by
three distinct complex fluids under simple shear flow, and we
suggest that the pervasive nature of the response stems from
a shared coarse-grained scenario of soft viscoelastic domains
suspended in a less viscoelastic fluid under shear, with the
characteristic features of the pattern arising from flow-
mediated interdomain interactions. The critical role of do-
main elasticity is assessed via an effective Weissenberg num-
ber, the magnitude of which suggests that the pattern might
be viewed as a collection of weakly interacting localized
instabilities.

Two quantities of fundamental interest in the shear re-
sponse of multiphase fluids are the structure factorSsqd and
the two-point correlation functioncsr d. Both are linked to a
binary composition fieldcsr d that maps the presence of het-
erogeneous droplets or domains. If the dispersed phase is
found at positionr , thencsr d=1, with c=0 otherwise. The
correlation function iscsr d=kcsr dcs0dl, where the brackets
denote an ensemble average, and planar projections ofcsr d
can be computed from real-space micrographs[1]. The struc-
ture factor, which is often measured directly with small-angle
light scattering, is the Fourier transform ofcsr d, or the
“power spectrum” of the fieldcsr d in reciprocal space[1]. At
any instant and location, the two-phase structure of these

fluids is spatially stochastic, but patterns exhibited bySsqd
andcsr d reveal statistical trends and correlations.

II. MATERIALS AND METHODS

The first system of interest is a polymer blend with vis-
coelastic asymmetry between the dispersed and continuous
phase, the former being more viscoelastic than the latter[1].
The polymers are polybutadiene(PB) and polyisoprene(PI),
with number-averaged molar mass and polydispersityMn
=51 000 andMw/Mn=1.04 for the PB andMn=72 000 and
Mw/Mn=1.02 for the PI. The quiescent ratio of domain vis-
cosity to matrix viscosity is 10. The two polymers are im-
miscible [1], and we focus here on PI volume fractions of
20 % by mass. Mixtures were prepared via solution blending
from methylene chloride(the mass fraction of polymer in
solution =0.02) containing the appropriate amount of each
component and a small amount(mass fraction 5310−4 in
solution) of antioxidant. Mixtures were stirred at room tem-
perature for one day and filtered. The solvent was then re-
moved under an atmosphere of flowing nitrogen gas, and the
samples were dried in a vacuum oven at room temperature
for several days. Measurements were performed at 130° C.
The samples were heated from room temperature and an-
nealed for 30 min before shearing to obtain a reproducible
initial morphology.

The second system of interest is a physical nanoplatelet-
polymer gel in water. The colloidal nanoclay(denoted LRD)
is a synthetic hectorite material consisting of 30 nm diameter
hydrophilic platelets of 1 nm thickness[2,3]. The polymer is
poly(ethylene oxide) (PEO) of molar mass 106 g/mol and
mean radius-of-gyration[4] sRgd 70 nm. The sample contains
3 % (mass fraction) clay and 2 %(mass fraction) polymer in
distilled, deionized water. The pH is maintained at 10 via the
addition of NaOH and the ionic strength is maintained at
10−3 mol/L NaCl. The solutions were gently mixed over the
course of many weeks and were homogenous and optically
transparent prior to shearing, with a slightly opalescent ap-
pearance arising from the nanostructure of the clay platelets.
In equilibrium, adsorption of PEO segments onto the LRD
surface leads to the formation of a physical gel[5,6], with
the diffuse polymer chains “bridging” neighboring clay par-
ticles, which feel a short-range electrostatic repulsion[2,3,5].
The quiescent or equilibrium phase is miscible in the sense
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that the samples are macroscopically homogeneous with
ideal clay dispersion. The equilibrium structure factor mea-
sured with small-angle neutron scattering exhibits a broad
isotropic shoulder atq0<0.08 nm−1, corresponding to an
equilibrium spacing between platelets ofd=2p /q0<80 nm
[6]. All measurements were performed at 25 °C.

The third system of interest is a semidilute carbon nano-
tube suspension[7]. The multiwalled carbon nanotubes
(MWNTs), grown via chemical vapor deposition, have a
mean diameterd<50 nm (polydispersity<1.2) and mean
length L<12 mm (polydispersity <2.0). The suspending
polyisobutylene fluid(PIB, Mn=800,Rg<1 nm) is Newton-
ian over a broad range of shear rates, with a shear viscosity
of 10 Pa s at 25 °C, where the measurements described here
were performed. Dispersions were prepared by dissolving the
PIB in sonicated MWNT-toluene suspensions[7], which
were stirred continously as the solvent was removed. The
suspensions of interest contain 5310−3 mass-fraction
MWNT in PIB and are semidilute, with nL3

=s4/pdf0sL /dd2<125 and nL2d<s4/pdf0sL /dd<0.5
where n is the number of tubes per unit volume andf0
<1.7310−3 is the volume fraction. The nanotubes in PIB
are nonsedimenting and non-Brownian, with a Peclet number
of order 104 or higher[7].

The in situ scattering/microscopy instrument is described
in detail elsewhere[8]. The flow is along thex axis, with a
constant velocity gradient along they axis and vorticity
along thez axis [Fig. 1(a)]. Measurements are taken in the
x-z plane, with light-scattering patterns and real-space opti-
cal micrographs collected simultaneously. The samples are
confined between two parallel quartz plates separated by a
variable gaph. The upper plate rotates at an angular speed
that sets the shear rate,ġ=]vx/]y, at a fixed point of obser-
vation 2.5 cm from the center of the 4 cm radius plates.
Controlled-stress and controlled-strain rheometers in cone-
and-plate and parallel-plate configurations were used for
steady-shear measurements of the shear viscosityshd, shear
shressssxyd, first normal stress differencesN1=sxx−syyd,
and linear-viscoelastic measurements of the complex shear
modulus,G*svd.

III. RESULTS AND DISCUSSION

Figure 1 shows structure observed under shear for(a) the
polymer blend atġ=75 s−1, (b) an analogous plot of shear-
induced macrostructure in the physical gel atġ=100 s−1, and
(c) transient structure exhibited by the semidilute MWNT
suspension, where diffuse aggregates form after quenching
the initially homogeneous non-Brownian dispersion toġ
=0.03 s−1. In all three cases, a similar morphology leads to
analogous patterns inSsqd and csr d. The structure in Fig.
1(a) is somewhat distinct from the other two systems in that
the quiescent phase is immiscible and thus macroscopically
inhomogeneous, whereas the structure in(b) and(c) is shear
induced. Additionally, the patern in the MWNT suspension is
transient, ultimately giving way to analogous coarser struc-
tures as a function of time[7]. Due to the macroscopic size
of the MWNT domains,Ssqd cannot be measured with light
scattering, but is obtained as an FFT of the computedcsr d.

The three patterns are strikingly similar, and we note that
analogous patterns are associated with shear-induced turbid-
ity in semi-dilute polymer solutions[9] and shear-induced
clustering in thixotropic clay gels[10], to name just two of a
vast number of systems that exhibit this pattern in shear flow.

A common coarse-grained scenario for all three systems
would appear to be viscoelastic domains suspended in a less
viscoelastic fluid under shear at significants10–20 %d vol-
ume fraction. To further explore and quantify the link be-
tween this pattern and the disparate elasticity of the dispersed
and continous components, we use steady and oscillatory-
shear rheometry. Figure 2 shows steady-shear rheology data
for each phase in each of the three scenarios. In Fig. 2(a) the
distinction between the two phases is trivial; however, this is
not the case in Figs. 2(b) and 2(c), where the domains appear
in response to shear and the exact composition is less clear.
For the sake of simplicity, we compare the steady-shear re-
sponse of the physical clay-polymer gel with that of the pure
polymer solution to qualitatively assess the viscoelastic
asymmetry present in Fig. 1(b). For the nanotube suspension,
the domain volume fraction can be computed from optical
micrographs, with the domains containing on the order of
3 % MWNT by mass in a suspending fluid of pure PIB[7],
and a homogeneous suspension of 3 % MWNT by mass in
PIB was thus prepared to mimic the composition of domains
in Fig. 1(c). At an approximate internal shear rateġd= ġ /2
[11], each of the three systems exhibits emergent elasticity in
the dispersed phase, which we quantify in terms of an ap-
proximate Weissenberg number[12], Wi=N1/sxy, evaluated
at ġd (indicated by a vertical dashed line). We find Wi
<2.5,4.5, and 2, for the blend, gel, and suspension, respec-
tively. In contrast, the continous phase in each of the three
scenarios is essentially a viscous fluid.

Figure 3 shows small-amplitude oscillatory shear mea-
surements of the complex shear modulus,G*svd=G8+ iG9
=Geid, performed in the linear viscoelastic regime on both
the dispersed and continous phase for each of the three bi-
nary systems. As before, the two phases in Fig. 3(a) are pure
PI and PB, respectively, while in Fig. 3(b) we assume that
the gel-like macrodomains have approximately the same
composition as the equilibrium gel and reside in a 2 % poly-
mer (PEO) solution. In Fig. 3(c), the continuous phase is
again taken to be pure PIB, with diffuse domains containing
3 % MWNT in PIB by mass. The oscillatory shear data fur-
ther suggest that the dispersed phase in each of the three
scenarios is of more or comparable viscoelsticity than the
continuous phase. The analog of the Weissenberg number for
oscillatory shear is the inverse of the loss tangent, cotsdd
=G8 /G9, which we evaluate atv= ġd to get 0.50, 4, and 3.5
for the blend, gel, and suspension, respectively. The vertical
dashed lines indicate the characteristic angular frequency
that we heuristically associate with the applied steady shear
rate. This analysis further quantifies the domain elasticity
and in each case classifies the suspending fluid as only
weakly viscoelastic.

The structure ofcsr d is shown in Fig. 4, which plotscsxid
as a function ofxi /ji for each of the three systems, where the
quantity in parentheses is the characteristic length scale used
to reduce the horizontal axis. Also shown in(b) is the expo-
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nential decaycsxid=exps−2xi /jid, which we use in thexi
→0 limit to extract the correlation lengthsjx and jz [1].
Although the presence of correlation minima incsr d implies
that the structure isnot random alongx̂, interactions are less
important in the limit of small displacements, and this analy-
sis gives a consistent measure of size, shape, and position in
the x-z plane. The structure shown in Fig. 4(a), with a weak
minimum along thex axis, is universal to the pattern in ques-
tion, which has correlation minima symmetrically positioned
along the flow direction in thex-z plane. In all three of these

FIG. 1. (a) Light-scattering pattern and binary micrograph
(scale bar=20mm) of an asymmetric polymer blend(PI volume
fraction =0.20,T=130° C, ġ=75 s−1), with the flow geometry as
indicated and a gap of 400mm (b) Analogous plot of shear-induced
macrostructure in a physical colloidal gel(scale bar=20mm, T
=25° C, ġ=100 s−1) of 2 % polymer (PEO) and 3 % nanoclay
(LRD) in water. The volume fraction of domains is 0.20 and the gap
is 450mm. The pattern is evident in bothcsr d (right) and Ssqd
(lower). (c) Transient structure in a semidilute nanotube suspension
(scale bar=60mm) 15 min after quenching an initially homoge-
neous dispersion(0.5 % MWNT by mass,T=25 ° C) to ġ
=0.03 s−1. The pattern is evident incsr d and its FFT,Ssqd (lower).
The volume fraction of domains is approximately 0.2 and the gap
is 50 mm.

FIG. 2. Steady-shear response of the dispersed and continuous
phase for the three fluids depicted in Fig. 1, where the vertical
dashed lines indicate the approximate shear rate inside a domain,
ġd< ġ /2. An approximate Weissenberg number(Wi ) for the drop-
let phase, defined as the ratio ofN1 to sxy evaluated atġd, is indi-
cated in each case. In(a), values at the highest shear rate measured
are used to estimate Wi.
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systems, the correlation lengths reflect the mean domain size,
which is dictated by a balance of flow-induced viscous and
elastic forces, which will tend to rupture the domains, and
the effects of surface tension, bond strength, and friction,
which will tend to hold the domains together.

IV. CONCLUSIONS

Tanaka [13] has suggested that binary fluids with vis-
coelastic asymmetry fall into a distinct class of phase-
ordering kinetics. Our results suggest that the same might be
true of the morphology of such fluids in response to shear

flow. The origin of this structure is intriguing and warrants
further consideration, but heuristically, we suggest that it
might arise from the unstable nature of the domains. For an
isolated viscoelastic droplet in shear flow, it has been dem-
onstrated that internal elastic forces related to the first normal
stress differenceN1 lead to droplet elongation along the vor-
ticity axis, while the “orbits” of such isolated droplets are
inherently unstable, showing irregular “rocking” motion
somewhat reminiscent of the periodic orbits exhibited by
rigid rods [1,14]. A suspension of such droplets would ex-
hibit this same tendency, albeit with a much more compli-
cated flow field. We suggest that “crowding” of these orbits
along the direction of flow might give rise to interaction
effects, evident as correlation minimum incsr d and lobes of
strong scattering inSsqd. As this tendency emerges with in-
creasing Wi, it falls within the broader context of “elastic
turbulence”[15], with the instability occurring on a localized
scale and interactions giving rise to the characteristic pattern.
A detailed analysis of the three systems considered here sug-
gests a critical Weissenberg number of around 0.5. We con-
clude by noting that any system with weak periodicity and
weak elongation along two sets of perpendicular axes will
exhibit this same pattern, which itself is much broader than
the specific context of interest here.

FIG. 3. Linear-viscoelastic response of the dispersed and conti-
nous phase for the three fluids depicted in Fig. 1, where the vertical
dashed lines indicate the characteristic frequency that we qualita-
tively associate with the applied shear rate. In each case, the inverse
loss tangent(defined as the ratio of storage to loss modulus) evalu-
ated at the characteristic frequencyv= ġ /2 is indicated.

FIG. 4. (a) csxd as a function ofx/jx and (b) cszd as a function
of z/jz for the three systems depicted in Fig. 1, where the quantity
in parentheses is the measured characteristic length scale used to
reduce the horizontal axis.
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