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ABSTRACT: A number of methods for estimating the translational friction coeffidiant the intrinsic viscosity

[#] of polymers and nanoparticles have been proposed. These methods range from first-principles “boundary-
element” or “bead-model” solutions of the Stokes equation employing a precise description of particle shape, to
coarse-grained descriptions of polymer structures and approximate computational methods at an intermediate
level of description, and finally to phenomenological estimates that réfatehe surface area of the particle.
Analytic treatments normally involve slender-body and various “preaveraging” approximations, etc., that render
the calculation analytically tractable, but numerically uncertain. Powerful numerical path-integral methods have
become available in recent years that allow the assessment of the accuracy of the various approximate methods.
We compare several methods of computirmand 7] to determine their applicability to various classes of particle
shapes.

1. Introduction whereN, is Avogadro’s numberVy is the volume of a sphere
The translational diffusion coefficiel® of a dilute solution having an equivalent intrinsic viscosity and provides another
of Brownian particles of arbitrary size and shape is related to Pasic measure of particle size and shape.

the Stokes friction coefficierftthrough the Einstein relatidi There is obvious value in predicting the diffusivity of
Brownian particles in a processing or a biological context.
KgT Furthermore, the hydrodynamic radius and hydrodynamic
D - TF (1) volume are important in macromolecular characterization by

dynamic light scattering, gel permeation chromatography,
whereks is Boltzmann’s constant arfdlis the temperature. This ~ Sedimentation measurements, and other characterization mea-

relationship indicates that diffusion is governed by competition surements:* It is standard practice to validate models of
between thermal energy and viscous forces, which respectivelymolecular size or shape by measuring these shape functionals

implies that we can writé in three dimensiongormally as renewed focus recently in connection with the characterization
of nanoparticle dispersions, such as nanocomposites of exfoliated
f=6mnR, @) clay, carbon nanotubes, and other complex-shaped “nanopar-
ticles”.
where the “hydrodynamic radiugk, has the units of length in Numerous methods have been introduced to estiRatad

three dimensions and whergis the solvent shear viscosity. [7]. Douglas and Freed review some of the history of this
Stokes’ original calculatiohof f indicates thaR, of a spherical problem leading up to recent renormalization group (RG)
particle equals its radius, while for other shajfaprovides a calculations of these properties for polymers in solufion.
useful measure of particle size and shape. Unfortunately, the available analytic methods of computing these
A second dynamical measure of patrticle size is the “intrinsic properties often involve uncontrolled approximations, such as
viscosity”, [r], or, more formally, the “virial coefficient” for the configurational preaveraging approximation (defined below)

the solution viscosity. The product or the truncation of the-expansion in RG calculations. The
accuracy, therefore, of these computations is uncettdine
J=M[n] 3) difficulties are so severe that there is no known analytic method

_ _ _ for accurately calculating the friction coefficient of a single ideal
whereM is the molar mass of the particle, has units of molar random walk chain. The difficulty of this problem is comparable
volume. Einstein’s calculation of the viscosity of a dilute to solving theg? field theory in three dimensiorfsin other
suspension of spherekindicates that the “hydrodynamic  words, an exact analytic solution for even this special class of

volume” can be defined as objects (flexible polymer chains without excluded volume
interactions) is apparently unattainable, and numerical ap-
V, = 2) (4) proaches or approximation schemes must be used.
SN, Numerical methods that consider complex-shaped objects to
be built up formally by a superposition of idealized hydrody-
t Stevens Institute of Technology. namic point sources (“beads”) have been very useful in obtaining
* National Institute of Standards and Technology. reliable information about these transport properties. In principle,
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bead-model computations allow for the essentially exact com- are discussed at length by Douglas and Garl3deand by
putation of hydrodynamic properties of complex-shaped par- Mansfield and Dougla%' In particular, we are generally
ticles, as long as the particles are described by a large numberconcerned with the energies of fields associated with the
of beads. However, computational expediency often makes suchpresence of particles. These energies may either be the self-
an “exact” approach unfeasible, and approximate bead-modelenergies of the particle generated by the particle itself, as in
computations such as Hydro have been introduced for thethe electrostatic field energy of a charged conducting sphere in
purpose of routine estimates of hydrodynamic propértiésy space, or they are reaction field energies caused by the presence
scientists involved in structural studies of complex-shaped of a particle in an applied external field, as in the case of a
macromolecules and particles. Below, we compare our new charged conductor placed within an applied electric field. In a
computational method for calculating transport properties to the hydrodynamic context, the translational friction coefficient of
valuable working tool (Hydro) to understand the relative a Brownian particle is a particle self-field energy, while the
advantages of each method. In our personal view, the descriptionintrinsic viscosity corresponds to a reaction-field energy func-
of complex-shaped objects in terms of hydrodynamic beads is tional 28 The interrelations between these fundamental hydro-
somewhat cumbersome, requiring a large number of beads whergynamic, elastic, and electrostatic “shape functionals” ultimately
we want to describe fine structural details. We feel that the need derive from a common formulation of these boundary value
exists for more physically natural and computationally efficient problems in a continuum mechanics description that involves
approaches to calculating the hydrodynamic properties of the |aplacian operator, which in turn engenders a general

complex-shaped particles. This led us to develop and validate connection with Brownian motion that we exploit below.
a numerical path-integration (PI) method that has proven quite

accurate in estimating, or [»] for arbitrarily shaped objects.
Our PI method is not exact (see below), but the uncertainties
are well prescribed by our former studies. This tool provides a
reliable standard for testing the performance of other ap-
proximate computational methods.

Of course, it is always possible to solve Stokes’ equation Ry=aC ®)
directly by boundary-element techniques, in which the surface
of the macromolecule is tiled with a discrete set of polygons. J=MIn] = q,Nx[al] (6)
Applications of such techniques to the transport properties of
macromolecules include the work of Youngren and Acritos, whereC and [&are the electrostatic capacity and the mean
Brune and Kimt® Allison,!” Zhao and Pearlsteifiand Aragort? electrostatic polarizability (1/3 the trace of the electrical
Such calculations are also formally exact in the small-element polarizability tensow) of a conducting object. The capaciy
limit, but computation times ar®(N3) whereN is the number  also governs the rate at which heat diffuses from a body at fixed
of boundary elements. Obviously, such calculations, as well astemperature into the surrounding medium and other transport
high-resolution bead-model calculations involving a large properties relating to shape (e.g., the Smoluchowki rate constant
number of beads, would be an appropriate standard for judginggoverning the steady-state diffusive flux of chemical species
other approximation schemes. (Indeed, most of our confidenceto or from a source having the shape of the particle in
in the approximations stated in eq 7 below is founded on just question¥428 By direct analogy,R, governs the rate of
such calculations and a limited number of results for which exact momentum diffusion away from a particle under Brownian
analytic computations are possifiZ) The path-integration motion, which accounts for dissipation (friction). The average
technique can also be applied to any collectiofNgiolygonal polarizability [a[likewise has many physical applications such
boundary elements, but with computation times of @(i).22-24 as the leading virial coefficient describing the electrical
Admittedly, the front factor is generally larger for the path- conductivity and thermal conductivity of a suspension of
integration technique so that it is expected to be slower for small arbitrarily shaped objects having high electrical or thermal
N, but for large enougt, the path-integration method will  conductivity compared to the suspending mediit. The
always be faster. (The computational time of bead-model relation eq 6 arises because the application of shear to a fluid
calculations also scales @N), so the efficiency of this method  with suspended particles of general shape creates a stress dipole
is comparable to the boundary-element method.) For reasons(“stresslet”) that reacts upon the applied field in much the same
of speed and flexibility, we have chosen to use the path- way that a conducting particle perturbs an electric field. There
integration technique as the standard against which to judgeare well-known, rigorously proven, variational inequalities or
other approximate techniques. “isoperimetric relations” that imply, for all objects of a given
volume, thatC and [@[Jare minimized for a spheré. The
) ) . electrostatie-hydrodynamic analogy implies th&f, and [7] are

Our path-integration approach for calculating the transport 5154 minimal for spheres, at least to within the accuracy of the
properties of complex-shaped particles relies on an alnallOgyanalogy, and on the basis of our experience, we conjecture that
between hydrodynamics and electrostatics that is based on thepg i'in fact the case. Therefore, these functionals are suitable
simple observation that an angular preaveraging of the Green's¢, gpane classification, measuring departures from sphericity,

fﬁnctlon for tfhe S.tok?s equalltlon‘ (the Oseen tenhsor) is exactly i aqdition to their applications relating to the characterization
the Green's function for Laplace’s equation, or the Newtonian o¢ oo icle structure,

potential?>=27 1/r. (In fact, such preaveraging of the Oseen : . )
tensor is a relatively standard approximation in the theory of ~ While an andg, are not universal constants for all objects,
the transport properties. In other words, many authors have®dS 5 and 6 have been shown to hold to a high degree of
applied the hydrodynamieelectrostatic analogy, often without approximation for t_he range of particle shapes for which exact
knowing it.) There are many interrelations between electrostatic, ©" accurate numerical results exis:*26.28

hydrodynamic, and elastostatic properties, some exact and others

approximate, that derive from this simple observation. These 0, = 1.00+0.01 and g,=0.79+0.04 (7)

The hydrodynamieelectrostatic property interrelations just
mentioned imply, among other things, the following simple
direct relations for the hydrodynamic radi&® and intrinsic
viscosity f7]:25%7

2. Hydrodynamic—Electrostatic Interrelations



Macromolecules, Vol. 40, No. 7, 2007 aifd [y] of Nanoparticles and Macromolecule®577

The uncertainty in eqs-57 is usually comparable to experi-  ability to rationalize observations on the properties of flexible
mental uncertainty, so that reliable estimatefo&nd ;] can polymers is perhaps the strongest argument in its favor, and
be obtained on the basis of these relations. we also adopt this assumption below.

These electrostatichydrodynamic property interrelations are Bead-model calculations oR,, [#], and other polymer
also important becaus€ and [ can be simultaneously Pproperties are widely utilized and are generally considered to
calculated to high accuracy for arbitrarily shaped objects using give accurate estimatés!3 The widespread use of this com-

a numerical path-integration method that exploits a fundamental putational method is due, in part, to the availability of softwére.
connection between Brownian motion and Lap|ace’s equa- In this work, we compare one of the most Wld8|y utilized and
tion 22.2327.293qn particular, this procedure involves launching respected bead-model programs, HYDRQwith our path-
random walks from a sphere enclosing the “probed” body and integration calculations. In the interest of making direct
collecting statistics on the fraction of trajectories that hit the comparisons, we apply both HYDRO and the path-integrations
body as a function of the position from which they are initiated to the same bead structures. However, as already mentioned,
on the launch sphere. This Monte Carlo sampling method is the path-integral technique is not limited to bead configurations.
exact forC and[@[in the limit of an infinite number of random  We can also treat surfaces modeled by a collection of boundary-
walk trajectories, and finite-sampling uncertainties can be €lement polygons.

estimated from the variance in the results of several independent We also consider several more approximate computational
integrations. We are thus in a position to estimafeal] Ry, methods that are in widespread use. Our goal in these
and [y] for arbitrarily shaped objects via eqs-3. comparisons is to understand the physical nature of the errors

Becausaj, is given in eq 7 only to within 5%, our approach invo_lved in these apprqximations and_to clarify the type of
engenders a comparable uncertaintyjh This variation ing, particle surfaces to which the approximate methods can be

arises entirely from its dependence on particle shape (,g., 2PPlied with confidence.
= 0.833 for single spheres, but only 0.75 for elongated B. The Kirkwood Double-Sum Formula. Perhaps the most

ellipsoids)?° The value 0.79 represents a compromise over all widely utilized analytic approximation of the friction coefficient

classes of shapes, and the uncertaiy04 has been set large of polymer chains is the “double-sum formula” first derived by
enough to cover practically all possible cadeghe path- Kirkwood for flexible and rodlike polymets

integration technique actually gives us all nine components of kT kT N N
the polarizability tensor, and we are currently investigating the D —4 — i (8)
degree to which the shape dependencg,afan be determined Nf, 6myN2 & 1

from the components df. If it can, then we should be able in
the future to give estimates off] with even less uncertainty.  whereN, fo, andr;; represent respectively, the total number of
A further description of the path-integration technique, its segments, the friction coefficient of an isolated segment, and
validation through comparison to shapes where exact resultsthe displacement between two segments. (Freire and Garcia de
are known, and its application to the calculation of the transport la Torreé® also present a useful discussion of double-sum
properties of proteins and other particle shapes of practical formulas in transport theory.) The “Coulombic” interaction term
interest may be found in our previous wafk? In the present 1/rj (the result of an angular averaging of the Oseen tensor in
work, we assess the accuracy of other approximate methods ofthe approximate computations leading to eq 8) results from the
estimatingR, or [#] and use the path-integration technique as solvent-mediated hydrodynamic interaction between segments

the standard against which to judge these other methods. i andj, and we therefore construe the sum as extending only
over segments at the surface for cases other than flexible
3. Some Approximate Methods for CalculatingRy or [7] polymers, when the whole chain is a “surface”. In the limit of

A. Numerical “Bead-Model" Calculations. A standard large N, we can disregard the first term and replace the sums

approach in the computation of dynamical properties of with surface integrals to obtain
polymers, employed, for example, in the well-known Rotse ke T
Zimm formalism?2is to model individual segments as “beads” D~
and to treat each bead as a point source of hydrodynamic 67mR¢
interaction, the strength of the interaction being controlled by .
the size of the bead. The hydrodynamic interaction is transmitted with
through space via the Oseen tensor describing a point hydro- 1 1 1
dynamic source. (Taking the angular average of this tensor gives § = —2fsdr1 fsdrz m
a Newtonian potential, &/ which is the Green’s function for A 12
the Laplacian, as mentioned above.) By placing many of these oo A s the surface area of the body, afidir represents a
point sources over the surface of a rigid body, the friction g, itace integral. We will refer tB as the “Kirkwood radius”.
coefficient and the intrinsic viscosity can be accurately esti- According to eq 10, the classic Kirkwood approximation of the
mated. The _r|g|d-bo_dy assumption implies t_hat we are not polymer hydrodynamic radit is simply the harmonic mean
concerned with pqrtlcles explorlng conformational degree.s of gistance between arbitrary pairs of points on the surface.
freqdom as they d|ffu§e. Amqre rigorous treatment of flexible Comparison of egs 1, 2, and 9 indicates tiR directly
particles would require the t|me-depen(_jenF analogue of the approximatesR, within the KR double-sum approximation:
Oseen tensor as well as other complications. Zifnimas
forcefully argued that the rigid-body approximation is sufficient R, ~ R¢ (12)

for the accurate computation d®, or [y] (low-frequency

transport properties) of flexible polymers. He recommends The derivation of eq 8 requires several approximations that make
computingR, or [#] independently for an ensemble of confor- its accuracy uncertain. Previous investigations of the accuracy
mations, treating each as a rigid body, and taking ensembleof eq 11 for random coils have been performed by Z#hamd
averages. Although this approach has been challefg€its by Garcia de la Torre et al>,but we are unaware of appraisals

9)

(10)
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for particles of other shapes. The double-sum formalism is still following inequality, which has already been demonstrated for
often invoked to describe the transport properties of complex- random coil&®

shaped particle clusters such as DL aggreg#tdésere we

examine the approximation for a wide class of particle shapes R¢ =C (13)

to determine the classes of particles for which the approximation
applies. We also address the physical reasons for which this
classical mean-field approximation breaks down, since this
problem is essential to developing a more accurate analytic
theory of polymer transport properties. The errors of the double-
sum formula can be avoided in the numerical bead model
calculations, but we are not aware of any analytic expressions
that go beyond the double-sum formula. It is this analytic
tractability that accounts for the continued use of the KR double-

and which implies that the double sum always underestimates
the friction coefficient and always overestimates the diffusion
coefficient. Furthermore, just &represents the proportionality
betweenQ and V for a perfect conductorR¢ gives the
proportionality betweenQ and [V for a uniform charge
distribution.

This connection betwee@ and the chain friction coefficient
f can be understood more precisely from a direct computation
of the capacity of a polymer chain of conducting particles using

sum approximation. a direct extension of the KR theory to the corresponding
The double-sum KR approximation, when applied to flexible electrostatic probler The average capacit® of a polymeric
polymers, is written chain can be exactly described as a superposition of point
sources described by Coulomb’s law so that the average capacity
ke T KeT N N of an ensemble tethered polymer chain of conducting beads each
Dr~—+ Z Z ED (12) of capacityc formally equals
Nfy 6.71’17N2 =1 = T N
[CO=c ) (7)o (14a)

In this form, it involves a configurational preaveraging ap-

proximation (see below),which effectively replaces the en- N Y(7) Dj ,
semble of conformations with its mean average (a mean-field BpE=1-c fo (¥) — R()| T (14b)
approximation as in critical phenomena). This is not the same
approximation as the rigid-body approximation mentioned above where [3--Orepresents an averaging of the polymer chain
or the angular preaveraging approximation involved in egg.5 ensemble. The “configuration preaveraging approximation” in
In the rigid-body approximation, we solve Stokes’ or Laplace’s this notation equals
equation independently for each conformation and average over
all such solutions. In the configurational preaveraging ap- Y(7) D° 1 D

T ) . :Iﬁi @(7) :Iﬁi (14c)
proximation, we first average over conformations and then solve (7) — R(7")| (7) — R(7")]
some form of Stokes’ equation only once for the mean-field )
configuration. Configurational preaveraging can be a serious Where the average of a product is taken to be the product of the
approximation. Large errors can arise for random-coil polymers @verages. Introducing this mean-field approximation into eq 14
and other complex-shaped, statistically defined objects. TheseMakes it reduce exactly to the KR double-sum formulaRqr
errors result from “rare” configurations that make a dispropor- defined by eq 12, where is replaced by the bead friction

tionate contribution to the ensemble average so this is a problemcoeﬁ'.c'ent’fo' Morg g_enerally,.e_q 14 describes the KR integral
of “large deviation theory®* In the case of random coil equation for the friction coefficient of a polymer chain where

olymers, the “rare” configurations are extended chain confor- the Oseen interaction has been angularly averaged so that it
poly ' gur - ; replaced by the Newtonian potential for a point charge in three
mations with very large friction coefficients. These configura-

tional ; ticular] ing f th dimensions, I/ The recognition of the relation between eq 14
lonal preaveraging errors are particularly annoying from e 5,4 he KR equation is the origin of the electrostatic analogy
standpoint of analytic computation since chain flexibility or

. L . betweenC and f and forms the basis of our computational
excluded volume interaction influences these conformational method2!

fluctuations and thus can lead to substantial variations in the C. Russell and Rayleigh Approximations. Other ap-

magnitude of configurational preaveraging errors resulting from proximations forR, are available when the particle or polymer
the Kirkwood formula: The good news is that these errors are s ejther spheriodal or disklike. Such surfaces can naturally be
expected to become very small when the chains become highlyapproximated by a spherical harmonic expansion about either
extended and shape or friction fluctuations are more limited. the sphere or the disk, and it is possible to calcufa® and
Below, we test the validity of eq 8 or eq 12 for a number of other transport properties in a formally exact, but laborious,
polymer shapes, both rigid particles and flexible random coils, perturbation expansioti.- 43 Douglas and Freédhave noted that

to better establish the uncertainties of the Kirkwood approxima- combining the Fourier expansions foandC to leading order
tion and the appropriate class of bodies to which this ap- in such a perturbation expansion gives the result that Bgth
proximation should be applied. and C can be approximately related to the particle’s surface

The derivation of the KR double-sum formula employs the 2r€aA as
replacement of the Oseen tensor with, Dut it also requires A\L2
further approximations. Therefore, it is less accurate than R, ~ C~ Ryyssel™ (ﬂ)
predictions based solely on the electrostatigdrodynamic
analogy, but it still has an interesting electrostatic interpretation. This approximation fo was introduced long ago by Russell,
A chargeQ distributed uniformly over a surface has self-energy and we therefore refer to it as the Russell approximation and to
Q?/2R«, while the self-energy of a perfect conductor of the same Rgysseras the “Russell radius**45Pastor and Karpl484”have
shape i€Q%/2C. Since the perfect conductor possesses the chargeadvocated eq 15 on empirical grounds to estimate the friction
distribution of minimum energy, we obtain immediately the coefficient of molecular segments in Brownian and Langevin

(15)
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dynamics simulations of proteins and other complex polymers, is large. All additional details on the technique are given in the

despite its uncertain basis, and the method is frequently utilized literature?2.23

in recent scientific literature relating to the molecular dynamics  we calculatéR« by generatindNs points distributed randomly

of proteins. It would clearly be valuable to assess the uncertainty and uniformly over the surface and computing the harmonic

of this relation and to determine the class of bodies to which it mean by averaging over successive pairs of pointsl Provided

applies. we can sample all regions of the surface without bias, we expect

We can similarly develop a spherical harmonic expansion good accuracy, with relative errors on the order N 1/2

about the disk limit, as first considered by Rayléigm the Uncertainties are again estimated by taking 20 independent

case ofC. This leads to the corresponding approximation integrations. The same integration also permits determination

suitable for “flat”, membrane-like, bodies of A. In the Supporting Information accompanying this paper,
we describe the techniques followed to take unbiased samples

R, ~ C~ Rgayieigh= 27 32 (16) over complex surfaces.
whereA represents the area of the body in two dimensions. We 5. Comparative Calculations for Random Coils and
will also assess the numerical validity of this relation. Other Special Structures

Before moving to other matters, we note that the approxima-
tions egs 15 and 16 become exact for the sphere and disk,

respectively, so that

We have considered three different random-coil polymers
models. The first is a pearl-necklace model without excluded
volume, discussed in more detail elsewh&rgVe have also
assembled ensembles of simple-cubic lattice self-avoiding walks

R = Reusser= €= Ry =R (spheres) @7 and self-avoiding rings. The self-avoiding walks were generated

and by the pivot algorithm. The self-avoiding rings were generated
concurrently, taking each instance of a self-avoiding walk

2R . ) returning to a site adjacent to the origin as one instance of a

Rrayieign= C = ——  (circular disks) (18)  self-avoiding ring. (Obviously, this approach for generating rings

becomes inefficient at largd; nevertheless, we were able to

whereR represents the radius of either the sphere or disk. The generate adequate ensembles of about 50 000 membelks for
equality betweenR, and C applies also to general triaxial s large as 1200 as well as one of about 4500 membéts=at

ellipsoids of revolution, of which the sphere and disk are special 5000.) The Kirkwood radius for self-avoiding walks and rings
case<s was calculated via eq 12. To form a space-filling body for the

path-integration calculation, each walk or ring was modeled as
an array of unit cubes, one cube per lattice site. Because the
path-integration is more computationally intensive than eq 12,
it was limited to only 1000 walks or rings at each valueNof
selected randomly from the larger ensemble. The ensemble
averages fo€C andla[were then used to determiikg and ;]

as in egs 57. A number of interesting results concerning the
transport properties of self-avoiding walks have emerged in these
calculations and will be reported elsewhétén this paper, we
concentrate on the validity of the Kirkwood double-sum formula.

Random Coils in thé@-State.When both static and dynamic
light scattering studies began to appear for random coll
polymers, it was immediately noticed that theoretical predictions
[5] are determined using eqs-5. In the calculations reported ~ for Ry/R, were inconsistent with experimetft.5® This incon-
here, we typically uséy ~ 10°—10° ande/C ~ 1076-1075. sistency is attributed to approximation errors in the double-sum
Uncertainties in our calculations are given in the tables but are formula or other computations based on the configurationally
not generally included in the text for reasons of space and preaveraging approximatich** For 6-state polymers (ap-
readability. All uncertainties arise from two sources. The first proximated by random walk chains), the Kirkwood double-sum
is sampling error, which is estimated by performing 20 formula predictsRy/Rx = 8/(3\/5) = 1.50, while experiments
independent integrations, taking the mean of these 20 valuesyield RyR, = 1.27. Calculations based on bead models with
as the final result and taking (26} times the standard deviation = non-preaveraged Oseen tensor giyiR, = 1.284 0.0231.3435
of these 20 values as the uncertainty in the final result. The in much better agreement with experiment. Application of the
second source of uncertainty arises from eq 7. path-integration technique to a pearl-necklace model without

The Zeno algorithm requires us to compute the minimum excluded volume yieldBy/R, = 1.253=+ 0.003?#in qualitative
distance between arbitrary points outside the surface and theaccord with an earlier, but less precise, numerical study utilizing
surface itself? We generally examine bodies that are con- path-integratior?! and it yieldsC/Rx = 1.2014- 0.0032* These
structed as unions of some numbérof simple component  calculations all indicate, therefore, that the double-sum formula
objects such as boundary eleents or beads. In every caseis in error by about 20%. Renormalization group theory
therefore, the minimum distance to the surface is determined estimates of the error due to the configurational preaveraging
by computing the minimum distance to each component and approximation, although highly uncertain, are also consistent
taking the minimum over all components. Computation times, with these calculation$The fractal mass scaling characteristics

4. Path-Integral Techniques for Computing C and [z];
Monte Carlo Techniques for Computing Rk and A

The path-integral technique, or “Zeno algorithm”, for simul-
taneously estimating both and [] involves enclosing the
surface in question inside a sphete,initiating Ny random
walks at arbitrary points on the surfacelgfand following their
trajectories until they either move to within a small distaace
of the surface or wander off to infinit§%233%48The values of
C and [@Oare determined from the statistics of these walks.
The technique is numerically exact for bathand [aJin the
limit Ny — o ande — 0; at finite Ny ande we expect relative
errors of magnitudé&ly,~2 ande/C, respectively. TherR, and

therefore, ar@(N). Boundary-element solutiots 1 of Stokes’
or Laplace’s equation as well as the bead-model calcul&tidhs

of R, and [y] for flexible polymer chains and other fractal
objects are reported elsewh@&?feThe scaling law forR, has

are O(N3) for N the number of boundary elements or beads, so also been recently examined by Tseng ét*dbr a variety of

that the path-integration technique is inherently faster wkien

model fractal aggregates based on the Zimm bead model method
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Table 1. Values of the RatioC/Rk for Various Objects
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Table 2. Values of the RatioRrysselC for Various Objects

particle shape CIR« particle shape RrusselC
miscellaneous bodies miscellaneous bodies
sphere 1.0000(2) open cylinder (/D = 1) 0.8693(1)
closed cylinderl(/D = 1) 1.0121(6) sphere 1.00000(0)
tight torus 1.0135(6) ellipsoid (1:2:3) 1.0038(6)
ellipsoid (1:2:3) 1.014(3) tight torus 1.0178(2)
open cylinder (/D = 1) 1.0436(6) closed cylinderl(/D = 1) 1.0278(1)
DLA cluster d = 3) 1.204(6) DLA cluster d = 3) 1.435(4)
platonic solids platonic solids
icosahedron 1.004(1) icosahedron 1.0176(5)
dodecahedron 1.0061(6) dodecahedron 1.02819(9)
octahedron 1.0172(6) octahedron 1.0304(2)
cube 1.019(1) tetrahedron 1.0398(7)
tetrahedron 1.039(2) cube 1.0460(4)
proteins proteins
2hft 1.040(7) 1qub 0.988(6)
1qgv 1.043(5) 2hft 1.111(7)
laém 1.048(6) laxj 1.127(3)
1qub 1.048(7) 1qgv 1.144(3)
laxj 1.053(6) labm 1.152(4)
levl 1.057(6) levl 1.186(4)
Imml 1.060(6) Imml 1.192(6)
1gof 1.061(4) 1bp7 1.210(7)
1t12 1.074(6) 1gof 1.225(3)
1cf9 1.098(5) laoi 1.228(7)
1bp7 1.105(7) 1tl2 1.231(6)
laoi 1.175(8) 1cf9 1.443(3)
two-dimensional objects lumpy spheres, hemispherical protrusions
circular disk 1.079(3) a/R=0.100,C/R=1.0728(5) 1.2762(7)
regular hexagon 1.081(3) a/R=0.0667,C/R=1.0497(4) 1.2955(6)
regular pentagon 1.086(2) a/R=0.0500,C/R=1.0370(4) 1.3046(6)
square 1.10(1) lumpy spheres, fcc protrusions
equilateral triangle 1.103(3) a/R=0.0707,C/R=1.0170(1) 1.0679(3)
right triangle 1.108(3) a/R=0.0589,C/R=1.0112(2) 1.0560(4)
DLA cluster d = 2) 1.092(8) a/R=0.0505,C/R=1.0134(2) 1.0759(3)
lumpy spheres, hemispherical protrusions a/R=0.0442,C/R= 1.0115(2) 1.0766(4)
a/R=0.100,C/R= 1.0728(5) 1.022(5) a/R=0.0393,C/R=1.0085(2) 1.0619(3)
a/R=0.0667,C/R= 1.0497(4) 1.009(1) a/R=0.0353,C/R=1.0092(2) 1.0797(3)
a/R= 0.0500,C/R = 1.0370(4) 1.007(2)
lumpy spheres, fcc protrusions Table 3. Values of the RatioRrayleigh/C for Various Two-Dimensional
a/R=0.0707,C/R=1.0170(1) 1.002(2) Objects
a/R=0.0589,C/R=1.0112(2) 0.999(1) ] ]
a/R= 0.0505,C/R = 1.0134(2) 1.004(2) body RrayieiglC body ReayieigC
a/R=0.0442,C/IR=1.0115(2) 1.005(2) DLA cluster d = 2) 0.550(2% pentagon 0.9906(7)
a/R=0.0393,C/R= 1.0085(2) 1.000(2) right triangle 0.922(2) hexagon 0.9939(7)
a/R=0.0353,C/R=1.0092(2) 1.003(2) equilateral triangle 0.9409(9) circular disk 0.9990(6)
square 0.9808(9)

aThe digit in parentheses gives the uncertainty in the last decimal place.

1.04 for the regular tetrahedron and decreases toward unity for
all the higher polyhedra. The ratRkyssedC is less than about
1.05 for these five solids and tends toward unity for the higher
polyhedra (although this trend is reversed for the cube and the
tetrahedrof-presumably because cubes and tetrahedra represent
. - significant perturbations away from the sphere).

Random Coils, Good Swmnt Conditions.For both self- Regular PolygonsAs displayed in Table 1C/Rg is largest
avoiding walks and rings, we find thal/R« depends only  at about 1.10 for equilateral triangles and tends to the circular
weakly onN and extrapolates to about 1.10 in the limit of gjisk value of 1.08 for higher polygons. Table 3 indicates that
|nf|.n|t.e N; |.e.., the dOl.:Ible-SUm formulais in error by about 10%. RRaerig}{C is about 0.94 for the equi|atera| triang|e and tends to
This is consistent with our arguments above where we noted 1 for higher polygons. ThereforBraykighis a better approxima-
that weaker shape fluctuations should render the double-sumjgn thanRx for these shapes.
formula more accurate. Experimental valuesRgf/R; cluster RectanglesFigure 1 shows thaR¢ and C differ by about
around 1.5, but values as low as 1.3 and as high as 1.7 are als@u for squares but that their ratio apparently converges to unity
reporteck* The so-called “draining effect”, i.e., the sensitivity oy rectangles of high aspect ratio. On the other hagyicign
of Ry and J] to monomer size and shape and the associated gives a superior approximation only for aspect ratios near unity,
slow convergence d®y/Rs to its infinite N value, appears to be  and the quality of the approximation deteriorates rapidly with
responsible for this commonly reported experimental disparity. increasing aspect ratio.

(In a separate work, we will focus on quantifying this draining  cylinders. Figures 2 and 3 show tha@/Rg for both open
effect.) Here we state our basic finding that the ré&fR; for and closed cylinders having large length to diameter ratio (rod
self-avoiding walks and rings approaches 1.46 and 1.20, jimit) tends asymptotically to unityC/Rx for closed cylinders
respectively, aN — 0.4 of small length to diameter ratio tend asymptotically to the

Regular PolyhedraResults for the five Platonic solids appear circular disk value, 1.08, whil€/Rx for open cylinders of small

in Tables 1 and 2. Note th&@l/R¢ obtains its largest value of  length to diameter ratio (ring limit) tends asymptotically to 1.

of calculation. (See also ref 4 for a discussion of this mass
scaling ofR, and the scaling variables that govern the rate of

approach of these scaling relations to their asymptotic long chain
limits.)
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Figure 2. RatiosC/R« andRrys{C for open cylinders of the indicated
length to diameter ratio. Open cylinders have no ends, so dofall
corresponds to ringlike structures while latg® corresponds to rodlike Figure 4. RatiosC/R« andRr,s{C for ellipsoids of revolution, where
structures. a andc represent semiaxes.

r/ry

While RrusselC for both types of cylinders is near unity for Tori_. Data for tori appear in Tablt_es land?2 anql i_n Figure 5.
aspect ratios near ReysselC for closed cylinders tends to the ~ The “tight torus” or the torus for whichy/r = 1 exhibitsC/R«
circular disk value, 1.10 for small length to diameter ratios, and = 1.018. The ratidC/R« increases to a maximum of about 1.03

it decreases rapidly for both open and closed cylinders as theWhenr/rzis about 1.7, and then tends to unity asymptotically.
length-to-diameter ratio increases. RrusselC passes through a maximum of about 1.04, before

L . . ... decreasing rapidly.
EII|p50|ds.TapIes 1 an.d 2 contam en'.[rles for j[he ellipsoid “Lumpy” Spheres.We now consider spheres covered with
whose axes are in the ratio 1:2:3, while Figure 4 displays results g4 protrusions. This is an important problem because the
for ellipsoids of revolution over a broad range of aspect ratios. gyrfaces of large biomolecules are rough. As we will see, this
Both R« andRrussenare excellent approximations for the 1:2:3  royghness implies that the Russell approximation is not very
ellipsoid, and apparently the approximations apply well to good. Consider a large sphere of radRswith small hemi-
ellipsoids in general, unless they have extreme aspect ratios.spherical protrusions of radiason its surface. Figure 6 displays
Oblate ellipsoids of revolution approach the circular disk values a two-dimensional analogue of this construction. The surface
(C/R« = 1.08,RrusselC = 1.11) asymptoticallyC/Rx for prolate area can be written a= 47R2 4+ nA, wheren is the number
ellipsoids of revolution tends to a value around 1.06 at aspectof protrusions andA is the difference in area between a
ratios of 103, It is impossible to tell from the data whether hemisphere and a circle, both of radiais A = a2 Further-
CIRg for prolate ellipsoids increases without bound or tends to more, neglecting curvature of the large sphere and assuming
an asymptotelRg,sseflC decreases rapidly for prolate ellipsoids. 2-d close-packing of the protrusions implias= 27R%//3a?
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Tori of the protrusions was achieved by first placing a single
B B R LSRR A1I e S R RRY protrusion of radius 1 at spherical polar coordinate® () =
o (R,0) on the larger sphere of raditsand then placing each
. Slender limit — subsequent protrusion at the poiRt,¢) which maximizesd
o e C/Ry subject to the constraint that there is no overlap with previously
=3 SO RLX TP R SN placed protrusions, identifying such maxima with grid searches
° of resolutions/1000 in 6 and 2¢/1000 in¢. This continued
until no more protrusions could be added. Because the lumpy
sphere model tends to a uniform spherical charge distribution
in the limit a/R— 0, we also find good agreement betwed&n
andC.

A second, related lumpy sphere model is also summarized
o Rpu/C in Tables 1 and 2 under the heading “lumpy spheres, face-
S+ - centered cubic (fcc) protrusions”. For this model, we take a
sphere of radiu® and form protrusions by overlaying a close-
packed fcc lattice of smaller spheres, again of radius| lattice
spheres whose centers lie inside the large sphere and also

g """'l L1 """2 T protrude from it are included in the final model. Figure 6

10 10 10 10 displays a two-dimensional analogue of this construction. In

1, /15 this caseRrussedC is smaller than the 1.38 prediction because,

Figure 5. RatiosC/R« andRrus{C for tori, where a torus is the body ~ ON average, both andA are smaller, but again, it is independent
generated by revolving a circle of radiusaround an external axis a  of the ratioa/R. We again note good agreement betwé&gn
distancer, from the center of the circle. andC.

i)
<

0.95
I
o]
|

C/Rg. Ry, /C

o

Model Proteins.The so-called solvent-accessible surfice
of typical globular proteins is sometimes used to determine, via
the Russell approximation, the hydrodynamic radius of segments
of proteins?® The solvent-accessible surface has a structure
similar to the “lumpy” spheres discussed above, and so our
results for those models call this practice into question. To
examine this more closelZ/Rx andRgyussefC Were determined
for a few protein structures obtained from the Protein Data
Bank?>” Surfaces were represented by placing a sphere of radius
5 A at eachC,. For most of the proteins studie@/Rx lies in
the range 1.041.10. The one exception, laoi, has a long
pendant chainRrysselC is found in the range 1:11.4 for all
but one of these proteins, 1qub, for which it is close to 1. The
protein 1qub has the gross structure of a curved sausage, with
contour-length-to-diameter ratio of around 10. We note from
Figures 3 and 4 that smooth cylinders and ellipsoids of
comparable aspect ratios dispRyssefC values of around 0:8
0.9. But ours is a “lumpy” sausage, for which the arguments
above must also apply. Apparently, the lumpiness brings
Figure 6. “Lumpy” spheres have small protrusions that significantly RrusselC back to near 1. However, all the Other_pmte'ns are
increase their total surface area. In the hemispherical model (a and b),n0t elongated, but nevertheless lumpy,R@sselC is greater
hemispherical protrusions are packed densely over the surface of a largethan unity.

sphere. In the fcc model (c and d), the sphere is overlaid with an array . . . .
of smaller close-packed spheres, and all of the smaller spheres with Nested Sphere€.onducting surfaces with highly nonuniform

centers inside the larger sphere but which protrude from it are included charge distributions are expected to show the largest discrep-
in the final model. The actual constructions were three-dimensional, ancies betweerRx and C. A pair of concentric, or nested,

and these are two-dimensional schematics. conducting spheres provides one example of a nonuniform
charge distribution, since, if two concentric spheres are held at
andA = (1.91)47R?, independent oi. So each protrusion makes the same potential, all the charge accumulates on the outer
a smaller contribution té\ asa decreases, but the total number sphere. This is a relevant question because it can be taken as a
of protrusions grows in inverse proportion. The surface area is model of a macromolecule with a cavity. Ligtandr, represent
almost twice that of the sphere without protrusions, even when respectively the radii of the inner and outer spheres. The inner
a < R We note that the capacity (friction coefficient in the sphere can be considered part of the exterior surface if we
hydrodynamie-electrostatic analogy) of any object is bounded imagine that a hole is drilled through this spherical shell (see
below and above by the radii of the largest inscribed sphere the inset in Figure 7). For mathematical tractability, the diameter
and the smallest circumscribing sphere, respectively, sdRhat of this hole is assumed to be vanishingly small. In the
= C = R+ a®® Therefore, it follows for the lumpy sphere  electrostatic analogy, the hole represents a thin wire that keeps
model thatRryssedC — v/1.91 = 1.38 in the limit of protru- both spheres at the same potential. Both the capacity and the
sions small relative to the sphere siaéR — 0. Several model hydrodynamic radius are obviously equal to the radius of the
calculations of this effect, foa/R = 1/10, 1/15, and 1/20, are  outer sphere. However, in calculatiffy and Rryssey We take
summarized in Tables 1 and 2, under the heading “lumpy the surface to be both spheres. In the limit— r,, the two
spheres, hemispherical protrusions”. Approximate close packingcharge distributions approach one another, and we expect
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C/R« — 1. In the other limity;— 0, the contribution from the .t o
inner sphere becomes negligible since it carries a charge . CR N
proportional to its surface area, and so again we ex@#gt =l o - K..-.' . .
— 1. Therefore, we can expeClR« to attain some maximum heeats,s0p0 -
. . L)
asry/rp varies between 0 and 1. In fact, we have 0 e, 0
~ e} .. . .
, , = 0000000000 .....g%.o Needle limit —
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The curve forC/R¢ appears in Figure 7. The value of the o
maximum is 1.04751 a& = ry/r, = 0.645 75. Therefore, even
in this situation, the error iR« is less than 5%. For the same 2 ° -
model, we can také = 4x(r2 + r,?), obtaining °
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S0 RrusseC increases monotonically from 1 te/2. This Figure 9. RatiosC/R« andRrus{C for trigonal bipyramids. The base
function also appears in Figure 7 of each pyramid is an equilateral triangle of side 1, hrisithe height

| les Tri lessurf ith ) h int Iso k of each pyramid. At smalh, therefore, the object resembles a flat
soceles lrianglessurtaces with sharp points are also KnowWn - yriangle, while at largén it resembles a double-pointed needle.

to have very nonuniform charge distributions. Therefore, we
examined isosceles triangles of a wide range of altitude to base  pjffysion-Limited Aggregate Cluster®LA clusters in di-
ratio, with results shown in Figure 8. The ra@iR« exceeds  nensiongi =2 andd = 3 were constructing on either the simple

. 3 .
1'? WheThthe a:_spe;:t r@?odaptprgacheé 1gef|r;]|_ng the aspect square or the simple cubic lattices, each consisting of 1000 cells.
ratio as the ratio of altitude o base, and acnieves a minimum y,q ensuing surfaces were then represented as a mesh of

of about ;.10, the va]ue for_ equnateral triangles. Tho&R« triangles @ = 2) or assembly of cubesl(= 3). Thed = 2
seems to increase without limit @b becomes very large or ; P . .
cluster is shown in Figure 10. The gyration raéfj, were also

very small, although at best, very slowly. In contrast, the ratio . . ;
: ; - - determined for these cluster€/Ry = 0.788(3) in two dimen-
igdC achieves a maximum of 0.94 for equilateral triangles " ) . . . .
ReayeioH d 9€S Sions and 1.096(4) in three dimensions. (Our estimate in three

but degrades rapidly from there. . . ) ;
Trigonal Bipyramids These shapes were also considered as dimensions is compared to the estimates 0.97 and 0.97 of Chen

objects possessing sharp points. These are formed by placingnd co-worker$ for diffusion-limited cluster-cluster and

an equilateral triangle of side 1 in tixe-y plane, centering the reaction-limited aggregates based on the bead model and the
triangle at the origin, and by placing apices at the two points Zimm algorithm for calculating the polymer hydrodynamic

(0, 0,4h). Results appear in Figure 9. Smalproduces values radius.) Only a single cluster was generated in our computation;
expected of the equilateral triangl@/R« — 1.10, RrusselC — no attempt has been made to perform ensemble averaging. This
1.05. Largeh again produce€/R¢ values that seem to increase ensemble averaging has been suggested to decrease the value
without limit. Interestingly,RrusselC appears always to give of Ry/Ry in branched polymef&° so that further ensemble

an error less than about 5% fhrless than about 1. calculations are required.
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method from the rather approximate, but relatively computa-
tionally efficient, HYDRO program, which is the working
computational tool available for general use.

We first compare results for a single pair of beads. Exact

1 results are available both f&, and [;].2%2%Let r be the radius
T of each of the two spheres, and letbe their separation.
- Consider first the simple case a sphere dumbbell where the

spheres are just touching. In this case we find the bead-model
calculation to be in error by-4% and+19%, respectively. (See
Table 4 for a tabulation oR, and [y].) The path-integration
error forR, is small (below 1%) and usually about 5% fay,[
consistent with the uncertainty in eq 7. At large enolg®r,

the HYDRO results become very accurate, as expected. The
intrinsic viscosity data of Table 4 are also summarized in Figure
11, which plots ratios of the approximate path-integral or
HYDRO results to the exact values. Notice the trend in the path
integration results: The prediction is about 4% too lovic/&r

= 1 and increases to nearly 7% too highL#2r = 50 before
Figure 10. A two-dimensional DLA cluster, consisting of 1000 cells  decreasing. This trend can be attributed to the shape dependence
of the simple cubic lattice. of g,, as mentioned above. The error bars in Figure 11 are
generated primarily by the uncertainty dép (only secondarily

by sampling error) and so are always broad enough to include
the exact result, except in the vicinity &f2r = 50. For that
particular range of shapes, falls slightly outside the range of

eq 7. As already mentioned, in the future we hope to be able to
predict the shape dependenceyptlirectly from the components

of the polarizability tensor, in which case our predictions for
[#] should improve.

These illustrative computations demonstrate that the bead-
model calculations must be performed judiciously. Improved
accuracy could be obtained by covering both spheres with many
dsmall beads. However, the computational cost increases ac-
cordingly. Not all practitioners of the HYDRO program are
aware of these limitations.

6. Comparison to Representative HYDRO Computations Figures 12 and 13 compare predictions for an overlapping
for Ry and [#] pair of beadsl(/2r < 1). This is known to be a particularly
We now report computations comparing the path-integral prob!ematic 'situation for numerical bead-quel computations,
results of Zeno with the predictions of the popular HYDRO @nd in practice, beads should be chosen without overlap. The
program of Garcia de la Torre and co-workers, which is path-mtegratlo_n approach, however, is not similarly restricted.
conveniently available on-lirfe4 These computations represent 1 N€ €rTor bars in Figures 12 and 13 are estimated from the upper
the particle as an array of beads or spheres distributed over its2"d lower bounds cited in eq 7. The exact hydrodynamic results,
surface and treat the center of each bead as a point source oivhen avgulable, _always faII_W|th|n the uncertainty intervals of
hydrodynamic interaction. Since the path integrations can also th€ Path-integration calculations. The two-bead HYDRO results,
be done for any body constructed as a union of spheres,on the other hand, remain abqut 4% or 5% too Iowl}gunnl
overlapping or not, we can perform direct comparisons on L/ 2r gets close to O, at which point the error d|sappears.
identical models. (However, as mentioned before, the path- Furthermore, the HYDRO results foy][become progressively
integration method is not restricted to bead representations andVorse as./2r approaches 0.
thus physically more faithful shapes can be used.) Our com- Next, we consider a & 3 x 3 array of 27 spheres on the
parisons indicate that the simplified bead-model computational Simple cubic lattice. Each sphere is one unit away from its
program, HYDRO, can lead to inaccurate results if too few nhearest neighbors and has radiushe ranges < 0.5 andr >
beads or overlapping beads are employed in the computations0-5 correspond to separated and overlapping spheres, respec-
These errors, which have been investigated previously by thetively. Results folR, and [] appear in Figures 14 and 15. Good
developers of HYDRO, are not fundamental to the bead-model agreement is not seen untitlecreases to about 0.2. When the
computational method, however, and more refined bead-modelspheres are just touchinB, is 4% too low and{] is 46% too
computations are possible which can reduce these errors tohigh. Again we expect that these errors of the bead model can
vanishingly small values. HYDRO predictions foy][can be be overcome by covering all the beads with numerous beads,
even more problematic than &, although these errors also  but the computation time again becomes appreciable.
seem to become small in the limit of a large number of beads. In the next case study, we consider a hollow block of beads,
Garcia de la Torre and Carrastodescribe the origin of  formed by constructing an array of dimensians n x non
discrepancies irvf], but the necessary corrections do not appear the simple cubic lattice, but retaining only those beads on the
to have been implemented in the on-line version of HYDRO. surface. With this model, we attempt to follow the spirit of the
There is no question that the general bead-model computationalbead-model approach: using many small beads to cover the
method is capable of obtaining highly accurate estimates of surface of a cube. The total number of beads is n® — (n —
hydrodynamic properties, but we must distinguish this general 2)3, and since HYDRO is limited to structures of 2000 beads

Interestingly, C/Rx = 1.09 for thed = 2 DLA cluster is
indistinguishable from the value for a circular disk to within
numerical error. By contrast, ttee= 3 DLA cluster gave the
value C/R¢ = 1.20 and thusR«/Ry = 0.91. This result is
contrasted with recent estimates of Lattuada eéfalho suggest
the rather low value oR«/Ry = 0.765 for DLA aggregates in
three dimensions. Other estimates for a variety of models are
discussed by Lattuada et #IThe large dispersion of results
illuminates the need for general algorithms like Zeno and
HYDRO. Finally, we note that the Russell and Rayleigh
approximations for DLA in both 3 and 2 dimensions are not
particularly accurate, signaling that such approximations shoul
generally be avoided for fractal objects.
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Table 4. Predictions for Dumbbells and Comparisons with Numerically Exact Results

Hydrodynamic Radius

L/2r Ry/r, exact Ry/r, path-integral results Ry/r, results of HYDRO program
1 1.3922 1.39+ 0.01; 0.1+ 0.7)% 1.334-4%
2 1.6054 1.66t 0.02; 0.3+ 1.2)% 1.601-0.3%
3 1.7156 171 0.02; 0.3+ 1.2)% 1.715;:-0.03%
5 1.8184 1.82+ 0.02; (+0.09+ 1.1)% 1.819;+0.03%
Intrinsic Viscosity, Arbitrary Units
L/2r [n], exact I7], path-integral results 7, results for HYDRO program
1 8.702 8.4+ 0.4; (—3.5+4.6)% 10.34:+19%
1.0201 8.824 8.5 04; (—3.7£ 4.5)% 10.43:+18%
1.1276 9.271 9.2 0.5; 0.7+ 5.4)% 10.90:+18%
1.5431 12.34 12.#£0.6; (—1.9+ 4.9)% 13.25:+7%
3.7622 37.22 3& 2; (+2.1+5.4)% 37.52:+0.8%
6.1323 84.02 8& 4; (+4.7+ 4.8)% 84.20:+0.2%
10.0677 208.6 226 10; (+5.5+ 4.8)% 208.7+40.05%
20 783.7 830t 40; (+5.9+ 5.1)% 783.7; 0%
50 4787 510Gt 300; (+6.5+ 6.3)% 4787; 0%
100 19030 2000&: 1000; (4-5.1+ 5.2)% 19030; 0%
200 75890 79006 5000; (+4.1+ 6.5)% 75890; 0%

aL = bead separatiom, = bead radius. The path-integral results are displayed with uncertainty estimates, and with percent error relative to the exact
results. HYDRO results are shown with percent error relative to exact results.

Intrinsic viscosity of dumbells Hydrodynamic radius, two overlapping beads
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of two overlapping beads, each of radiuss 1 and separatioh.

Figure 11. Comparison of predictions for the intrinsic viscosity of a

pair of nonoverlapping beads, each of radius 1 and separatioh.
Solid circles are the results of HYDRO, and open circles with error

bars are the path-integration results.

total, we have only considered valuesrobetween 3 and 19,

the intrinsic viscosity. Particular problems with HYDRO can

also arise if the beads are allowed to overlap. The recognition
of these problems is not new, but many of the researchers who

use the HYDRO program are apparently unaware of them. The

inclusive. Individual beads have radius 0.5. Figure 16 comparespath-integral method has the advantage that bead overlap has
the results for the two techniques. The same discrepanciesessentially no effect on the results of the method (the method

mentioned above-4% in R, and+45% in [y], are seen aN
= 26, but the discrepancies decrease with increakinghe
discrepancies iR, eventually drop below the inherent error of
the path-integration method, but discrepanciegjimgver fall

below 17%.

These comparisons imply that while the bead-model com-
putations allow, in principle, for the accurate computation o
Ry, errors arise from modeling spatially extended structures by
point-source hydrodynamic interactions transmitted throug

is more “foolproof” ), and it is possible to make computations
of reasonable accuracy in a relative short computational time.
HYDRO determinesR, to an accuracy of 4% or better for the
models considered, with accuracy improving with the sigg (

of the model, as long as the beads do not overlap. However, to

obtain accurate determinations of] [would require using

¢ considerably more than 2000 beads, and with computation time
varying asN?, we can expect such computations to be rather

p time-consuming if not prohibitive. The path-integration has times

space by the Oseen tensor. (Both the Oseen tensor and itof O(N), and it therefore permits the consideration of much

Rotne-Pragef! modification only provide correct descriptions

of the interaction between two spherical beads at infinite bead currently allows.

separations.) HYDRO's results consistently improve when an

larger and complex structures than the HYDRO method

As a final comparison between the HYDRO program and

increasing number of beads is employed, but the errors canpath-integral approaches, we consider several biological mac-
remain large even for a large number of beads, especially for romolecules and self-assembled macromolecular complexes of
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Figure 13. Comparison of predictions for the intrinsic viscosity of
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Figure 14. Hydrodynamic radius of a cubic array of 27 beads of Number of beads

various radii, computed both by the HYDRO program and by the path-

integration technique. Figure 16. Comparison of predictions by the HYDRO program and

the path-integration technique for a hollow block of beads. The ratios
of the predictions by HYDRO to those by the path-integration are

particular current experimental interest. The reliable computation displayed.

of R, and [y] for protein complexes and synthetic self-assembled
structures such as nanotubes is important for characterizing these Tubulin is a structural protein that formgs dimers, which
structures, and the consideration of test cases involving suchin turn normally self-assemble into hollow “nanotube” structures
structures is informative. We consider, therefore, the proteins composed of rolled up sheets of proteins that play a fundamental
myoglobin and immunoglobulin G, several ring forms of tubulin, role in cell mitosis. However, when codissolved with various
and the icosahedral cage structure clathrin which have recentlytoxins, viral agents, or chemotherapy drugs, tubulin self-
been considered in recent experimental investigations. Resultsassembles instead into closed rings, thereby interrupting cell
for these model biological macromolecular structures are division. We calculatdR, and [] of two ring structures, of 8
summarized in Table 5. In a separate paper, we have calculatecand 14 dimers, respectively, induced by the cyanobacterial
R, and 7] for a representative subset of the Protein Data Bank derivative cryptophycin. The rings are modeled by a set of
(about a thousand molecules), and we are continuing our overlapping beads, 21 beads per monofAet as prescribed
tabulation to encompass the entire datalsa4es’ by Diaz et alf* The overlapping bead model for the 28-mer
We constructed the myoglobin model using the X-ray crystal ring is shown in Figure 17 using coordinates provided by
structure 1a6m from the Protein Data Bafkepresenting each ~ Boukari®® Finally, we consider literature models of clathrin, a
amino acid wih a 5 Aradius bead centered at each€We biologically crucial protein complex involved in particle trans-
also consider the bead model of immunoglobulin G, available port through the cell membrane during endocyté%ighe
directly from the HYDRO Web sité} where it appears as a complete clathrin cage is a self-assembled icosahedral complex
test case. of 36 triskelion moieties. Dynamic light scattering measurements



Macromolecules, Vol. 40, No. 7, 2007 ard fy] of Nanoparticles and Macromolecule2587

Table 5. Comparison between Path-Integration and HYDRO Computations for Several Biological Molecules; HYDRO Results Are Displayed
with Percent Error Relative to the Path-Integral Results

Ry, NmM M [7], nm3 CPU time's
path- path- path-
model N integration HYDRO integration HYDRO integration HYDRO
immunoglobulin G [14] 15 5.84 5.71%2% 2.3(2)x 10® 2.577x 105 +12% 1 <1
tubulin dimer [65] 42 4.28 4.07%5% 8.0(3)x 1% 1.660x 10% +108% 2 <1
myoglobirf 151 2.06 1.988;-3.5% 89(5) 279.2:+-214% 7 5
triskelion [68] 192 145 14.38:0.8% 3.7(1)x 10¢ 4.02x 10% +9% 15 8
tubulin ring, 16-mer [65] 336 11.3 11.09;2% 1.51(8)x 10 2.24x 10% +48% 27 26
tubulin ring, 28-met [65] 588 16.3 16.19:-0.7% 5.0(3)x 10* 6.20x 10% +24% 44 97
clathrirf [68] 6804 33.3 3.7(2x 1P 620 ~1400
clathrin plus vesicle©[68] 6805 33.7 3.8(2x 1P 620 ~1400

aMyoglobin model: oe 5 A bead per amino acid centered at eagh DB code 1a6mP The overlapping bead model of the 28-mer tubulin ring is
depicted in Figure 17 The current version of HYDRO is limited to 2000 beads, which precludes computations on the two clathrin models. Computation
time is estimated by logarithmic extrapolatisiiThe internal vesicle of the clathrin complex was modeled as a single, large, interior spheesoverlapping
bead model of the clathrin complex is depicted in Figuref Binning  a 1 GHz Pentium Ill processor.

HYDRO sets a limit of 2000 beads and therefore does not allow
computations for the two largest molecular models. The
experimental estimate dR, for the 16-mer tubulin ring is
reported as the ratio dR, for the ring to that of the tubulin
dimer and has been determined from fluorescence correlation
spectroscopy and sedimentation velocity measurements to be
2.75, compared to our simulated estimate, 2.64 and the HYDRO
ratio of 2.72. (The HYDRO estimate agrees better with
experiment, but because of uncertainties in the geometry of the
molecule, it is not clear that this can be attributed to the relative
performance of the two computational methods.) Recent mea-
surements by Ferguson et al. were restricted to the triskelion
moieties that comprise the clathrin cage and dynamic light
scattering estimates fé¥, are not yet available. Note also that
because of hydrodynamic screening, inclusion of a particle inside
the clathrin cage has only a small effectR Intrinsic viscosity
measurements for clathrin are not available, but note the large
discrepancy between Zeno and HYDRO.

Table 5 also gives actual computation times for the two
approaches. The times displayed for the path-integration are for
integrations comprised of $1@rownian trajectories, which have
better than 1% accuracy {Dand about +2% accuracy irid[]
Since these are smaller than the uncertaintiespimand q,
respectively, and also comparable to experimental uncertainties,
10* trajectories are usually adequate.

7. Conclusions

We have appraised several approximation schemes for
transport properties of macromolecules having a wide variety
of shapes, using a recently developed path-integration technique.
The Kirkwood double-sum formula underestimates the hydro-
dynamic radius and hence underestimates the friction coefficient
and overestimates the diffusion coefficient, for all bodies except
the sphere. Errors fa#-state random coils are about 20% and
Figure 18. Overlapping-spheres model of a clathrin cage with an  apout 10% for coils with strong excluded volume. Errors for
internal vesicle. smooth globular shapes are less tham36, while for globular

proteins, errors are usually less than 10%. Errors for very flat
have been reported by Ferguson et’arhe bead coordinates  objects such as regular polygons or disks also fall in the range
and sphere diameters of clathrin are prescribed by Kirchh&fsen, of about 8-10%. Errors for uniformly slender bodies also
with the resulting model appearing in Figure 18. We also become small in the limit of high aspect ratio; this is observed
consider two other examples, one, of a clathrin cage containingeither for rodlike objects (highly prolate cylinders or rectangles
a spherical inclusion (also shown in Figure 18), based on the of high aspect ratio) or slender rings (tori and open cylinders).
suggestion of Fergusdf,to see how it affects th&, of the However, tapered slender bodies, e.g., ellipsoids of revolution,
clathrin. Finally, we consider a single triskelion moiety from isosceles triangles, or trigonal bipyramids, exhibit larger errors
which the clathrin cage is assembled. Consistent with our than uniformly slender bodies. The isosceles triangles and
previous results, the largest discrepancies between our pathirigonal bipyramids exhibit errors of 20% or larger at aspect
integration and HYDRO calculations occur for the model with ratios around 1%) and the data suggest that the errors might
the smallest number of beads € 42). The current version of  increase without limit. For ellipsoids, on the other hand, the
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(26) Douglas, J. F.; Zhou, H.-X.; Hubbard, J. Bhys. Re. E 1994 49,

errors tend to an asymptotic value of around 6%.
5319-5331.

'_I'he Rgssell_approxmatlon, applicable to three-dimensional (27) Zhou, H.-X.; Szabo, A.; Douglas, J. F.; Hubbard, JJBChem. Phys.
objects, is valid to about 5% or better for smooth globular 1994 100, 3821—3826.
shapes. The best agreement is obtained, obviously, for globular28) Garboczi, E. J.; Douglas, J. Phys. Re. E 1996 53, 6169-6180.
ellipsoids, i.e., neither too oblate nor too prolate. But it is not (29) Luty, B. A.; McCammon, J. A.; Zhou, H.-X]. Chem. Phys1992
particularly good in any other case. Likewise, the Rayleigh 97, 5682-5686.
approximation, for two-dimensional objects, is reasonably ¥ fd‘éeg%gig;ﬂ”bbard' J. B.; Douglas, J. F.Chem. Phys1997
accurate only for approximately circular shapes. (31) Zimm, B. H.Macromoleculesl98Q 13, 592-602.

Approximate bead-model calculations, such as the HYDRO (32) Fixman, M.J. Chem. Phys1983 78, 1588-1593.
program, also provide a useful means of estimating the (33) Fixman, M.J. Chem. Phys1983 78, 1594-1599.
transport properties of polymer solutions. Good accuracy for 34 g,o[g're’ J.J.; Garcia de la Torre Macromolecule 983 16, 331-
the intrinsic ViSCOS_ity requires many beads a'f]d bead ovgr_lap (35) Gar-cia de la Torre, J.; Lopez Martinez, M. C.; Tirado, M. M.; Freire,
must also be avoided. The ZENO method is not sensitive J. J.Macromolecules1984 17, 2715-2722.
to bead overlap and is a relatively efficient method for (36) Lattuada, M.; Wu, H.; Morbdelli, MJ. Colloid Interface Sci2003
calculating polymer transport properties in comparison to 268 96-105.

. - (37) Aichi, K. Proc. Math.-Phys. Soc. Jpn. (ToRyb908 4, 243-246.
HYDRO. The computational efficiency of the Zeno method (38) Rayleigh, J. WPhilos. Mag.1916 31, 177—186.

makes it particularly attractive, especially in computations of (39) Rayleigh, J. W. STheory of SoundDover Press: New York, 1945;
complex structures that become difficult by other methods of Vol. 2.
reliable accuracy. (40) Erma, V. A.J. Math. Phys1963 4, 1517-1526.

(41) Edwards, S. F.; Papadopoulos, GJ.JPhys. A1968 1, 173—-187.

P _ (42) Brenner, JChem. Eng. Scil964 19, 519-539.
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