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ABSTRACT: A number of methods for estimating the translational friction coefficientf and the intrinsic viscosity
[η] of polymers and nanoparticles have been proposed. These methods range from first-principles “boundary-
element” or “bead-model” solutions of the Stokes equation employing a precise description of particle shape, to
coarse-grained descriptions of polymer structures and approximate computational methods at an intermediate
level of description, and finally to phenomenological estimates that relatef to the surface area of the particle.
Analytic treatments normally involve slender-body and various “preaveraging” approximations, etc., that render
the calculation analytically tractable, but numerically uncertain. Powerful numerical path-integral methods have
become available in recent years that allow the assessment of the accuracy of the various approximate methods.
We compare several methods of computingf and [η] to determine their applicability to various classes of particle
shapes.

1. Introduction

The translational diffusion coefficientD of a dilute solution
of Brownian particles of arbitrary size and shape is related to
the Stokes friction coefficientf through the Einstein relation1,2

wherekB is Boltzmann’s constant andT is the temperature. This
relationship indicates that diffusion is governed by competition
between thermal energy and viscous forces, which respectively
excite and dampen particle motions. Dimensional analysis
implies that we can writef in three dimensionsformally as

where the “hydrodynamic radius”Rh has the units of length in
three dimensions and whereη is the solvent shear viscosity.
Stokes’ original calculation3 of f indicates thatRh of a spherical
particle equals its radius, while for other shapesRh provides a
useful measure of particle size and shape.

A second dynamical measure of particle size is the “intrinsic
viscosity”, [η], or, more formally, the “virial coefficient” for
the solution viscosity. The product

whereM is the molar mass of the particle, has units of molar
volume. Einstein’s calculation of the viscosity of a dilute
suspension of spheres1,2 indicates that the “hydrodynamic
volume” can be defined as

whereNA is Avogadro’s number.Vh is the volume of a sphere
having an equivalent intrinsic viscosity and provides another
basic measure of particle size and shape.

There is obvious value in predicting the diffusivity of
Brownian particles in a processing or a biological context.
Furthermore, the hydrodynamic radius and hydrodynamic
volume are important in macromolecular characterization by
dynamic light scattering, gel permeation chromatography,
sedimentation measurements, and other characterization mea-
surements.1,4 It is standard practice to validate models of
molecular size or shape by measuring these shape functionals
and their ratios.4 The general problem has been brought into
renewed focus recently in connection with the characterization
of nanoparticle dispersions, such as nanocomposites of exfoliated
clay, carbon nanotubes, and other complex-shaped “nanopar-
ticles”.

Numerous methods have been introduced to estimateRh and
[η]. Douglas and Freed review some of the history of this
problem leading up to recent renormalization group (RG)
calculations of these properties for polymers in solution.5

Unfortunately, the available analytic methods of computing these
properties often involve uncontrolled approximations, such as
the configurational preaveraging approximation (defined below)
or the truncation of theε-expansion in RG calculations. The
accuracy, therefore, of these computations is uncertain.5 The
difficulties are so severe that there is no known analytic method
for accurately calculating the friction coefficient of a single ideal
random walk chain. The difficulty of this problem is comparable
to solving theφ4 field theory in three dimensions.5 In other
words, an exact analytic solution for even this special class of
objects (flexible polymer chains without excluded volume
interactions) is apparently unattainable, and numerical ap-
proaches or approximation schemes must be used.

Numerical methods that consider complex-shaped objects to
be built up formally by a superposition of idealized hydrody-
namic point sources (“beads”) have been very useful in obtaining
reliable information about these transport properties. In principle,
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bead-model computations allow for the essentially exact com-
putation of hydrodynamic properties of complex-shaped par-
ticles, as long as the particles are described by a large number
of beads. However, computational expediency often makes such
an “exact” approach unfeasible, and approximate bead-model
computations such as Hydro have been introduced for the
purpose of routine estimates of hydrodynamic properties6-14 by
scientists involved in structural studies of complex-shaped
macromolecules and particles. Below, we compare our new
computational method for calculating transport properties to the
valuable working tool (Hydro) to understand the relative
advantages of each method. In our personal view, the description
of complex-shaped objects in terms of hydrodynamic beads is
somewhat cumbersome, requiring a large number of beads when
we want to describe fine structural details. We feel that the need
exists for more physically natural and computationally efficient
approaches to calculating the hydrodynamic properties of
complex-shaped particles. This led us to develop and validate
a numerical path-integration (PI) method that has proven quite
accurate in estimatingRh or [η] for arbitrarily shaped objects.
Our PI method is not exact (see below), but the uncertainties
are well prescribed by our former studies. This tool provides a
reliable standard for testing the performance of other ap-
proximate computational methods.

Of course, it is always possible to solve Stokes’ equation
directly by boundary-element techniques, in which the surface
of the macromolecule is tiled with a discrete set of polygons.
Applications of such techniques to the transport properties of
macromolecules include the work of Youngren and Acrivos,15

Brune and Kim,16 Allison,17 Zhao and Pearlstein18 and Aragon.19

Such calculations are also formally exact in the small-element
limit, but computation times areO(N3) whereN is the number
of boundary elements. Obviously, such calculations, as well as
high-resolution bead-model calculations involving a large
number of beads, would be an appropriate standard for judging
other approximation schemes. (Indeed, most of our confidence
in the approximations stated in eq 7 below is founded on just
such calculations and a limited number of results for which exact
analytic computations are possible.20,21) The path-integration
technique can also be applied to any collection ofN polygonal
boundary elements, but with computation times of onlyO(N).22-24

Admittedly, the front factor is generally larger for the path-
integration technique so that it is expected to be slower for small
N, but for large enoughN, the path-integration method will
always be faster. (The computational time of bead-model
calculations also scales asO(N3), so the efficiency of this method
is comparable to the boundary-element method.) For reasons
of speed and flexibility, we have chosen to use the path-
integration technique as the standard against which to judge
other approximate techniques.

2. Hydrodynamic-Electrostatic Interrelations
Our path-integration approach for calculating the transport

properties of complex-shaped particles relies on an analogy
between hydrodynamics and electrostatics that is based on the
simple observation that an angular preaveraging of the Green’s
function for the Stokes equation (the Oseen tensor) is exactly
the Green’s function for Laplace’s equation, or the Newtonian
potential,25-27 1/r. (In fact, such preaveraging of the Oseen
tensor is a relatively standard approximation in the theory of
the transport properties. In other words, many authors have
applied the hydrodynamic-electrostatic analogy, often without
knowing it.) There are many interrelations between electrostatic,
hydrodynamic, and elastostatic properties, some exact and others
approximate, that derive from this simple observation. These

are discussed at length by Douglas and Garboczi28 and by
Mansfield and Douglas.24 In particular, we are generally
concerned with the energies of fields associated with the
presence of particles. These energies may either be the self-
energies of the particle generated by the particle itself, as in
the electrostatic field energy of a charged conducting sphere in
space, or they are reaction field energies caused by the presence
of a particle in an applied external field, as in the case of a
charged conductor placed within an applied electric field. In a
hydrodynamic context, the translational friction coefficient of
a Brownian particle is a particle self-field energy, while the
intrinsic viscosity corresponds to a reaction-field energy func-
tional.28 The interrelations between these fundamental hydro-
dynamic, elastic, and electrostatic “shape functionals” ultimately
derive from a common formulation of these boundary value
problems in a continuum mechanics description that involves
the Laplacian operator, which in turn engenders a general
connection with Brownian motion that we exploit below.

The hydrodynamic-electrostatic property interrelations just
mentioned imply, among other things, the following simple
direct relations for the hydrodynamic radiusRh and intrinsic
viscosity [η]:25-27

whereC and 〈r〉 are the electrostatic capacity and the mean
electrostatic polarizability (1/3 the trace of the electrical
polarizability tensorr) of a conducting object. The capacityC
also governs the rate at which heat diffuses from a body at fixed
temperature into the surrounding medium and other transport
properties relating to shape (e.g., the Smoluchowki rate constant
governing the steady-state diffusive flux of chemical species
to or from a source having the shape of the particle in
question).24,28 By direct analogy,Rh governs the rate of
momentum diffusion away from a particle under Brownian
motion, which accounts for dissipation (friction). The average
polarizability〈r〉 likewise has many physical applications such
as the leading virial coefficient describing the electrical
conductivity and thermal conductivity of a suspension of
arbitrarily shaped objects having high electrical or thermal
conductivity compared to the suspending medium.24,28 The
relation eq 6 arises because the application of shear to a fluid
with suspended particles of general shape creates a stress dipole
(“stresslet”) that reacts upon the applied field in much the same
way that a conducting particle perturbs an electric field. There
are well-known, rigorously proven, variational inequalities or
“isoperimetric relations” that imply, for all objects of a given
volume, thatC and 〈r〉 are minimized for a sphere.20 The
electrostatic-hydrodynamic analogy implies thatRh and [η] are
also minimal for spheres, at least to within the accuracy of the
analogy, and on the basis of our experience, we conjecture that
this is in fact the case. Therefore, these functionals are suitable
for shape classification, measuring departures from sphericity,
in addition to their applications relating to the characterization
of particle structure.

While qh andqη are not universal constants for all objects,
eqs 5 and 6 have been shown to hold to a high degree of
approximation for the range of particle shapes for which exact
or accurate numerical results exist:20,21,26,28

Rh ) qhC (5)

J ) M[η] ) qηNA〈r〉 (6)

qh ) 1.00( 0.01 and qη ) 0.79( 0.04 (7)
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The uncertainty in eqs 5-7 is usually comparable to experi-
mental uncertainty, so that reliable estimates ofRh and [η] can
be obtained on the basis of these relations.

These electrostatic-hydrodynamic property interrelations are
also important becauseC and 〈R〉 can be simultaneously
calculated to high accuracy for arbitrarily shaped objects using
a numerical path-integration method that exploits a fundamental
connection between Brownian motion and Laplace’s equa-
tion.22,23,27,29,30In particular, this procedure involves launching
random walks from a sphere enclosing the “probed” body and
collecting statistics on the fraction of trajectories that hit the
body as a function of the position from which they are initiated
on the launch sphere. This Monte Carlo sampling method is
exact forC and〈r〉 in the limit of an infinite number of random
walk trajectories, and finite-sampling uncertainties can be
estimated from the variance in the results of several independent
integrations. We are thus in a position to estimateC, 〈r〉, Rh,
and [η] for arbitrarily shaped objects via eqs 5-7.

Becauseqη is given in eq 7 only to within 5%, our approach
engenders a comparable uncertainty in [η]. This variation inqη
arises entirely from its dependence on particle shape (e.g.,qη
) 0.833 for single spheres, but only 0.75 for elongated
ellipsoids).20 The value 0.79 represents a compromise over all
classes of shapes, and the uncertainty(0.04 has been set large
enough to cover practically all possible cases.20 The path-
integration technique actually gives us all nine components of
the polarizability tensor, and we are currently investigating the
degree to which the shape dependence ofqη can be determined
from the components ofr. If it can, then we should be able in
the future to give estimates of [η] with even less uncertainty.

A further description of the path-integration technique, its
validation through comparison to shapes where exact results
are known, and its application to the calculation of the transport
properties of proteins and other particle shapes of practical
interest may be found in our previous work.22-24 In the present
work, we assess the accuracy of other approximate methods of
estimatingRh or [η] and use the path-integration technique as
the standard against which to judge these other methods.

3. Some Approximate Methods for CalculatingRh or [η]

A. Numerical “Bead-Model” Calculations. A standard
approach in the computation of dynamical properties of
polymers, employed, for example, in the well-known Rouse-
Zimm formalism,1,2 is to model individual segments as “beads”
and to treat each bead as a point source of hydrodynamic
interaction, the strength of the interaction being controlled by
the size of the bead. The hydrodynamic interaction is transmitted
through space via the Oseen tensor describing a point hydro-
dynamic source. (Taking the angular average of this tensor gives
a Newtonian potential, 1/r, which is the Green’s function for
the Laplacian, as mentioned above.) By placing many of these
point sources over the surface of a rigid body, the friction
coefficient and the intrinsic viscosity can be accurately esti-
mated. The rigid-body assumption implies that we are not
concerned with particles exploring conformational degrees of
freedom as they diffuse. A more rigorous treatment of flexible
particles would require the time-dependent analogue of the
Oseen tensor as well as other complications. Zimm31 has
forcefully argued that the rigid-body approximation is sufficient
for the accurate computation ofRh or [η] (low-frequency
transport properties) of flexible polymers. He recommends
computingRh or [η] independently for an ensemble of confor-
mations, treating each as a rigid body, and taking ensemble
averages. Although this approach has been challenged,32,33 its

ability to rationalize observations on the properties of flexible
polymers is perhaps the strongest argument in its favor, and
we also adopt this assumption below.

Bead-model calculations ofRh, [η], and other polymer
properties are widely utilized and are generally considered to
give accurate estimates.6-13 The widespread use of this com-
putational method is due, in part, to the availability of software.14

In this work, we compare one of the most widely utilized and
respected bead-model programs, HYDRO,14 with our path-
integration calculations. In the interest of making direct
comparisons, we apply both HYDRO and the path-integrations
to the same bead structures. However, as already mentioned,
the path-integral technique is not limited to bead configurations.
We can also treat surfaces modeled by a collection of boundary-
element polygons.

We also consider several more approximate computational
methods that are in widespread use. Our goal in these
comparisons is to understand the physical nature of the errors
involved in these approximations and to clarify the type of
particle surfaces to which the approximate methods can be
applied with confidence.

B. The Kirkwood Double-Sum Formula. Perhaps the most
widely utilized analytic approximation of the friction coefficient
of polymer chains is the “double-sum formula” first derived by
Kirkwood for flexible and rodlike polymers1,2

whereN, f0, andrij represent respectively, the total number of
segments, the friction coefficient of an isolated segment, and
the displacement between two segments. (Freire and Garcia de
la Torre34 also present a useful discussion of double-sum
formulas in transport theory.) The “Coulombic” interaction term
1/rij (the result of an angular averaging of the Oseen tensor in
the approximate computations leading to eq 8) results from the
solvent-mediated hydrodynamic interaction between segments
i and j, and we therefore construe the sum as extending only
over segments at the surface for cases other than flexible
polymers, when the whole chain is a “surface”. In the limit of
largeN, we can disregard the first term and replace the sums
with surface integrals to obtain

with

Here,A is the surface area of the body, and∫Sdr represents a
surface integral. We will refer toRK as the “Kirkwood radius”.
According to eq 10, the classic Kirkwood approximation of the
polymer hydrodynamic radiusRK is simply the harmonic mean
distance between arbitrary pairs of points on the surface.
Comparison of eqs 1, 2, and 9 indicates thatRK directly
approximatesRh within the KR double-sum approximation:

The derivation of eq 8 requires several approximations that make
its accuracy uncertain. Previous investigations of the accuracy
of eq 11 for random coils have been performed by Zimm31 and
by Garcia de la Torre et al.,35 but we are unaware of appraisals
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kBT
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kBT
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N
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for particles of other shapes. The double-sum formalism is still
often invoked to describe the transport properties of complex-
shaped particle clusters such as DL aggregates.36 Here we
examine the approximation for a wide class of particle shapes
to determine the classes of particles for which the approximation
applies. We also address the physical reasons for which this
classical mean-field approximation breaks down, since this
problem is essential to developing a more accurate analytic
theory of polymer transport properties. The errors of the double-
sum formula can be avoided in the numerical bead model
calculations, but we are not aware of any analytic expressions
that go beyond the double-sum formula. It is this analytic
tractability that accounts for the continued use of the KR double-
sum approximation.

The double-sum KR approximation, when applied to flexible
polymers, is written

In this form, it involves a configurational preaveraging ap-
proximation (see below),5 which effectively replaces the en-
semble of conformations with its mean average (a mean-field
approximation as in critical phenomena). This is not the same
approximation as the rigid-body approximation mentioned above
or the angular preaveraging approximation involved in eqs 5-7.
In the rigid-body approximation, we solve Stokes’ or Laplace’s
equation independently for each conformation and average over
all such solutions. In the configurational preaveraging ap-
proximation, we first average over conformations and then solve
some form of Stokes’ equation only once for the mean-field
configuration. Configurational preaveraging can be a serious
approximation. Large errors can arise for random-coil polymers
and other complex-shaped, statistically defined objects. These
errors result from “rare” configurations that make a dispropor-
tionate contribution to the ensemble average so this is a problem
of “large deviation theory”.24 In the case of random coil
polymers, the “rare” configurations are extended chain confor-
mations with very large friction coefficients. These configura-
tional preaveraging errors are particularly annoying from the
standpoint of analytic computation since chain flexibility or
excluded volume interaction influences these conformational
fluctuations and thus can lead to substantial variations in the
magnitude of configurational preaveraging errors resulting from
the Kirkwood formula.5 The good news is that these errors are
expected to become very small when the chains become highly
extended and shape or friction fluctuations are more limited.
Below, we test the validity of eq 8 or eq 12 for a number of
polymer shapes, both rigid particles and flexible random coils,
to better establish the uncertainties of the Kirkwood approxima-
tion and the appropriate class of bodies to which this ap-
proximation should be applied.

The derivation of the KR double-sum formula employs the
replacement of the Oseen tensor with 1/r, but it also requires
further approximations. Therefore, it is less accurate than
predictions based solely on the electrostatic-hydrodynamic
analogy, but it still has an interesting electrostatic interpretation.
A chargeQ distributed uniformly over a surface has self-energy
Q2/2RK, while the self-energy of a perfect conductor of the same
shape isQ2/2C. Since the perfect conductor possesses the charge
distribution of minimum energy, we obtain immediately the

following inequality, which has already been demonstrated for
random coils35

and which implies that the double sum always underestimates
the friction coefficient and always overestimates the diffusion
coefficient. Furthermore, just asC represents the proportionality
between Q and V for a perfect conductor,RK gives the
proportionality betweenQ and 〈V〉 for a uniform charge
distribution.

This connection betweenC and the chain friction coefficient
f can be understood more precisely from a direct computation
of the capacity of a polymer chain of conducting particles using
a direct extension of the KR theory to the corresponding
electrostatic problem.21 The average capacityC of a polymeric
chain can be exactly described as a superposition of point
sources described by Coulomb’s law so that the average capacity
of an ensemble tethered polymer chain of conducting beads each
of capacityc formally equals

where 〈‚‚‚〉 represents an averaging of the polymer chain
ensemble. The “configuration preaveraging approximation” in
this notation equals

where the average of a product is taken to be the product of the
averages. Introducing this mean-field approximation into eq 14
makes it reduce exactly to the KR double-sum formula forRh,
defined by eq 12, wherec is replaced by the bead friction
coefficient,f0. More generally, eq 14 describes the KR integral
equation for the friction coefficient of a polymer chain where
the Oseen interaction has been angularly averaged so that it
replaced by the Newtonian potential for a point charge in three
dimensions, 1/r. The recognition of the relation between eq 14
and the KR equation is the origin of the electrostatic analogy
betweenC and f and forms the basis of our computational
method.21

C. Russell and Rayleigh Approximations. Other ap-
proximations forRh are available when the particle or polymer
is either spheriodal or disklike. Such surfaces can naturally be
approximated by a spherical harmonic expansion about either
the sphere or the disk, and it is possible to calculatef, C, and
other transport properties in a formally exact, but laborious,
perturbation expansion.37-43 Douglas and Freed5 have noted that
combining the Fourier expansions forf andC to leading order
in such a perturbation expansion gives the result that bothRh

and C can be approximately related to the particle’s surface
areaA as

This approximation forC was introduced long ago by Russell,
and we therefore refer to it as the Russell approximation and to
RRussellas the “Russell radius”.44,45Pastor and Karplus46,47have
advocated eq 15 on empirical grounds to estimate the friction
coefficient of molecular segments in Brownian and Langevin
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dynamics simulations of proteins and other complex polymers,
despite its uncertain basis, and the method is frequently utilized
in recent scientific literature relating to the molecular dynamics
of proteins. It would clearly be valuable to assess the uncertainty
of this relation and to determine the class of bodies to which it
applies.

We can similarly develop a spherical harmonic expansion
about the disk limit, as first considered by Rayleigh39 in the
case of C. This leads to the corresponding approximation
suitable for “flat”, membrane-like, bodies

whereA represents the area of the body in two dimensions. We
will also assess the numerical validity of this relation.

Before moving to other matters, we note that the approxima-
tions eqs 15 and 16 become exact for the sphere and disk,
respectively, so that

and

whereR represents the radius of either the sphere or disk. The
equality betweenRh and C applies also to general triaxial
ellipsoids of revolution, of which the sphere and disk are special
cases.25

4. Path-Integral Techniques for ComputingC and [η];
Monte Carlo Techniques for Computing RK and A

The path-integral technique, or “Zeno algorithm”, for simul-
taneously estimating bothf and [η] involves enclosing the
surface in question inside a sphere,L; initiating NW random
walks at arbitrary points on the surface ofL; and following their
trajectories until they either move to within a small distanceε

of the surface or wander off to infinity.22,23,30,48The values of
C and 〈r〉 are determined from the statistics of these walks.
The technique is numerically exact for bothC and 〈r〉 in the
limit NW f ∞ andε f 0; at finiteNW andε we expect relative
errors of magnitudeNW

-1/2 andε/C, respectively. Then,Rh and
[η] are determined using eqs 5-7. In the calculations reported
here, we typically useNW ≈ 106-108 andε/C ≈ 10-6-10-5.
Uncertainties in our calculations are given in the tables but are
not generally included in the text for reasons of space and
readability. All uncertainties arise from two sources. The first
is sampling error, which is estimated by performing 20
independent integrations, taking the mean of these 20 values
as the final result and taking (20)-1/2 times the standard deviation
of these 20 values as the uncertainty in the final result. The
second source of uncertainty arises from eq 7.

The Zeno algorithm requires us to compute the minimum
distance between arbitrary points outside the surface and the
surface itself.22 We generally examine bodies that are con-
structed as unions of some numberN of simple component
objects such as boundary eleents or beads. In every case,
therefore, the minimum distance to the surface is determined
by computing the minimum distance to each component and
taking the minimum over all components. Computation times,
therefore, areO(N). Boundary-element solutions15-19 of Stokes’
or Laplace’s equation as well as the bead-model calculations6-13

areO(N3) for N the number of boundary elements or beads, so
that the path-integration technique is inherently faster whenN

is large. All additional details on the technique are given in the
literature.22,23

We calculateRK by generatingNS points distributed randomly
and uniformly over the surface and computing the harmonic
mean by averaging over successive pairs of points. Provided
we can sample all regions of the surface without bias, we expect
good accuracy, with relative errors on the order ofNS

-1/2.
Uncertainties are again estimated by taking 20 independent
integrations. The same integration also permits determination
of A. In the Supporting Information accompanying this paper,
we describe the techniques followed to take unbiased samples
over complex surfaces.

5. Comparative Calculations for Random Coils and
Other Special Structures

We have considered three different random-coil polymers
models. The first is a pearl-necklace model without excluded
volume, discussed in more detail elsewhere.24 We have also
assembled ensembles of simple-cubic lattice self-avoiding walks
and self-avoiding rings. The self-avoiding walks were generated
by the pivot algorithm. The self-avoiding rings were generated
concurrently, taking each instance of a self-avoiding walk
returning to a site adjacent to the origin as one instance of a
self-avoiding ring. (Obviously, this approach for generating rings
becomes inefficient at largeN; nevertheless, we were able to
generate adequate ensembles of about 50 000 members forN
as large as 1200 as well as one of about 4500 members atN )
5000.) The Kirkwood radius for self-avoiding walks and rings
was calculated via eq 12. To form a space-filling body for the
path-integration calculation, each walk or ring was modeled as
an array of unit cubes, one cube per lattice site. Because the
path-integration is more computationally intensive than eq 12,
it was limited to only 1000 walks or rings at each value ofN
selected randomly from the larger ensemble. The ensemble
averages forC and〈r〉 were then used to determineRh and [η]
as in eqs 5-7. A number of interesting results concerning the
transport properties of self-avoiding walks have emerged in these
calculations and will be reported elsewhere.49 In this paper, we
concentrate on the validity of the Kirkwood double-sum formula.

Random Coils in theθ-State.When both static and dynamic
light scattering studies began to appear for random coil
polymers, it was immediately noticed that theoretical predictions
for Rg/Rh were inconsistent with experiment.50-53 This incon-
sistency is attributed to approximation errors in the double-sum
formula or other computations based on the configurationally
preaveraging approximation.31,35 For θ-state polymers (ap-
proximated by random walk chains), the Kirkwood double-sum
formula predictsRg/RK ) 8/(3xπ) = 1.50, while experiments
yield Rg/Rh = 1.27. Calculations based on bead models with
non-preaveraged Oseen tensor giveRg/Rh ) 1.28( 0.02,31,34,35

in much better agreement with experiment. Application of the
path-integration technique to a pearl-necklace model without
excluded volume yieldsRg/Rh ) 1.253( 0.003,24 in qualitative
accord with an earlier, but less precise, numerical study utilizing
path-integration,27 and it yieldsC/RK ) 1.201( 0.003.24 These
calculations all indicate, therefore, that the double-sum formula
is in error by about 20%. Renormalization group theory
estimates of the error due to the configurational preaveraging
approximation, although highly uncertain, are also consistent
with these calculations.4 The fractal mass scaling characteristics
of Rh and [η] for flexible polymer chains and other fractal
objects are reported elsewhere.22 The scaling law forRh has
also been recently examined by Tseng et al.54 for a variety of
model fractal aggregates based on the Zimm bead model method

Rh ≈ C ≈ RRayleigh) 2π-3/2A1/2 (16)

RK ) RRussell) C ) Rh ) R (spheres) (17)

RRayleigh) C ) 2R
π

(circular disks) (18)
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of calculation. (See also ref 4 for a discussion of this mass
scaling ofRh and the scaling variables that govern the rate of
approach of these scaling relations to their asymptotic long chain
limits.)

Random Coils, Good SolVent Conditions.For both self-
avoiding walks and rings, we find thatC/RK depends only
weakly on N and extrapolates to about 1.10 in the limit of
infinite N; i.e., the double-sum formula is in error by about 10%.
This is consistent with our arguments above where we noted
that weaker shape fluctuations should render the double-sum
formula more accurate. Experimental values ofRg /Rh cluster
around 1.5, but values as low as 1.3 and as high as 1.7 are also
reported.54 The so-called “draining effect”, i.e., the sensitivity
of Rh and [η] to monomer size and shape and the associated
slow convergence ofRg/Rh to its infinite N value, appears to be
responsible for this commonly reported experimental disparity.
(In a separate work, we will focus on quantifying this draining
effect.) Here we state our basic finding that the ratioRg/Rh for
self-avoiding walks and rings approaches 1.46 and 1.20,
respectively, asN f ∞.49

Regular Polyhedra. Results for the five Platonic solids appear
in Tables 1 and 2. Note thatC/RK obtains its largest value of

1.04 for the regular tetrahedron and decreases toward unity for
all the higher polyhedra. The ratioRRussell/C is less than about
1.05 for these five solids and tends toward unity for the higher
polyhedra (although this trend is reversed for the cube and the
tetrahedronspresumably because cubes and tetrahedra represent
significant perturbations away from the sphere).

Regular Polygons.As displayed in Table 1,C/RK is largest
at about 1.10 for equilateral triangles and tends to the circular
disk value of 1.08 for higher polygons. Table 3 indicates that
RRayleigh/C is about 0.94 for the equilateral triangle and tends to
1 for higher polygons. Therefore,RRayleighis a better approxima-
tion thanRK for these shapes.

Rectangles.Figure 1 shows thatRK and C differ by about
9% for squares but that their ratio apparently converges to unity
for rectangles of high aspect ratio. On the other hand,RRayleigh

gives a superior approximation only for aspect ratios near unity,
and the quality of the approximation deteriorates rapidly with
increasing aspect ratio.

Cylinders.Figures 2 and 3 show thatC/RK for both open
and closed cylinders having large length to diameter ratio (rod
limit) tends asymptotically to unity.C/RK for closed cylinders
of small length to diameter ratio tend asymptotically to the
circular disk value, 1.08, whileC/RK for open cylinders of small
length to diameter ratio (ring limit) tends asymptotically to 1.

Table 1. Values of the RatioC/RK for Various Objects

particle shape C/RK

miscellaneous bodies
sphere 1.0000(2)a

closed cylinder (L/D ) 1) 1.0121(6)
tight torus 1.0135(6)
ellipsoid (1:2:3) 1.014(3)
open cylinder (L/D ) 1) 1.0436(6)
DLA cluster (d ) 3) 1.204(6)

platonic solids
icosahedron 1.004(1)
dodecahedron 1.0061(6)
octahedron 1.0172(6)
cube 1.019(1)
tetrahedron 1.039(2)

proteins
2hft 1.040(7)
1qgv 1.043(5)
1a6m 1.048(6)
1qub 1.048(7)
1axj 1.053(6)
1cvl 1.057(6)
1mml 1.060(6)
1gof 1.061(4)
1tl2 1.074(6)
1cf9 1.098(5)
1bp7 1.105(7)
1aoi 1.175(8)

two-dimensional objects
circular disk 1.079(3)
regular hexagon 1.081(3)
regular pentagon 1.086(2)
square 1.10(1)
equilateral triangle 1.103(3)
right triangle 1.108(3)
DLA cluster (d ) 2) 1.092(8)

lumpy spheres, hemispherical protrusions
a/R ) 0.100,C/R ) 1.0728(5) 1.022(5)
a/R ) 0.0667,C/R ) 1.0497(4) 1.009(1)
a/R ) 0.0500,C/R ) 1.0370(4) 1.007(2)

lumpy spheres, fcc protrusions
a/R ) 0.0707,C/R ) 1.0170(1) 1.002(2)
a/R ) 0.0589,C/R ) 1.0112(2) 0.999(1)
a/R ) 0.0505,C/R ) 1.0134(2) 1.004(2)
a/R ) 0.0442,C/R ) 1.0115(2) 1.005(2)
a/R ) 0.0393,C/R ) 1.0085(2) 1.000(2)
a/R ) 0.0353,C/R ) 1.0092(2) 1.003(2)

a The digit in parentheses gives the uncertainty in the last decimal place.

Table 2. Values of the RatioRRussell/C for Various Objects

particle shape RRussell/C

miscellaneous bodies
open cylinder (L/D ) 1) 0.8693(1)a

sphere 1.00000(0)
ellipsoid (1:2:3) 1.0038(6)
tight torus 1.0178(1)
closed cylinder (L/D ) 1) 1.0278(1)
DLA cluster (d ) 3) 1.435(4)

platonic solids
icosahedron 1.0176(5)
dodecahedron 1.02819(9)
octahedron 1.0304(2)
tetrahedron 1.0398(7)
cube 1.0460(4)

proteins
1qub 0.988(6)
2hft 1.111(7)
1axj 1.127(3)
1qgv 1.144(3)
1a6m 1.152(4)
1cvl 1.186(4)
1mml 1.192(6)
1bp7 1.210(7)
1gof 1.225(3)
1aoi 1.228(7)
1tl2 1.231(6)
1cf9 1.443(3)

lumpy spheres, hemispherical protrusions
a/R ) 0.100,C/R ) 1.0728(5) 1.2762(7)
a/R ) 0.0667,C/R ) 1.0497(4) 1.2955(6)
a/R ) 0.0500,C/R ) 1.0370(4) 1.3046(6)

lumpy spheres, fcc protrusions
a/R ) 0.0707,C/R ) 1.0170(1) 1.0679(3)
a/R ) 0.0589,C/R ) 1.0112(2) 1.0560(4)
a/R ) 0.0505,C/R ) 1.0134(2) 1.0759(3)
a/R ) 0.0442,C/R ) 1.0115(2) 1.0766(4)
a/R ) 0.0393,C/R ) 1.0085(2) 1.0619(3)
a/R ) 0.0353,C/R ) 1.0092(2) 1.0797(3)

Table 3. Values of the RatioRRayleigh/C for Various Two-Dimensional
Objects

body RRayleigh/C body RRayleigh/C

DLA cluster (d ) 2) 0.550(2)a pentagon 0.9906(7)
right triangle 0.922(2) hexagon 0.9939(7)
equilateral triangle 0.9409(9) circular disk 0.9990(6)
square 0.9808(9)
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While RRussell/C for both types of cylinders is near unity for
aspect ratios near 1,RRussell/C for closed cylinders tends to the
circular disk value, 1.10 for small length to diameter ratios, and
it decreases rapidly for both open and closed cylinders as the
length-to-diameter ratio increases.

Ellipsoids.Tables 1 and 2 contain entries for the ellipsoid
whose axes are in the ratio 1:2:3, while Figure 4 displays results
for ellipsoids of revolution over a broad range of aspect ratios.
Both RK andRRussellare excellent approximations for the 1:2:3
ellipsoid, and apparently the approximations apply well to
ellipsoids in general, unless they have extreme aspect ratios.
Oblate ellipsoids of revolution approach the circular disk values
(C/RK ) 1.08,RRussell/C ) 1.11) asymptotically;C/RK for prolate
ellipsoids of revolution tends to a value around 1.06 at aspect
ratios of 10+3. It is impossible to tell from the data whether
C/RK for prolate ellipsoids increases without bound or tends to
an asymptote;RRussell/C decreases rapidly for prolate ellipsoids.

Tori. Data for tori appear in Tables 1 and 2 and in Figure 5.
The “tight torus” or the torus for whichr1/r2 ) 1 exhibitsC/RK

) 1.018. The ratioC/RK increases to a maximum of about 1.03
whenr1/r2 is about 1.7, and then tends to unity asymptotically.
RRussell/C passes through a maximum of about 1.04, before
decreasing rapidly.

“Lumpy” Spheres.We now consider spheres covered with
small protrusions. This is an important problem because the
surfaces of large biomolecules are rough. As we will see, this
roughness implies that the Russell approximation is not very
good. Consider a large sphere of radiusR, with small hemi-
spherical protrusions of radiusa on its surface. Figure 6 displays
a two-dimensional analogue of this construction. The surface
area can be written asA ) 4πR2 + n∆, wheren is the number
of protrusions and∆ is the difference in area between a
hemisphere and a circle, both of radiusa: ∆ ) πa2. Further-
more, neglecting curvature of the large sphere and assuming
2-d close-packing of the protrusions impliesn ) 2πR2/x3a2

Figure 1. RatiosC/RK andRRay/C for rectangles of basea and height
b.

Figure 2. RatiosC/RK andRRuss/C for open cylinders of the indicated
length to diameter ratio. Open cylinders have no ends, so smallL/D
corresponds to ringlike structures while largeL/D corresponds to rodlike
structures.

Figure 3. RatiosC/RK andRRuss/C for closed cylinders of the indicated
length to diameter ratio. SmallL/D corresponds to the circular disk or
plate limit while largeL/D corresponds to rodlike structures.

Figure 4. RatiosC/RK andRRuss/C for ellipsoids of revolution, where
a andc represent semiaxes.
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andA = (1.91)4πR2, independent ofa. So each protrusion makes
a smaller contribution toA asa decreases, but the total number
of protrusions grows in inverse proportion. The surface area is
almost twice that of the sphere without protrusions, even when
a , R. We note that the capacity (friction coefficient in the
hydrodynamic-electrostatic analogy) of any object is bounded
below and above by the radii of the largest inscribed sphere
and the smallest circumscribing sphere, respectively, so thatR
e C e R + a.55 Therefore, it follows for the lumpy sphere
model thatRRussell/C f x1.91 ) 1.38 in the limit of protru-
sions small relative to the sphere size,a/R f 0. Several model
calculations of this effect, fora/R ) 1/10, 1/15, and 1/20, are
summarized in Tables 1 and 2, under the heading “lumpy
spheres, hemispherical protrusions”. Approximate close packing

of the protrusions was achieved by first placing a single
protrusion of radius 1 at spherical polar coordinates (R,θ,æ) )
(R,π,0) on the larger sphere of radiusR and then placing each
subsequent protrusion at the point (R,θ,æ) which maximizesθ
subject to the constraint that there is no overlap with previously
placed protrusions, identifying such maxima with grid searches
of resolutionπ/1000 in θ and 2π/1000 in æ. This continued
until no more protrusions could be added. Because the lumpy
sphere model tends to a uniform spherical charge distribution
in the limit a/R f 0, we also find good agreement betweenRK

andC.

A second, related lumpy sphere model is also summarized
in Tables 1 and 2 under the heading “lumpy spheres, face-
centered cubic (fcc) protrusions”. For this model, we take a
sphere of radiusR and form protrusions by overlaying a close-
packed fcc lattice of smaller spheres, again of radiusa. All lattice
spheres whose centers lie inside the large sphere and also
protrude from it are included in the final model. Figure 6
displays a two-dimensional analogue of this construction. In
this case,RRussell/C is smaller than the 1.38 prediction because,
on average, bothn and∆ are smaller, but again, it is independent
of the ratioa/R. We again note good agreement betweenRK

andC.

Model Proteins.The so-called solvent-accessible surface56

of typical globular proteins is sometimes used to determine, via
the Russell approximation, the hydrodynamic radius of segments
of proteins.46 The solvent-accessible surface has a structure
similar to the “lumpy” spheres discussed above, and so our
results for those models call this practice into question. To
examine this more closely,C/RK andRRussell/C were determined
for a few protein structures obtained from the Protein Data
Bank.57 Surfaces were represented by placing a sphere of radius
5 Å at eachCR. For most of the proteins studied,C/RK lies in
the range 1.04-1.10. The one exception, 1aoi, has a long
pendant chain.RRussell/C is found in the range 1.1-1.4 for all
but one of these proteins, 1qub, for which it is close to 1. The
protein 1qub has the gross structure of a curved sausage, with
contour-length-to-diameter ratio of around 10. We note from
Figures 3 and 4 that smooth cylinders and ellipsoids of
comparable aspect ratios displayRRussell/C values of around 0.8-
0.9. But ours is a “lumpy” sausage, for which the arguments
above must also apply. Apparently, the lumpiness brings
RRussell/C back to near 1. However, all the other proteins are
not elongated, but nevertheless lumpy, soRRussell/C is greater
than unity.

Nested Spheres.Conducting surfaces with highly nonuniform
charge distributions are expected to show the largest discrep-
ancies betweenRK and C. A pair of concentric, or nested,
conducting spheres provides one example of a nonuniform
charge distribution, since, if two concentric spheres are held at
the same potential, all the charge accumulates on the outer
sphere. This is a relevant question because it can be taken as a
model of a macromolecule with a cavity. Letr1 andr2 represent
respectively the radii of the inner and outer spheres. The inner
sphere can be considered part of the exterior surface if we
imagine that a hole is drilled through this spherical shell (see
the inset in Figure 7). For mathematical tractability, the diameter
of this hole is assumed to be vanishingly small. In the
electrostatic analogy, the hole represents a thin wire that keeps
both spheres at the same potential. Both the capacity and the
hydrodynamic radius are obviously equal to the radius of the
outer sphere. However, in calculatingRK andRRussell, we take
the surface to be both spheres. In the limitr1 f r2, the two
charge distributions approach one another, and we expect

Figure 5. RatiosC/RK andRRuss/C for tori, where a torus is the body
generated by revolving a circle of radiusr2 around an external axis a
distancer1 from the center of the circle.

Figure 6. “Lumpy” spheres have small protrusions that significantly
increase their total surface area. In the hemispherical model (a and b),
hemispherical protrusions are packed densely over the surface of a larger
sphere. In the fcc model (c and d), the sphere is overlaid with an array
of smaller close-packed spheres, and all of the smaller spheres with
centers inside the larger sphere but which protrude from it are included
in the final model. The actual constructions were three-dimensional,
and these are two-dimensional schematics.
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C/RK f 1. In the other limit,r1f 0, the contribution from the
inner sphere becomes negligible since it carries a charge
proportional to its surface area, and so again we expectC/RK

f 1. Therefore, we can expectC/RK to attain some maximum
as r1/r2 varies between 0 and 1. In fact, we have

The curve forC/RK appears in Figure 7. The value of the
maximum is 1.04751 atâ ) r1/r2 ) 0.645 75. Therefore, even
in this situation, the error inRK is less than 5%. For the same
model, we can takeA ) 4π(r1

2 + r2
2), obtaining

so RRussell/C increases monotonically from 1 tox2. This
function also appears in Figure 7.

Isoceles Triangles.Surfaces with sharp points are also known
to have very nonuniform charge distributions. Therefore, we
examined isosceles triangles of a wide range of altitude to base
ratio, with results shown in Figure 8. The ratioC/RK exceeds
1.2 when the aspect ratio approaches 10(3, defining the aspect
ratio as the ratio of altitude to base, and achieves a minimum
of about 1.10, the value for equilateral triangles. Thus,C/RK

seems to increase without limit asa/b becomes very large or
very small, although at best, very slowly. In contrast, the ratio
RRayleigh/C achieves a maximum of 0.94 for equilateral triangles
but degrades rapidly from there.

Trigonal Bipyramids.These shapes were also considered as
objects possessing sharp points. These are formed by placing
an equilateral triangle of side 1 in thex-y plane, centering the
triangle at the origin, and by placing apices at the two points
(0, 0,(h). Results appear in Figure 9. Smallh produces values
expected of the equilateral triangle,C/RK f 1.10,RRussell/C f
1.05. Largeh again producesC/RK values that seem to increase
without limit. Interestingly,RRussell/C appears always to give
an error less than about 5% forh less than about 1.

Diffusion-Limited Aggregate Clusters.DLA clusters in di-
mensionsd ) 2 andd ) 3 were constructing on either the simple
square or the simple cubic lattices, each consisting of 1000 cells.
The ensuing surfaces were then represented as a mesh of
triangles (d ) 2) or assembly of cubes (d ) 3). The d ) 2
cluster is shown in Figure 10. The gyration radii,Rg, were also
determined for these clusters:C/Rg ) 0.788(3) in two dimen-
sions and 1.096(4) in three dimensions. (Our estimate in three
dimensions is compared to the estimates 0.97 and 0.97 of Chen
and co-workers58 for diffusion-limited cluster-cluster and
reaction-limited aggregates based on the bead model and the
Zimm algorithm for calculating the polymer hydrodynamic
radius.) Only a single cluster was generated in our computation;
no attempt has been made to perform ensemble averaging. This
ensemble averaging has been suggested to decrease the value
of Rh/Rg in branched polymers58,59 so that further ensemble
calculations are required.

Figure 7. Two concentric spheres, of radiusâ and 1, respectively,
with â < 1, are used to model a macromolecule with a cavity. The
inner cavity belongs to the exterior of the body because we assume
they are connected by a small hole, as in the inset.

C
RK

) â3 + 2â2 + 1

(â2 + 1)2
, â ) r1/r2 (19)

RRussell

C
) (1 + â2)1/2 (20)

Figure 8. RatiosC/RK andRRay/C for isosceles triangles of the indicated
altitude-to-base ratios.

Figure 9. RatiosC/RK andRRuss/C for trigonal bipyramids. The base
of each pyramid is an equilateral triangle of side 1, andh is the height
of each pyramid. At smallh, therefore, the object resembles a flat
triangle, while at largeh it resembles a double-pointed needle.
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Interestingly,C/RK ) 1.09 for thed ) 2 DLA cluster is
indistinguishable from the value for a circular disk to within
numerical error. By contrast, thed ) 3 DLA cluster gave the
value C/RK ) 1.20 and thusRK/Rg ) 0.91. This result is
contrasted with recent estimates of Lattuada et al.,36 who suggest
the rather low value ofRK/Rg ) 0.765 for DLA aggregates in
three dimensions. Other estimates for a variety of models are
discussed by Lattuada et al.36 The large dispersion of results
illuminates the need for general algorithms like Zeno and
HYDRO. Finally, we note that the Russell and Rayleigh
approximations for DLA in both 3 and 2 dimensions are not
particularly accurate, signaling that such approximations should
generally be avoided for fractal objects.

6. Comparison to Representative HYDRO Computations
for Rh and [η]

We now report computations comparing the path-integral
results of Zeno with the predictions of the popular HYDRO
program of Garcia de la Torre and co-workers, which is
conveniently available on-line.6-14 These computations represent
the particle as an array of beads or spheres distributed over its
surface and treat the center of each bead as a point source of
hydrodynamic interaction. Since the path integrations can also
be done for any body constructed as a union of spheres,
overlapping or not, we can perform direct comparisons on
identical models. (However, as mentioned before, the path-
integration method is not restricted to bead representations and
thus physically more faithful shapes can be used.) Our com-
parisons indicate that the simplified bead-model computational
program, HYDRO, can lead to inaccurate results if too few
beads or overlapping beads are employed in the computations.
These errors, which have been investigated previously by the
developers of HYDRO, are not fundamental to the bead-model
computational method, however, and more refined bead-model
computations are possible which can reduce these errors to
vanishingly small values. HYDRO predictions for [η] can be
even more problematic than forRh, although these errors also
seem to become small in the limit of a large number of beads.
Garcia de la Torre and Carrasco60 describe the origin of
discrepancies in [η], but the necessary corrections do not appear
to have been implemented in the on-line version of HYDRO.
There is no question that the general bead-model computational
method is capable of obtaining highly accurate estimates of
hydrodynamic properties, but we must distinguish this general

method from the rather approximate, but relatively computa-
tionally efficient, HYDRO program, which is the working
computational tool available for general use.

We first compare results for a single pair of beads. Exact
results are available both forRh and [η].20,21Let r be the radius
of each of the two spheres, and letL be their separation.
Consider first the simple case a sphere dumbbell where the
spheres are just touching. In this case we find the bead-model
calculation to be in error by-4% and+19%, respectively. (See
Table 4 for a tabulation ofRh and [η].) The path-integration
error forRh is small (below 1%) and usually about 5% for [η],
consistent with the uncertainty in eq 7. At large enoughL/2r,
the HYDRO results become very accurate, as expected. The
intrinsic viscosity data of Table 4 are also summarized in Figure
11, which plots ratios of the approximate path-integral or
HYDRO results to the exact values. Notice the trend in the path
integration results: The prediction is about 4% too low atL/2r
) 1 and increases to nearly 7% too high atL/2r ) 50 before
decreasing. This trend can be attributed to the shape dependence
of qη, as mentioned above. The error bars in Figure 11 are
generated primarily by the uncertainty inqη (only secondarily
by sampling error) and so are always broad enough to include
the exact result, except in the vicinity ofL/2r ) 50. For that
particular range of shapes,qη falls slightly outside the range of
eq 7. As already mentioned, in the future we hope to be able to
predict the shape dependence ofqη directly from the components
of the polarizability tensor, in which case our predictions for
[η] should improve.

These illustrative computations demonstrate that the bead-
model calculations must be performed judiciously. Improved
accuracy could be obtained by covering both spheres with many
small beads. However, the computational cost increases ac-
cordingly. Not all practitioners of the HYDRO program are
aware of these limitations.

Figures 12 and 13 compare predictions for an overlapping
pair of beads (L/2r e 1). This is known to be a particularly
problematic situation for numerical bead-model computations,
and in practice, beads should be chosen without overlap. The
path-integration approach, however, is not similarly restricted.
The error bars in Figures 12 and 13 are estimated from the upper
and lower bounds cited in eq 7. The exact hydrodynamic results,
when available, always fall within the uncertainty intervals of
the path-integration calculations. The two-bead HYDRO results,
on the other hand, remain about 4% or 5% too low forRh until
L/ 2r gets close to 0, at which point the error disappears.
Furthermore, the HYDRO results for [η] become progressively
worse asL/2r approaches 0.

Next, we consider a 3× 3 × 3 array of 27 spheres on the
simple cubic lattice. Each sphere is one unit away from its
nearest neighbors and has radiusr. The rangesr < 0.5 andr >
0.5 correspond to separated and overlapping spheres, respec-
tively. Results forRh and [η] appear in Figures 14 and 15. Good
agreement is not seen untilr decreases to about 0.2. When the
spheres are just touching,Rh is 4% too low and [η] is 46% too
high. Again we expect that these errors of the bead model can
be overcome by covering all the beads with numerous beads,
but the computation time again becomes appreciable.

In the next case study, we consider a hollow block of beads,
formed by constructing an array of dimensionsn × n × n on
the simple cubic lattice, but retaining only those beads on the
surface. With this model, we attempt to follow the spirit of the
bead-model approach: using many small beads to cover the
surface of a cube. The total number of beads isN ) n3 - (n -
2)3, and since HYDRO is limited to structures of 2000 beads

Figure 10. A two-dimensional DLA cluster, consisting of 1000 cells
of the simple cubic lattice.
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total, we have only considered values ofn between 3 and 19,
inclusive. Individual beads have radius 0.5. Figure 16 compares
the results for the two techniques. The same discrepancies
mentioned above,-4% in Rh and+45% in [η], are seen atN
) 26, but the discrepancies decrease with increasingN. The
discrepancies inRh eventually drop below the inherent error of
the path-integration method, but discrepancies in [η] never fall
below 17%.

These comparisons imply that while the bead-model com-
putations allow, in principle, for the accurate computation of
Rh, errors arise from modeling spatially extended structures by
point-source hydrodynamic interactions transmitted through
space by the Oseen tensor. (Both the Oseen tensor and its
Rotne-Prager61 modification only provide correct descriptions
of the interaction between two spherical beads at infinite bead
separations.) HYDRO’s results consistently improve when an
increasing number of beads is employed, but the errors can
remain large even for a large number of beads, especially for

the intrinsic viscosity. Particular problems with HYDRO can
also arise if the beads are allowed to overlap. The recognition
of these problems is not new, but many of the researchers who
use the HYDRO program are apparently unaware of them. The
path-integral method has the advantage that bead overlap has
essentially no effect on the results of the method (the method
is more “foolproof” ), and it is possible to make computations
of reasonable accuracy in a relative short computational time.
HYDRO determinesRh to an accuracy of 4% or better for the
models considered, with accuracy improving with the size (N)
of the model, as long as the beads do not overlap. However, to
obtain accurate determinations of [η] would require using
considerably more than 2000 beads, and with computation time
varying asN3, we can expect such computations to be rather
time-consuming if not prohibitive. The path-integration has times
of O(N), and it therefore permits the consideration of much
larger and complex structures than the HYDRO method
currently allows.

As a final comparison between the HYDRO program and
path-integral approaches, we consider several biological mac-
romolecules and self-assembled macromolecular complexes of

Table 4. Predictions for Dumbbells and Comparisons with Numerically Exact Resultsa

Hydrodynamic Radius

L/2r Rh/r, exact Rh/r, path-integral results Rh/r, results of HYDRO program

1 1.3922 1.39( 0.01; (-0.1( 0.7)% 1.334;-4%
2 1.6054 1.60( 0.02; (-0.3( 1.2)% 1.601;-0.3%
3 1.7156 1.71( 0.02; (-0.3( 1.2)% 1.715;-0.03%
5 1.8184 1.82( 0.02; (+0.09( 1.1)% 1.819;+0.03%

Intrinsic Viscosity, Arbitrary Units

L/2r [η], exact [η], path-integral results [η], results for HYDRO program

1 8.702 8.4( 0.4; (-3.5( 4.6)% 10.34;+19%
1.0201 8.824 8.5( 0.4; (-3.7( 4.5)% 10.43;+18%
1.1276 9.271 9.2( 0.5; (-0.7( 5.4)% 10.90;+18%
1.5431 12.34 12.1( 0.6; (-1.9( 4.9)% 13.25;+7%
3.7622 37.22 38( 2; (+2.1( 5.4)% 37.52;+0.8%
6.1323 84.02 88( 4; (+4.7( 4.8)% 84.20;+0.2%

10.0677 208.6 220( 10; (+5.5( 4.8)% 208.7;+0.05%
20 783.7 830( 40; (+5.9( 5.1)% 783.7; 0%
50 4787 5100( 300; (+6.5( 6.3)% 4787; 0%

100 19030 20000( 1000; (+5.1( 5.2)% 19030; 0%
200 75890 79000( 5000; (+4.1( 6.5)% 75890; 0%

a L ) bead separation,r ) bead radius. The path-integral results are displayed with uncertainty estimates, and with percent error relative to the exact
results. HYDRO results are shown with percent error relative to exact results.

Figure 11. Comparison of predictions for the intrinsic viscosity of a
pair of nonoverlapping beads, each of radiusr ) 1 and separationL.
Solid circles are the results of HYDRO, and open circles with error
bars are the path-integration results.

Figure 12. Comparison of predictions for the hydrodynamic radius
of two overlapping beads, each of radiusr ) 1 and separationL.
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particular current experimental interest. The reliable computation
of Rh and [η] for protein complexes and synthetic self-assembled
structures such as nanotubes is important for characterizing these
structures, and the consideration of test cases involving such
structures is informative. We consider, therefore, the proteins
myoglobin and immunoglobulin G, several ring forms of tubulin,
and the icosahedral cage structure clathrin which have recently
been considered in recent experimental investigations. Results
for these model biological macromolecular structures are
summarized in Table 5. In a separate paper, we have calculated
Rh and [η] for a representative subset of the Protein Data Bank
(about a thousand molecules), and we are continuing our
tabulation to encompass the entire database.23,48,57

We constructed the myoglobin model using the X-ray crystal
structure 1a6m from the Protein Data Bank,57 representing each
amino acid with a 5 Å radius bead centered at each CR.23 We
also consider the bead model of immunoglobulin G, available
directly from the HYDRO Web site,14 where it appears as a
test case.

Tubulin is a structural protein that formsRâ dimers, which
in turn normally self-assemble into hollow “nanotube” structures
composed of rolled up sheets of proteins that play a fundamental
role in cell mitosis. However, when codissolved with various
toxins, viral agents, or chemotherapy drugs, tubulin self-
assembles instead into closed rings, thereby interrupting cell
division. We calculateRh and [η] of two ring structures, of 8
and 14 dimers, respectively, induced by the cyanobacterial
derivative cryptophycin. The rings are modeled by a set of
overlapping beads, 21 beads per monomer,62-65 as prescribed
by Diaz et al.64 The overlapping bead model for the 28-mer
ring is shown in Figure 17 using coordinates provided by
Boukari.65 Finally, we consider literature models of clathrin, a
biologically crucial protein complex involved in particle trans-
port through the cell membrane during endocytosis.66 The
complete clathrin cage is a self-assembled icosahedral complex
of 36 triskelion moieties. Dynamic light scattering measurements

Figure 13. Comparison of predictions for the intrinsic viscosity of
two overlapping beads, each of radiusr ) 1 and separationL.

Figure 14. Hydrodynamic radius of a cubic array of 27 beads of
various radii, computed both by the HYDRO program and by the path-
integration technique.

Figure 15. Intrinsic viscosity of a cubic array of 27 beads of various
radii, computed both by the HYDRO program and by the path-
integration technique.

Figure 16. Comparison of predictions by the HYDRO program and
the path-integration technique for a hollow block of beads. The ratios
of the predictions by HYDRO to those by the path-integration are
displayed.
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have been reported by Ferguson et al.67 The bead coordinates
and sphere diameters of clathrin are prescribed by Kirchhausen,66

with the resulting model appearing in Figure 18. We also
consider two other examples, one, of a clathrin cage containing
a spherical inclusion (also shown in Figure 18), based on the
suggestion of Ferguson,68 to see how it affects theRh of the
clathrin. Finally, we consider a single triskelion moiety from
which the clathrin cage is assembled. Consistent with our
previous results, the largest discrepancies between our path-
integration and HYDRO calculations occur for the model with
the smallest number of beads (N ) 42). The current version of

HYDRO sets a limit of 2000 beads and therefore does not allow
computations for the two largest molecular models. The
experimental estimate ofRh for the 16-mer tubulin ring is
reported as the ratio ofRh for the ring to that of the tubulin
dimer and has been determined from fluorescence correlation
spectroscopy and sedimentation velocity measurements to be
2.75, compared to our simulated estimate, 2.64 and the HYDRO
ratio of 2.72. (The HYDRO estimate agrees better with
experiment, but because of uncertainties in the geometry of the
molecule, it is not clear that this can be attributed to the relative
performance of the two computational methods.) Recent mea-
surements by Ferguson et al. were restricted to the triskelion
moieties that comprise the clathrin cage and dynamic light
scattering estimates forRh are not yet available. Note also that
because of hydrodynamic screening, inclusion of a particle inside
the clathrin cage has only a small effect onRh. Intrinsic viscosity
measurements for clathrin are not available, but note the large
discrepancy between Zeno and HYDRO.

Table 5 also gives actual computation times for the two
approaches. The times displayed for the path-integration are for
integrations comprised of 104 Brownian trajectories, which have
better than 1% accuracy inC and about 1-2% accuracy in〈R〉.
Since these are smaller than the uncertainties inqh and qη,
respectively, and also comparable to experimental uncertainties,
104 trajectories are usually adequate.

7. Conclusions

We have appraised several approximation schemes for
transport properties of macromolecules having a wide variety
of shapes, using a recently developed path-integration technique.
The Kirkwood double-sum formula underestimates the hydro-
dynamic radius and hence underestimates the friction coefficient
and overestimates the diffusion coefficient, for all bodies except
the sphere. Errors forθ-state random coils are about 20% and
about 10% for coils with strong excluded volume. Errors for
smooth globular shapes are less than 3-4%, while for globular
proteins, errors are usually less than 10%. Errors for very flat
objects such as regular polygons or disks also fall in the range
of about 8-10%. Errors for uniformly slender bodies also
become small in the limit of high aspect ratio; this is observed
either for rodlike objects (highly prolate cylinders or rectangles
of high aspect ratio) or slender rings (tori and open cylinders).
However, tapered slender bodies, e.g., ellipsoids of revolution,
isosceles triangles, or trigonal bipyramids, exhibit larger errors
than uniformly slender bodies. The isosceles triangles and
trigonal bipyramids exhibit errors of 20% or larger at aspect
ratios around 103, and the data suggest that the errors might
increase without limit. For ellipsoids, on the other hand, the

Table 5. Comparison between Path-Integration and HYDRO Computations for Several Biological Molecules; HYDRO Results Are Displayed
with Percent Error Relative to the Path-Integral Results

Rh, nm M [η], nm3 CPU time,f s

model N
path-

integration HYDRO
path-

integration HYDRO
path-

integration HYDRO

immunoglobulin G [14] 15 5.84 5.711;-2% 2.3(2)× 103 2.577× 103; +12% 1 <1
tubulin dimer [65] 42 4.28 4.077;-5% 8.0(3)× 102 1.660× 103; +108% 2 <1
myoglobina 151 2.06 1.988;-3.5% 89(5) 279.2;+214% 7 5
triskelion [68] 192 14.5 14.38;-0.8% 3.7(1)× 104 4.02× 104; +9% 15 8
tubulin ring, 16-mer [65] 336 11.3 11.09;-2% 1.51(8)× 104 2.24× 104; +48% 27 26
tubulin ring, 28-merb [65] 588 16.3 16.19;-0.7% 5.0(3)× 104 6.20× 104; +24% 44 97
clathrinc [68] 6804 33.3 3.7(2)× 105 620 ≈1400c

clathrin plus vesiclec-e [68] 6805 33.7 3.8(2)× 105 620 ≈1400c

a Myoglobin model: one 5 Å bead per amino acid centered at each CR, PDB code 1a6m.b The overlapping bead model of the 28-mer tubulin ring is
depicted in Figure 17.c The current version of HYDRO is limited to 2000 beads, which precludes computations on the two clathrin models. Computation
time is estimated by logarithmic extrapolation.d The internal vesicle of the clathrin complex was modeled as a single, large, interior sphere.e The overlapping
bead model of the clathrin complex is depicted in Figure 18.f Running on a 1 GHz Pentium III processor.

Figure 17. Overlapping-spheres model of a 28-mer tubulin ring.

Figure 18. Overlapping-spheres model of a clathrin cage with an
internal vesicle.
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errors tend to an asymptotic value of around 6%.
The Russell approximation, applicable to three-dimensional

objects, is valid to about 5% or better for smooth globular
shapes. The best agreement is obtained, obviously, for globular
ellipsoids, i.e., neither too oblate nor too prolate. But it is not
particularly good in any other case. Likewise, the Rayleigh
approximation, for two-dimensional objects, is reasonably
accurate only for approximately circular shapes.

Approximate bead-model calculations, such as the HYDRO
program, also provide a useful means of estimating the
transport properties of polymer solutions. Good accuracy for
the intrinsic viscosity requires many beads and bead overlap
must also be avoided. The ZENO method is not sensitive
to bead overlap and is a relatively efficient method for
calculating polymer transport properties in comparison to
HYDRO. The computational efficiency of the Zeno method
makes it particularly attractive, especially in computations of
complex structures that become difficult by other methods of
reliable accuracy.
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