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ABSTRACT: We investigate the stability of a polymer thread imbedded in a matrix that is confined
between two parallel plates. Utilizing a combination of experiments, numerical simulations (lattice—
Boltzmann), and surface area calculations, we find substantial deviations from the classical results when
the diameter of the thread (Do) is comparable to the height (H) of the matrix. We find three regimes as
a function of H/Dy: For H/Dy 2 3, the thread breaks up into droplets through a finite wavelength
axisymmetric capillary instability as described by Rayleigh and Tomotika. For 1.3 < H/Dy < 3, the effects
of the confinement are felt; the shape becomes nonaxisymmetric, the early-stage growth rate decreases,
and the wavelength increases. For sufficiently low H/Do, we observe that the thread is stable with respect
to the capillary instability over the experimental time scales. The simulations qualitatively agree with
the experiments and reveal that while the shape of the growing bulges is nonaxisymmetic, the narrowing
necks are circular. A simple surface area consideration then shows that as the wall-induced asymmetry
of the fluctuation increases, the minimally unstable wavelength increases and eventually diverges.

Introduction

It is well-known that a long liquid thread surrounded
by an immiscible liquid matrix exhibits sinusoidal
distortions, which grow and cause the thread to break
up into a row of smaller droplets.>2 For example, in
polymer blending, threads are formed by flow, and their
subsequent disintegration occurs in either the presence
or absence of the flow.3 Thus, a fundamental under-
standing of this phenomenon is important to predict the
size and morphology of the final polymer blends.

The original studies by Rayleigh and Tomotika con-
cern the case where a fluid thread is surrounded by
another fluid of infinite extent. As discussed below, a
linear stability analysis shows that the thread is
unstable because fluctuations for which 4 > 22R, grow
exponentially, where 1 is the wavelength of a given
fluctuation and Ry is the initial thread radius. Recent
progress in this area stems from the construction of
linear stability analyses for more complex cases, such
as when the interface between the immiscible fluids is
covered with an insoluble surfactant,*® or to consider
the effects of elasticity at the interface.® These cases are
also relevant to bioengineering applications.

The effects of experimental geometry on the Ray-
leigh—Tomotika instability can be profound. In the two-
dimensional case where the stability of a flat ribbon is
investigated, it was theoretically shown by Miguel” that
thermal fluctuations decay; intuitively, this can be
understood by the observation that the fluctuations
cause an increase in surface area. The case of a liquid
annular coating on the inside or outside of a cylinder
was investigated by Goren.8 Newhouse and Pozrikidis®
studied numerically the case where the thread of radius
Ro encompasses a matrix fluid which is confined to a
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tube of radius R:. In the limit Ro/R; < 1 they recover
the results of Rayleigh—Tomotika; as Ro/R; increases,
the thread still breaks into an array of alternating large
and small droplets and the dominant wavelength of
instability does not change significantly, but the am-
plitude growth slows down significantly and the shape
of the axisymmetric fluctuation changes. When Ro/R; >
0.82 the thin outer layer evolves into an array of lobes
or collars. Their case represents confinement in an
axisymmetric geometry.

In a recent paper by Migler,1® a combination of simple
shear and confinement between parallel plates was
utilized to generate threads (called “strings” in that
work). Upon cessation of flow, threads of sufficiently
large diameter were found to be stable with respect to
the capillary instability. That experiment then considers
a different geometry from those considered previously:
a thread confined between parallel plates, which in-
volves both confinement and nonaxisymmetry. This
regime is important because there is great current
interest in micro- and nanolength scale technologies in
which polymer blends can play an important role,1112
but the understanding of the processing of polymer
blends when the size of the minor phase is comparable
to a sample dimension is poor.

A second application of thread breakup between
parallel plates occurs during the measurement of in-
terfacial tension of polymers.’3-16 To ensure that the
elastic effect of polymer is negligible in the interfacial
tension measurement, the growth rate of the distortion
must be sufficiently low because Tomotika's theory
assumes that both liquid phases are Newtonian fluids.
As the Kinetics are inversely proportional to a charac-
teristic length scale, bigger threads are experimentally
desirable. However, as the size of the thread increases
and becomes comparable to the gap width, the hydro-
dynamic interaction between the drop and the wall may
not be negligible. A study of the thread instability on
the confined regime can provide a guide for exact
interfacial tension measurement. Finally, our work is
relevant to two-phase microfluidics, as it demonstrates
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Figure 1. Schematic view of a thread undergoing a nonaxi-
symmetric capillary instability. The fluid is unconfined in the
experimentally observable top view (x—z plane). The side view
shows how the matrix fluid is confined in the y direction by
parallel plates that are separated by a distance H.

a strategy whereby one may be able to stabilize liquid
threads.

In the present study, we examine in detail the effects
that occur when the thread diameter is comparable to
the gap between two confining parallel plates via a
combination of experimental, lattice—Boltzmann (LB)
numerical simulations, and surface area calculations.
The experimental work demonstrates the basic phe-
nomena of how the confinement acts to inhibit the
instability. The lattice—Boltzmann simulations agree
qualitatively with the experiments and allow visualiza-
tion in directions that are experimentally inaccessible.
The surface area calculations show that if the confine-
ment causes the thread to grow nonaxisymmetrically
(somewhat flattened as depicted in Figure 1), then the
critical wavelength increases and the driving force for
the instability (the reduction of surface area) decreases.
The lattice—Boltzmann simulations validate key as-
sumptions of the surface area calculations.

Background

For the case of a viscous thread in an infinite viscous
medium, Tomotika? extended Lord Rayleigh’s! pioneer-
ing study to the breakup of Newtonian liquid cylinders
in a Newtonian liquid matrix for the case in which no
overall flow field is present. Initially, a liquid cylinder
of radius Ro = Dg¢/2 (D is the thread diameter) is subject
to thermally induced sinusoidal distortions of arbitrary
wavelengths 1. For fluctuations (of amplitude o) and
wavelength, 4, there is a decrease in the total interfacial
area with increasing afor the case 1 > 27R,. This
decrease in area provides the driving force for growth
of the instability. The dimensionless wavenumber X is
defined by

_ 27R, 1

There is a critical wavenumber, X, = 1, separating
fluctuations that decay (X > X;) from those that grow
in time (X < X;). A linear stability analysis shows that
in the early-stage growth fluctuations grow exponen-
tially with time:

o = o, exp(qt) (2)

where ag is the initial amplitude and the growth rate
of this distortion, q, is given by

_ 0Q(X,p)
B anRO (3)
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where ¢ is the interfacial tension, »n, is the viscosity of
the matrix, p is the thread/matrix viscosity ratio, and
Ry is the initial thread diameter. The function, Q(X,p),
can be obtained from Tomotika’s original paper.2 For a
given viscosity ratio p, there is one dominant wave-
length X, at which the amplitude grows fastest; the
distortion having this wavelength consequently leads
the thread to break up into droplets.

At first it seems counterintuitive that a fluctuation,
which increases the contour length of the thread, can
cause a decrease in surface area. The total area of an
axisymmetric thread per average unit length is ap-
proximately

A= ZnR'/l[l + (“7”)2] @

in the limit of aur/A < 1. Applying conservation of volume
to the distorted thread (which has a circular cross
section everywhere) leads to a decrease in the average
radius of the thread:

2
, o
R?=Ry — % (5)

Thus, there are two competing effects for the interfacial
area: the contour length increase vs the average
decrease of the thread radius. It can be seen that for X
< 1 there is an overall reduction in surface area. Thus,
the decrease in surface area is due to the geometry of
the thread, namely, the fact that the cross-sectional area
scales as r2. In the present problem we shall see that
the confinement causes the fluctuation to grow asym-
metrically. Because of the asymmetry, the decrease in
interfacial area becomes a weaker effect compared to
the increase in contour length; consequently, the wave-
length of the fastest growing mode increases while the
growth rate is reduced.

Experimental and Numerical Methods

Materials. Two polymers are used in this study. Poly-
amide-6 (PA-6) was purchased from Polysciences Inc. (M, =
16 000).%7 Polystyrene (PS) was donated from Dow Chemicals
(Styron 666D) . The reason for choosing the nylon/PS system
is that the nylon thread can be embedding into the PS phase
without deforming (or flattening) it. If we had chosen a system
such as PS/PMMA or PS/PP, it would be very difficult to embed
the thread into the matrix without deforming it because the
threads would be soft at the temperature at which PS can flow
and vice versa. However, at just below melting temperature
of nylon (for example, 200 °C), PS can flow easily and nylon is
still hard, allowing the embedding process. Degradation of
nylon is not serious because it is fully covered with PS and
nylon does not contact oxygen direction; also, the instability
process is normally completed within 30 min.

Rheological Measurement. The zero-shear viscosities of
the polymers are obtained by measuring the shear viscosity
in the range (102—5 s™?) in steady-state mode. The polymers
used in this study show a Newtonian regime over the shear
rate of 1072—-10"! s~%. The rheometer used is an Advanced
Rheometric Expansion System (ARES). A parallel plate con-
figuration (diameter = 25 mm) is used with a gap of about 1.0
mm. The temperature for the measurement is 230 °C. The
measured zero-shear viscosities of PA-6 and PS are 300 and
1200 Pa-s, respectively, and thus p = 0.25.

Experimental Procedure. The observation of the capillary
instability is carried out under a similar procedure to that used
for the measurement of interfacial tension by the breaking



Macromolecules, Vol. 36, No. 15, 2003

thread.'*> We observe the capillary instability as a function
of H/Do, where H is the gap width and Dy the initial thread
diameter.

Disks of PS in 1 mm thickness and 25 mm diameter are
prepared by pressing between two metal plates on a Carver
laboratory press at 180 °C. The PA-6 fibers are obtained by
drawing from molten pellets at 230 °C obtaining thread
diameters ranging from 100 to 300 um. The fibers are cut to
20 mm length and annealed at 80 °C for about 24 h in a
vacuum. An Optical Shearing System (model Linkam CSS 450)
connected to a videocassette recorder and to a Zeiss transmis-
sion optical microscope is used. This device enables the sample
to be sheared and heated simultaneously with various gap
widths under microscopic observation.

The fiber of PA-6 is placed between two films of PS. This
sandwiched sample is placed in the shearing device under the
microscope. At first, the temperature is elevated and main-
tained at 200 °C for 10 min in order to ensure imbedding
without any undesired deformation of the PA-6 fiber (T =
216 °C). The gap between the two glass walls is then adjusted
very slowly to the desired size range (from 0.4 to 2.5 mm). We
have found that the nylon thread remains centered between
the two walls. First, the initial thicknesses of the two PS plates
are the same, and second, the shear forces during the
compression act to keep the thread centered. The position of
the thread was confirmed several times by changing the focus
of microscope from the bottom wall to the thread and then to
the top wall. The temperature is then increased to 230 °C. To
perform observations, images from the microscope are recorded
onto S-VHS videotape. The observed images of the capillary
instability phenomenon are in the directions parallel to the
glass wall (x—z plane, top view in Figure 1).

Lattice—Boltzmann Methodology. We utilize a lattice—
Boltzmann (LB) method'®~22 to numerically simulate the
capillary instability of a confined thread. LB is a computa-
tionally efficient approach for modeling multicomponent fluid
systems. The approach is to consider a typical volume element
of fluid to be composed of a collection of particles that are
represented in terms of a particle velocity distribution function
at each point in space where fluid particles collide with each
other as they move under applied forces. Macroscopic variables
such as density and velocity are obtained by taking appropriate
moments of the velocity distribution function. It has been
shown that this formalism leads to a velocity and density field
that is a solution of both the Navier—Stokes and continuity
equations. The specific multicomponent LB model utilized for
this paper is based on the Shan—Chen approach?? with further
modifications found in Martys and Douglas.'®

For the present work, we utilize a parallel plate geometry
having periodic boundary conditions. A cylindrical thread is
introduced, centered between the parallel plates such that its
z axis is parallel to the plates. The cylindrical thread is
embedded in a second fluid. No-slip boundary conditions are
maintained at the fluid/wall interface by using a second-order
bounce-back algorithm. To introduce a perturbation to the
thread, a small localized body force is applied near the fluid/
fluid interface for a few lattice Boltzmann time steps. The
widths of the thread in the perpendicular (y) and parallel (x)
directions are determined as a function of axial position and
time.

Two viscosity ratios were considered. First, we consider the
case p = 1 (viscous matched) because for computational
reasons related to the LB method, significant computer
memory can be saved, allowing for much larger simulations
than for p = 1. Here, the system dimension is 800 (in units of
lattice spacing) in the z direction and 740 in x. The gap spacing,
H, for the three simulations is such that H/Dy is equal to 2.1,
1.45, and then 1.25 for the three simulations, where Dy = 160.
This system size was required in order to have an adequate
numerical resolution for the case of H/Do = 1.25. In a second
set of runs we used the same viscosity ratio as the experiments
p = 0.25 with the following system dimensions: 180 units in
z, 88 in x and H, such that H/Do = 2.1 and 1.4 where Dq = 40.
Time is given in the dimensionless quantity qt.

Capillary Instability of a Polymeric Thread 5827

a

R 0.2 mm

Figure 2. Sinusoidal distortions on a PA-6 thread embedded
in a polystyrene matrix. The measurements were performed
at 230 °C. Viscosity ratio (p) is 0.25. (a) H/Do = 10.6; initial
thread diameter = 127 um; the times for subsequent photo-
graphs are 0, 471, 542, 615, and 754 s. (b) H/Do = 1.45; initial
thread diameter = 138.4 um; the times for subsequent
photographs are 0, 344, 894, 1073, 1358, and 2315 s.

One important difference between the experiment and the
simulation concerns the wavelength of the instability. In the
experiment, the thread is essentially free to find the fastest
growing wavelength, whereas in the simulation the length of
the thread is finite (for reasons of computational resources).
The wavelength of the distortion can only take values that are
L/n, where L is the length of the simulation box in the z
direction and n is an integer. For the case of n = 1, then 2zR¢/A
= 0.7, which is somewhat larger than what one obtains by
considering the fastest growing mode 27Ro/A = 0.59 at p = 1.
This discrepancy means that comparisons are qualitative in
nature.

Results and Discussion

Experiment. Figure 2 is a typical set of optical
micrographs showing the growth of the capillary insta-
bility of a PA-6 thread in PS matrix at 230 °C. We
present two sets of micrographs. Figure 2A is for the
case of a PA-6 thread immersed in a PS matrix where
the gap width is much greater than the initial thread
diameter (H > D). In Figure 2B, the other case, the
thread diameter and gap are of comparable size (H =
1.5 Do). Hereafter, we designate the former case as
unconfined and the latter case as moderately confined.
In both cases, initially cylindrical threads transform
gradually into a row of droplets via an increase in the
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Figure 3. Discrete points represent the normalized apparent
volume of the thread, 4Vap,/(7Do?1), as a function of the relative
amplitude of distortion (2a/Do). Apparent volumes of the
threads were calculated from the 2D photographs assuming
distorted threads are axisymmetrical. Viscosity ratio (p) is
0.25. The standard uncertainty (one standard deviation) is less
than 2%. The solid lines are the simulation results (upper:
H/D, = 1.4; lower: H/Do = 2.1; viscosity ratio, p = 1).

amplitude of a sinusoidal fluctuation. However, the
sequence of micrographs immediately reveals significant
differences between the two cases. The radius of the
final spheres is approximately 2 times larger than that
of the original thread (Ro) in the unconfined regime.
This is consistent with the predicted radius by volume
conservation,# i.e., Ro(1.57/Xm)Y3. However, that in the
moderately confined regime is larger than 2R, and the
distance between the droplets is therefore greater than
in the unconfined case. Thus, the wavelength of the
initial fluctuation in the moderately confined regime is
larger than that in the unconfined case, and the final
drop shape is a “squashed sphere” because the gap
width is smaller than the circle which is observed from
the x—z plane. Later, we show that the dimensionless
wavenumber of the distortion, 2zR¢/4, is a function of
(H/Dy).

To determine whether the confinement causes the
thread to grow in a nonaxisymmetric manner, we
calculate the dimensionless apparent volume of the
sinusoidal thread as a function of time. The apparent
volume of the sinusoidal thread, Vapp, is calculated from
the fluctuation in the x direction (parallel to the plates)
with the assumption that the fluctuation is axisymmet-
ric. This is necessary since we observe the fluctuations
in the x direction (refer to Figure 1), but not in the y
direction. The dimensionless apparent volume V', is
then obtained by dividing by the volume of the initial
thread V'app = Vapp/tRe?A. If a fluctuation is axisym-
metric, then V', = 1, whereas if the fluctuation is
greater in the x direction than y, then V'app > 1.

Figure 3 is a plot of V'appas a function of amplitude
(o), showing that in the unconfined regime V'app is
constant within experimental error. The solid lines are
the results of a numerical simulation and will be
discussed later. This confirms the expected result that
when H > Dy, the fluctuation is axisymmetric. However,
in the moderately confined case V'app iNcreases as the
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Figure 4. Relative thread distortion amplitude, 2a/Dy, as a
function of time for two different H/Dg ratios (gap width/initial
thread diameter). Viscosity ratio (p) is 0.25. The standard
uncertainty (one standard deviation) is less than 3%.

instability grows. Note that the deviation from V', =
1 first becomes noticeable when /Ry ~ 0.1. This occurs
well before an axisymmetric surface would impinge on
the wall (which occurs at a/Ro ~ 0.45). This result
implies that the growth toward the glass wall (perpen-
dicular to the observation plane) in the moderately
confined regime is smaller than that in the direction
parallel to the observation plane. As the PS matrix
between the glass wall and a PA-6 thread is squeezed
out as the amplitude grows, the hydrodynamic interac-
tion between the thread and the wall increases. As the
distance between the wall and the largest perimeter of
the sinusoidal thread decreases by the growth, the
hydrodynamic resistance for flow of the matrix phase
increases. Therefore, the growth toward the wall is
hindered, resulting in the nonaxisymmetric (flattened)
sinusoidal thread.

Figure 4 is a plot of relative amplitude (2a/Do) vs time
for the same experiment as in Figure 3. For a given run,
the straight-line fit to the semilogarithmic plot for the
unconfined regime demonstrates the well-known early-
stage exponential growth of the fluctuation as a function
of time. The situation for the moderately confined
regime is different. A straight line for lower H/Dy (the
confined regime) is drawn by a linear regression with
the initial five data points. The early-stage growth rate
in the confined regime is much slower, even though the
initial thread diameters in both cases are similar. At
later times (t > 700 s), the growth rate increases and
becomes comparable to the unconfined case. As indi-
cated in Figure 3, the growth rate toward the glass wall
is hindered by the hydrodynamic interaction with the
wall. The data points begin to deviate upward from the
straight line at about 720 s, which corresponds to the
largest diameter of the sinusoidal thread/initial thread
diameter ratio of 1.25, which is still smaller than H/Dg
= 1.45. As the amplitude grows, the thread becomes
more flattened by the hydrodynamic interaction.

Figure 5 is a plot of the scaled growth rate vs H/Dy.
The growth rate is the slope of 2Rg In(o/Ry) as a function
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Figure 5. Slope for the plot In(2a/Dy) vs time as a function
of H/D,. Viscosity ratio (p) is 0.25. The standard uncertainty
(one standard deviation) is less than 10%.

of time, as suggested by Tomotika. This slope is directly
related to the interfacial tension by eq 3. The slope is
constant within the experimental uncertainty for H/Dg
> 3; the solid line is drawn to aid the eye. The interfacial
tension obtained above for H/Dg > 3 is (5.7 £ 0.49 mN/
m). This value is reasonable compared to the values
reported elsewhere.1316.2324 However, the slope de-
creases rapidly for H/Dg < 3. It is reasonable to expect
that the growth rate is hindered by the hydrodynamic
interaction between the wall and the thread as the
thread size increases. One experimental run shows that
at H/Dg = 1.3 £+ 0.05 the thread does not show the
distortion growth. It maintains its original shape for
several hours. We refer to this case as strongly confined.
This result is consistent with Migler'sl® previously
mentioned experimental observation, whereby suffi-
ciently large diameter PDMS threads were stable upon
cessation of shear. In that case, the viscosities were
matched and H/Dy = 0.83 + 0.15. So in the present
experiment, where p = 0.25, the confinement effect is
even stronger, in that thread stabilization occurs for a
lesser degree of confinement. In both the present work
and the prior PDMS experiment!? the strongly confined
thread is stable over a time scale at least 40 times longer
than the unconfined breakup time. Figure 6 plots the
dimensionless wavenumber, 27R¢/A, vs H/Dgy. The di-
mensionless wavenumber is constant within experimen-
tal uncertainty for H/Do > 3. At H/Dg < 3, it decreases.
Lattice—Boltzmann Simulations. We employ lat-
tice—Boltzmann simulations as described in the Experi-
mental and Numerical Methods section in order to gain
critical information that is not accessible from the
experiments. First, we present results obtained from the
p = 1 case where three levels of confinement were
considered: least-confined (H/d = 2.1), moderately
confined (H/d = 1.45), and strongly confined (H/d = 1.2).
(The labels unconfined, moderately confined, and strongly
confined are used in anticipation of the results.)
Before giving a quantitative analysis of the results,
we first present two plots that give a pictorial repre-
sentation of our observations. Figure 7 shows end-on
cross sections of the thread (x—y plane) at the widest
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Figure 6. Dimensionless wavenumber vs H/Dy. Viscosity ratio
(p) is 0.25. Horizontal line represents theoretical dimensionless
wavenumber calculated from Tomotika's theory. The standard
uncertainty (one standard deviation) is less than 10%.
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Figure 7. Cross sections of the thread in the x—y plane
showing the thread at the planes where it is widest (left side)
and narrowest (right sides) for the three levels of the confine-
ment H/Dy for viscosity ratio (p) = 1. In the top and middle
case H/Do = 2.1 and H/Dy = 1.45, respectively; the threads are
shown at times near final breakup, t = 29 and 76.2, respec-
tively. For the bottom case of H/d = 1.2, t = 66, and no growth
is observed. Nonaxisymmetric growth is seen in the middle
case.

and narrowest points that result from the three levels
of confinement considered here. For the case of H/d =
2.1 (Figure 7A) and the moderately confined case H/Do=
1.45 (Figure 7B), we show the cross sections when the
amplitude of the fluctuation is large, but before actual
breakup has occurred. For the strongly confined case
(Figure 7C), we show the cross sections at the same two
planes as for Figure 7B,C at the last time step of the
simulation. We can immediately make three qualitative
observations, namely that for the case of H/Dy = 2.1 (the
least-confined case) the distortion is axisymmetric, for
the confined case it is nonaxisymmetric, and for the
strongly confined case it is stable (over the time scale
of the simulation.) These observations agree with the
experimental results.

As the Kinetics of the moderately confined case is the
most interesting, we explore the kinetics of the growth
of the fluctuation in further detail in the next three
figures. In Figure 8 we show three-dimensional snap-
shots of the thread as it breaks up. At early times, (t <
100) the thread appears cylindrical, and Figure 8A (t =
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Figure 8. Three-dimensional representation of the moder-

ately confined thread as it breaks up. The times are (A) t =
73.9, (B) 77.1, (C) 78.6, and (D) 80.2 (final breakup).

73.9) shows the structure when the distortion is first
apparent by visible inspection. As the breakup proceeds
(Figure 8B,C), we observe that the distortion becomes
increasingly asymmetric. Note that the asymmetry is
observed in the bulge and that the asymmetry begins
appearing well before the thread impinges on the wall.

Quantification of the nonaxisymmetric breakup is
shown in Figure 9. In these figures, the thick dashed
line is the radius of the string as a function of axial
position in the y direction (perpendicular to plates), and
the solid line is that in the x direction (parallel to the
plates). The thin dashed line at 112 indicates the gap
thickness of this simulation. Figure 9A—C shows pro-
files at three times leading to breakup. There are three
key points to note. First, the asymmetry occurs even
when the amplitude of the distortion is low (Figure 9A).
Second, the asymmetry between the x and y directions
occurs in the bulge (Z = 200), but not in the neck (Z =
600), a trend that increases in magnitude as the
distortion increases (Figure 9B). Third, it is clearly
possible to obtain distortions in which the bulge in the
parallel direction exceeds the gap width (Figure 9C).

The data from the moderately confined case were
Fourier decomposed in order to quantitate the asym-
metry of the growth rates. The profiles were fit to the
following equations:

Ry =) (a,sin(2mnz/L) + by, cos(2znz/L)) + R (1)1
n

Ry= Z(amn sin(2nnz/L) + by, cos(2znz/L)) + R(t)O
n

We find that the largest contributions are made by the
n = 1 modes of a; and ag. This is expected because it
describes a growing sinusoidal distortion. Note that in
the logarithmic plot of Figure 10 the difference between
the parallel and perpendicular components of the pri-
mary mode is small. As the distortion increases, Figure
9 qualitatively shows that the thread becomes increas-
ingly different from a simple sine wave. This behavior
is captured in the n = 2 component. Surprisingly (see
figure), it is found that, although the first-harmonic
contribution is largest, the growth rate of the second
harmonic (of the cosine term) was faster than the first
harmonic (sine term). Also, while the amplitude of the
first harmonic (sine) was larger in the plane parallel to
the wall, the second harmonic was larger in the plane
perpendicular to the wall. This behavior indicates that
distortion from a pure sine wave is stronger in the
confinement direction than in the unconfined direction,
which is intuitively reasonable.
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Figure 9. Profiles of the growing fluctuation for the moder-
ately confined thread as it breaks up. The solid curve is the
profile in the x (unconfined) direction, and the dashed curve
is in the y confined direction. The dashed line at 117 shows
the position of the confining wall in the y direction. (A) t =
73.9, (B) 77.1, and (C) 78.6.

Finally, in regard to the issue of thread stability for
the highly confined case, we note that in the previous
experiment by Migler!® where p = 1, the critical
confinement for stability was H/Dy = 0.83 + 0.15. The
critical confinement in the viscous mismatched experi-
ments described with p =0.25is H/D; = 1.3 + 0.1. It is
intuitively reasonable that the higher viscosity of the
matrix prevents it from being squeezed out, and thus
the geometrical confinement has a stronger impact on
the thread. In the simulations of the viscous matched
case, we find that the critical confinement occurs at
H/Do = 1.2 which is larger than expected when com-
pared to the prior results of Migler. However, because
of the computational constraints described earlier, we
view the critical value of H/Dg as determined by simula-
tion to be an upper bound to the actual value.

For the purposes of comparison to experiment, we
utilize numerical data from the viscosity mismatched
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Figure 10. Major components of the Fourier transform of the
profiles in the moderately confined case. See text for details.
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Figure 11. Comparison between the experimental (discrete
points: same data with Figure 4; viscosity ratio p = 0.25) and
computer-simulated (solid and dashed lines, viscosity ratio p
= 1) dimensionless thread distortion amplitude, 20/Do, as a
function of dimensionless time for two different H/D, ratios,
showing consistency between the slopes measured experimen-
tally and through the lattice—Boltzmann method.

simulations. Returning to Figure 3, we construct a plot
of dimensionless apparent volume (defined previously)
as a function of the amplitude of the distortion. The solid
line is the simulation result, and the discrete data points
are from the experiments. For the unconfined data, in
the case of the experiments we used H/Dy = 10.6 and
for the simulations we used H/Dy = 2.1 (for reasons of
computational time). However, both these conditions
correspond to essentially unconfined behavior. For the
case of H/Dy = 2.1, we see that V's,p = 1, indicating
axisymmetric growth, whereas for the case of H/Dy =
1.4, the upward trend of the curve indirectly indicates
the nonaxisymmetric growth. This is quite similar to
that observed experimentally, indicating the qualitative
agreement between the two approaches.

Next, we extract data from the simulations that is
contained in the (y) direction. In Figure 11, the calcu-
lated dimensionless amplitudes under two ratios of the
gap width to the initial thread diameter (H/Do) are
presented as a function of time (solid curves) with the
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experimental data of Figure 4 included as well (discrete
points). For the unconfined data, in the case of the
experiments we used H/Dy = 10.6, and for the simula-
tions we used H/Dy = 2.1 for reasons of computational
time. But both these conditions correspond to essentially
unconfined behavior. Note that the experimental data
are shifted horizontally to achieve the best fit, and so
the comparison between experiment and simulation is
relevant to the growth rate rather than the absolute
time of the experiment. Again, we see that the simula-
tion results qualitatively agree with the experimental
results. The amplitude growth rate decreases with
decreasing H/Do. For H/Dg = 2.1, the amplitudes in the
parallel and perpendicular directions are nearly equal,
showing that the thread is axisymmetric. For the case
of H/Dy = 1.4, we find that the growth rate is strongly
suppressed at early times but increases with time. Also,
we find that the growth is no longer axisymmetric. The
amplitude in the fluctuation in the direction perpen-
dicular to the wall is reduced relative to that in the
parallel direction. This is similar to the experimental
result in the confined case. The other noteworthy
feature is that the ratio of oy (amplitude parallel to the
plate) to ap (@amplitude perpendicular to the plate) ratio
is approximately constant during the growth of the
instability. This finding, along with the observation that
the necks are circular, is used in the next section.

Surface Area Calculations. To understand the
increase in wavelength (1) and the decrease in the
growth rate of the instability in the moderately confined
regime, we turn to a simple (in principle) calculation of
the surface area of a thread when the fluctuation is no
longer axisymmetric but somewhat flattened as depicted
in Figure 1. The simplifying assumption behind this
calculation is that the principal effect of the complex
hydrodynamic interactions between the thread and the
confining wall is to cause a fluctuation that is nonaxi-
symmetric. The cross section of the thread is no longer
circular, but rather ellipsoidal at the bulges. We con-
sider the nonaxisymmetry to be a fixed feature of the
instability and then calculate the critical wavenumber
Xc.

We assume that the surface equation of our nonaxi-
symmetric sinusoidal thread is expressed by the follow-
ing equation:

0 [[20F [0

r(z) ro(z)
where
rn@@=r/+ ausin(ZT” z) ©)
r(z2)=rg + aDsin(ZT” z) (8)

Equation 6 describes that the cross section at the
maximum perimeter (z = 1) is an ellipse with a major
axis of r/ + oy and a minor axis of rg' + ap, as depicted
in Figure 1.

Here, we assume that the amplitude growth toward
the wall, ag, is

a, = fo 9

and f can be defined as a degree of flattening. Equation
9 is supported by the observation described in the last
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section that oo/ay is approximately constant during the
growth of the instability. Next, we calculate the surface
area of the nonaxisymmetric sinusoidal thread as a
function of the dimensionless wavenumber, the degree
of flattening, and the relative amplitude.

Utilizing volume conservation of the thread during
nonaxisymmetric growth and assuming that the cross
section at the neck is circular (rf — oy = rg — ap) (as
found in the simulations), we obtain the following
relations:

(1 — fay + y4R,2 + (F % — 4f + 1)a,
= 2

(10)

—(1— Doy + AR+ (F2 — 4F+ 1)a?
|:|=
2

(11)
Then surface area of the thread per 1 is as follows:2°

. 0,2))? 0.2))?
s=[F \/ r0,2)° + (ar(aez)) \/ 1+ (ar(az Z)) 90 oz

(12)

Equation 12 cannot be integrated analytically. However,
its first and second derivative with respect to oy at 0
can be obtained analytically. The results are as follows:

S| _
8(1” =0 a (13)
2
TSI =27 2214719 +
0" |o4=0 Ry

X33 + 2f + 3f%)] < 0 (14)

Equation 14 is a necessary condition for the distortion
growth.

In Figure 12, we present the surface area of the
sinusoidal thread divided by that of initial thread vs
the amplitude at two different values of f. For the
axisymmetric case of f = 1 (Figure 12A), we plot the
normalized surface area for three different values of X.
We see that only distortions with X < 1 cause a decrease
in surface area, as discussed previously, i.e., X,(f=1) =
1. In Figure 12B, making f < 1 captures the nonaxi-
symmetric growth of the thread, and we see its effect
on surface area is different. We find that the critical
wavenumber is shifted. For f = 0.5, we now have X
(f=0.5) = 0.687. We present a plot of the critical
wavenumber (27Ro/Ac) vs f in Figure 13. The critical
wavenumber decreases with decreasing f. Thus, the
wavelength increases as a result of confinement in a
manner similar to the experiment. It is interesting that
the critical wavenumber becomes zero below a certain
value of f (~0.36). That may explain our experimental
result that the thread placed between a gap whose size
slightly larger than the thread diameter does not show
the distortion growth at all. The dominant wavenumber,
Xm, at which the amplitude grows fastest will also
decrease as the critical wavenumber decreases. Experi-
mentally, we observe X, rather than X..

Intuitively, we can understand the above result on
the basis of eqs 4 and 5. The reduction of surface area
upon the growth of a fluctuation occurs in an axisym-
metric thread because the average radius (denoted by
R’ in Figure 1) of the thread must decrease in order to
conserve volume. In the nonaxisymmetric case, this
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Figure 12. Normalized surface area of a nonaxisymmetric
sinusoidal cylinder as a function of relative amplitude. Num-
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f=1,(b)f=05.

decrease in the average radius is less, and so the
increase in surface area due to the contour length
increase becomes dominant. Note that f cannot be
predicted from the present analysis for a given degree
of confinement and viscosity ratio. Our primary goal in
the surface area calculations is to show that forcing the
growth to be nonaxisymmetric can cause the wavelength
to increase and to reduce the driving force for breakup.
We note that other choices for the shape of the nonaxi-
symmetric thread are possible other than that de-
scribed. For example, we also considered a shape
wherein the inflection point was circular and both the
bulges and necks were elliptical. This too produced a
similar result with a slightly smaller value of f where
the critical wavenumber becomes zero. While our choices
of axisymmetric growth is consistent with experiment
and simulation, a more rigorous approach would utilize
a calculus of variations coupled with knowledge of the
initial grow rates in the parallel and perpendicular
directions.
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Conclusion

We find that the behavior of the distortion growth
when the matrix fluid is confined between parallel
plates is much different from that in the unconfined
regime. An initially axisymmetric cylindrical thread
transforms into a nonaxisymmetric thread in the con-
fined regime while that at the unconfined regime
maintains an axisymmetric shape. The rate of the
distortion growth and the observed dimensionless wave-
number (27Ro/A) in the confined regime is much smaller
than that for the unconfined regime. Below a certain
ratio of gap width/thread diameter, the thread does not
exhibit a distortion growth at all but is quite stable for
a long period, if not indefinatley. The lattice—Boltzmann
simulations confirm the physical assumptions made in
the surface area analysis; in particular, they indicate
that the necks are circular while the bulges are non-
axisymmetric as quantified by the Fourier decomposi-
tion relations. A simple calculation of the surface area
of the nonaxisymmetric sinusoidal thread indicates that
the increase in wavelength of the distortion in the
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confined regime is caused by the increase in the
minimum wavelength required in order to have a net
decrease in surface area. Finally, we note that the
construction of a linear stability analysis for this non-
axisymmetric case would greatly enhance our under-
standing of this intriguing phenomenon.
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