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Although the calculation of transport properties of complex-shaped parti-
cles (Smotluchowski rate constants for diffusion-limited reactions, Stokes
friction coefficient, virial coefficients for conductivity, viscosity and other
transport properties) is straightforward in principle, the accurate evalua-
tion of these quantities for objects of general shape is a problem of clas-
sic difficulty. In the present paper, we illustrate a recently developed nu-
merical path-integration method to estimate basic transport properties of
representative complex-shaped objects having scientific and technological
interest (i.e., star polymers and diffusion-limited aggregates without exclud-
ed volume interactions). The methodology applies to objects of essential-
ly arbitrary shape and its validation for special geometries, where exact
results are known, is described in a previous paper. Here we calculate
the electrostatic capacity and electrical polarizability tensor of these model
branched polymers and then exploit exact and approximate electrostatic-
hydrodynamic property interrelations to estimate the Stokes translational
friction coefficient and the virial coefficients for conductivity and shear vis-
cosity (intrinsic conductivity and viscosity, respectively). Dimensionless ra-
tios of these transport properties and equilibrium measures of particle size
(radius of gyration) are considered since these ratios are important exper-
imentally in determining macromolecular topological structure and univer-
sality class. We also discuss and illustrate the influence of the branching
architecture on the equilibrium charge distribution (“equilibrium measure”)
of these branched polymers where they are treated as conductors. An un-
expected qualitative change in the charge distribution is found with increas-
ing arm number in star polymers that may have important physical conse-
guences.
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1. Introduction

Many important materials science problems involve boundary value problems
with complex-shaped boundaries [1]. Examples include the electrostatic capacity,
the Smoluchowski rate constant, and the translational friction coefficient of arbi-
trary objects [2-5]; the fluid discharge through pipes of arbitrary cross section [6];
virial coefficients for the material properties of suspensions and composites contain-
ing particles of complex shape [7,8]; and the far-field scattering and the propagation
through apertures of both electromagnetic and acoustic radiation [9-14]. In many
of these problems, the relevant properties can be cast in terms either of the electro-
static capacity or of the electric or magnetic polarizabilities of the objects [1-14].
In addition to the obvious electromagnetic applications, these latter quantities are
encountered in the virial coefficients of the transport properties of inhomogeneous
materials [7], and, because they are shape-dependent functionals, in classifications
of particle shape [2,15]. For example, they permit characterization of gross polymer
topology [16], and we anticipate that they can distinguish more subtle topological
features such as the knot state of cyclic polymers and the genus of membranes [1].

Current differential equation or finite element methods for calculating the ca-
pacity or the polarizability are at best tedious when the boundary is intricate. The
numerical path-integration methods discussed elsewhere [1-4,17] are more direct
and general, even when applied to complex shapes. They are highly accurate when
compared with results for exactly soluble particle geometries [1-4,17]. Therefore,
they should be very useful in a host of applications involving radiation scattering,
transport, or characterization of particles of elaborate structure (e.g., biological cells,
snowflakes, atmospheric dust, particle aggregates in liquid dispersions, synthetic or
biological macromolecules in solution).

In this paper, we apply the path-integration methods [2-4,17] to calculate the
electrostatic capacity, C', the electrical polarizability tensor, a,, the friction coeffi-
cient, f, the intrinsic viscosity, [n], and the intrinsic conductivity, [0]s, of regular
star polymers and of aggregates grown under diffusion-limited conditions [18]. As
explained elsewhere [1-4,17], these quantities are all obtained, either exactly or with
adequate precision, in the same calculation. The influence of branching architecture
on the equilibrium charge distribution is also investigated.

2. Review of hydrodynamic-electrostatic property interrelations

There are many exact analogies between the hydrodynamics of suspensions and
flowing fluids, the electrostatic properties of conducting and insulating objects,
and the elasticity of composite materials and elastic shafts under torsion. Table 1
summarizes a number of these. There are also many approximate electrostatic-
hydrodynamic relations. We focus here on two analogies, one between the electrical
polarizability tensor a, of a conducting object and the intrinsic viscosity [n] of a
suspension of rigid objects having the same shape [7], and the other between the
electrostatic capacity C' of a conducting particle and the translational friction coeffi-
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Table 1. Exact hydrodynamic-electrostatic analogies. Unless otherwise stated,
the hydrodynamic-electrostatic analogies apply to objects of arbitrary shape.

Analogous Properties References
Hydrodynamic mass tensor M | Magnetic polarizability tensor ary; | 7,10,19,20
Friction coefficient of a 2-D body | Capacitance, C', of the body 21
translating normal to its plane
Force required to displace the in- | Capacitance, C', of the body 21
terface of an elastic material
Rotational friction coefficient of | Component of the hydrodynamic | 22
an axisymmetric body mass tensor, M, about the sym-

metry axis

Elastic strain field in a twisted | Fluid flux and velocity field in a | 6,15,24
elastic bar pipe
Flux of an inviscid fluid through | Capacity of the hole 25,26
a hole
Flux of a viscous fluid Hydrodynamic mass of the hole 25,26
Virtual mass density of a flowing | Conductivity of a dispersion of in- | 27
dispersion of bubbles sulating particles
Modulus increment of a solid | Viscosity increment of a liquid | 28
with rigid inclusions with rigid inclusions

cient f of a Brownian particle having the same shape [2,3,5]. The friction coefficient
and intrinsic viscosity are widely used in macromolecular characterization, and these
hydrodynamic-electrostatic analogies permit their estimation from numerical calcu-
lations of a, and C'. We now review these analogies and establish our notation and
the units.

2.1. Viscosity-conductivity analogies

The viscosity 1 or the conductivity o of a suspension of rigid particles can be
expanded in virial series [7,8],

n(dispersion) = n(dispersing fluid) [1 + [n]¢ + O(¢%)] ,
o(dispersion) = o(dispersing fluid)[1 + []¢ + O(¢?)],

(1)
(2)
where ¢ is the particle volume fraction. The virial coefficients are known either as
the “intrinsic viscosity,” [n], or the “intrinsic conductivity,” [o]. The latter depends
on the relative conductivities of the particles and the dispersing fluid, and we can
consider the two extreme cases of conducting particles suspended in an insulat-
ing fluid, and vice versa; the intrinsic conductivities in these two extremes will be
denoted [0]+ and [o]y, respectively. The refractive index, thermal conductivity, di-
electric constant, magnetic permeability and other transport properties can also be
expressed in comparable virial expansions [7,8,29-31].
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As is well known, an external electric field E induces a charge distribution on
the surface of a conductor, and the relationship between the field and the induced
dipole moment is given by the electrical polarizability tensor e [32],

p=(1/4m) e - E. (3)

A similar relationship exists between the magnetic moment p,, the magnetic
polarizability «,,, and the magnetic field M. Conducting particles in an insulat-
ing matrix (or insulating particles in a conducting matrix) are also polarized in an
applied field, and in the dilute limit the intrinsic conductivity depends on the po-
larizability tensor, although only the trace is involved if the particles are oriented
randomly. The intrinsic conductivities equal [7,33],

0] = [Tr (exe) /dV})] (4a)

and
[0]o = [Tt (aem)/dV}], (4b)

where V), is the particle volume and d is the spatial dimension.

A shear field applied to a dilute dispersion of rigid particles induces a stress
dipole (“stresslet”) field [34] that modifies the effective viscosity of the dispersion.
The intrinsic viscosity is obtained as an angular average of the tensor field describing
the perturbation of the flow field by the particle inclusion. Douglas and Garboczi
[7] noted that a formal angular averaging of the stress dipole describing the hy-
drodynamic interaction implies [n] « [0] since the angular average of the Green’s
function of Stokes equation is the Green’s function of Laplace’s equation. The con-
stant of proportionality is independent of the particle shape, and can therefore be
fixed using exact results for d-dimensional hyperspheres. We then have

[0 (conducting sphere)] = d, (5a
[o(insulating sphere)], = d/(d — 1), (5b
[n(sphere)] = (d +2)/2, (6

(] ~ [(d+2)/2d][0] , (7

The d = 3 versions of equations (5) and (6) are attributable to Maxwell and Einstein,
respectively, while the results for arbitrary d are attributable to Sangani and Brady,
respectively [34-37]. The expression in equation (7) involves an angular averaging
approximation and thus is not exact. However, it has been examined for cases in
which either exact or numerically precise results are available, representing a broad
range of shapes and polarizabilities (triaxial ellipsoids having arbitrary asymmetry
[38], spherical dumbbell particles at arbitrary separation, elliptical particles in two
dimensions, cubic dumbbells over a range of separations, circular and rectangular
cylinders, “sponges,” a square ring, a square hollow tube, and “jacks” [7]). Results for
all these cases are illustrated in figures la-b for d = 3 and d = 2, respectively. Filled
circles denote exact results and open circles indicate finite element calculations.
Solid lines indicate equation (7) and the broken line in figure la corresponds to the

~— —
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Figure 1. Intrinsic viscosity versus intrinsic conductivity of conducting particles.
Solid lines denote the angular averaging prediction of Garboczi and Douglas [7],
equation (7). The dashed line indicates the exact result for extended needle- and
plate-shaped ellipsoids of revolution. (a) Exact (e) and finite element results (o) in
three dimensions. Exact results are for triaxial ellipsoids, ellipsoids of revolution
[7,36], and dumbbells over a range of separations. The finite element calculations
are for rectangular parallelepipeds, circular cylinders, “jacks,” “sponges,” square
ring, dumbbell of cubes (“dice”), square hollow tubes in three dimensions and
rectangles, a spherical lens and touching circles in two dimensions. (b) Exact (e)
and finite element results (o) in two dimensions. Exact results are for ellipses and
finite element calculations correspond to rectangular and polygonal regions.

ratio [n] /[o],, = 0.8, the limit of needle and plate ellipsoids of revolution [7]. A
compilation of [n] / [o],, over extensive data for all these cases gives [7]

[n] ~ (0.79 £ 0.04) [o]. (8)

in three dimensions. The uncertainty interval indicates the maximum deviation from
the average. A better approximation is obtained by using the prefactor 0.8 for slen-
der particles and 5/6 ~ 0.833 for less symmetric “globular” shapes [39]. Thus,
equations (7) or (8) give estimates of [n] valid to a relative uncertainty of around
5%, which is less than or comparable to experimental uncertainty.

As defined above, [n] and [o] are dimensionless. However, the intrinsic viscosity
is conventionally defined relative to the mass concentration rather than the volume
fraction ¢. Therefore, the conventional intrinsic viscosity is [n]y = (V,/M)[n] for M
the mass of the body.

Consider now a particle moving through an inviscid fluid. Its motion induces mo-
tion in the fluid (even without viscosity), and the far-field disturbance is described
by a dipolar field. The mass of the moving particle becomes equivalent to a hydro-
dynamic effective mass tensor M that is the sum of the bare mass and a “virtual
mass” tensor W,

M=VI+W, 9)

where I is the identity matrix (the density of the particle and fluid are assumed to
equal unity for simplicity of discussion here). It has been shown rigorously [9,19]
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that M = —a,,, so that the exact hydrodynamic-electrostatic analogy
[0]y = [Tr (aum)/dVp] = —=[Tr (M) /dV}]

immediately follows [7]. This is, therefore, the counterpart of equation (7) to inviscid
fluids. We finally note that the electrostatic counterpart of W is the polarization
tensor (not to be confused with the polarizability tensors a. or ;). The hydrody-
namic virtual mass is thus a kind of fluid polarization associated with the motion
of bodies in fluids.

2.2. Analogies between capacity and friction coefficient

The final electrostatic-hydrodynamic analogy that we consider is the relation
between electrostatic capacity C' of a conducting particle and the translational fric-
tion coefficient f of a Brownian particle of the same shape. C' is the proportionality
constant between the charge and the potential of the conductor and is a functional
of its shape. Our units are such that the capacity of a sphere in d = 3 equals its
radius. C' is obtained from solutions of Laplace’s equation with Dirichlet boundary
conditions. The friction coefficient f of a Brownian particle is invariant to particle
rotation since a diffusing particle samples all orientations as it moves over large dis-
tances. A formal angular averaging of the Oseen hydrodynamic interaction indicates
that f is proportional to C, [2,3,5,40]

f = 6mn(dispersing liquid) C. (10)

Therefore, within the angular averaging approximation, the capacity C' of a con-
ducting particle equals the hydrodynamic radius Ry of a Brownian particle of the
same shape, since this latter is conventionally defined as f/67n. Comparison be-
tween equation (10) and existing analytic results shows that it is accurate to about
1% generally and often much better [2,3]. Equation (10) is exact for triaxial ellip-
soids and a tabulation of exact values of C(f) is given by Hubbard and Douglas
[3]. There are many analogies relating C' exactly to other transport properties (ther-
mal capacity, Smoluchowski rate constant for diffusion-limited reactions, scattering
length in quantum theory and acoustics, etc.) so that the determination of C' has
many further applications than those discussed in the present paper [2].

3. Numerical path-integral calculation of electrical polarizabili-
ty and capacity

A classical result of probabilistic potential theory is that the capacity C can be
calculated formally by averaging over random walk trajectories [41]. More recently,
the technique has been extended to the calculation of the polarizability tensor a,
[17]. In fact, the two quantities C' and . can be obtained simultaneously. (The
tensor a,, is formally amenable to similar treatment, but certain technical details
render it more difficult). The “Zeno” algorithm [17], employed in these calculations,
proceeds according to the following steps.

254



Transport properties of model branched polymers

(1)

Refer to the surface of the object as €2. The object is enclosed within a sphere
of radius R, the “launch” sphere. The final estimates are independent of the
value of R and the precise location of €2 within the launch sphere, but the
best statistics are obtained if the smallest sphere that completely contains €2
is used. The origin of coordinates is taken to be the center of the launch sphere.

A point (z,y, 2) is selected at random on the surface of the launch sphere to
serve as the initiation site for a new random walk. Assign three charges, ¢, ¢,
and ¢, to the walker. The z-charge ¢, is set at +1 with probability (14+z/R)/2,
and otherwise it is set to —1, with similar definitions for the other two charges.
The walk begins from this point and continues until it either hits €2 or wanders
off to infinity. This is achieved by following the iterative procedure in step 3.

Given a point P on the exterior of €, define the distance function p(P,Q) to
be the minimum distance from €2 to P. Let P represent the current position
of the random walker. If P lies on or inside the launch sphere, then move
the walker to an arbitrary point on the surface of the sphere whose center is
P and whose radius is p(P,2). If P lies outside the launch sphere and if B
represents its distance from the origin, let the walker escape to infinity with
probability 1— R/ B; otherwise return it to the surface of the launch sphere at a
point selected from the well known distribution for the sites of first passage of
random walkers from an external point to the surface of a sphere. Iterate until
the walker either escapes to infinity or until the distance pfalls below some
small predetermined “skin thickness”, £, at which time the walker is taken to
have hit €2. Just as in Zeno’s celebrated paradox, the walker never actually
reaches €2, but it comes arbitrarily close.

Repeat from step 2 with a new random walker. Accumulate statistics on the
number of hits and on the distribution of sites at which walkers of each partic-
ular charge configuration (¢, ¢y, ¢;) hit. These determine C' and e according
to formulas given elsewhere [17]. The technique is rigorous in the limit of a
large number of walks and the limit ¢ — 0. It has been verified on a large
number of objects for which C' and e, can be obtained independently [17].
Since the algorithm is only rigorous in the limit ¢ — 0, we can expect errors
comparable to . Performance degrades, however, if we set ¢ too small. We
obtained excellent performance using values of ¢ around 1075 or smaller.

All dependence on () enters only through the distance function p. This makes
the Zeno algorithm versatile: by assigning the computation of p to a plug-in subrou-
tine, we can switch from one body to another simply by switching the subroutine.
Computation of p for complex bodies is the bottleneck of the procedure, so compu-
tation times depend strongly on the complexity of the body. However, the present
case, in which bodies were defined as unions of as many as 6400 individual spheres,
was not too difficult; then computation of p consists of computing the distance to
each individual sphere and taking the minimum distance. We have also applied it
to polyhedral surfaces [17], representing the surfaces as unions of triangles; then
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Hits=2
Lost=1
Steps=98172

Figure 2. Tllustrative realization of a random walk sampling path launched from
an enclosing surface. The object in this case is a model branched polymer where
spheres are placed at the vertices of the “graph” describing the polymer. The
fraction of random walk trajectories that hit the polymer rather than the launch
sphere determines the electrostatic capacity. The electrostatic polarizability ten-
sor is obtained similarly except that the launched random walks are assigned
charges according to the position from which they are launched (see text for
details).

computation of p is achieved by computing the distance to each triangle and taking
the minimum distance.

4. lllustrative calculations for linear and star polymers and DLA
aggregates

The hydrodynamic-electrostatic analogy is formally valid only for rigid mole-
cules. For statistically defined objects such as flexible polymers and aggregates, we
apply the “rigid-body” approximation: We generate an ensemble of independent
structures, compute the capacity and the polarizability tensor for each member of
the ensemble, and then take the hydrodynamic property to be the ensemble average.
Exact calculation of the hydrodynamic properties of flexible molecules is much more
difficult, but there are strong indications that the ensemble average over all possible
conformations, each one treated as if it were rigid, is a good approximation to the
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exact hydrodynamics of the flexible molecule [65]. The reported averages, therefore,
are of the capacity and of the diagonal components aj; of o to obtain the scalar
quantity [n],, of experimental interest.

4.1. Linear polymers

We have already considered linear polymers in a previous publication. However,
it is customary to report the properties of star polymers in relation to linear poly-
mers of the same total mass, (see below) and so it became necessary to extend those
calculations to cover a greater set of chain lengths. We modeled linear polymers as
chains of spherical beads, each bead having diameter 2 and each pair of contiguous
beads required to be tangent. Non-contiguous beads are allowed to overlap. This
model represents real polymer chains in solution at the theta temperature where
attractive and repulsive intramolecular interactions largely compensate [63,64]. En-
sembles containing 5000 statistically independent chains were generated for values
of N between 76 and 6401. We launched 1000 trajectories from an enclosing launch
sphere at each chain in the ensemble. (See figure 2 for an illustrative example in
which the target object is a non-equilibrium branched polymer [18].) We employed
the Zeno algorithm with ¢ = 1075, With only 1000 trajectories per chain, we es-
timate (by launching many more trajectories at a few chains) that there is 3 and
15% relative uncertainty in the capacity and polarizability components, respective-
ly, for any one chain. Nevertheless, the ensemble averages (C) and () should be
much more accurate since each average involves at least 5 - 10° probe trajectories.
Computational time is linear in N, the bottleneck at large NV being the computation
of the function D(r). Because of arbitrary overlap among spheres in the random
walk chains, the volume V), is neither easy to compute nor constant throughout the
ensemble. However, the value of V) is immaterial since it is more appropriate to
consider the ensemble average of [n],,.

Our results can be described well with the following expansions

(C) 22 0.652N /2 4 1.230 — 3.61N ~'/2, (11)
(Tr (ct)) 22 13.66N */? + 59.6N — 96.1N /2, (12)

where (...) denotes an ensemble average.

We use the relations (C) = Ry and equation 8 to estimate the hydrodynamic
radius and intrinsic viscosity of polymer solutions. Results are expressed relative
to the radius of gyration R, of the chain (root mean-square distance of polymer
segments from the center of mass [63,66]), which can be calculated exactly for this
model [66],

R, = (2N/3)"?[1 — N?|'/? =~ (2N/3)"/2. (13)

In figure 3a we show our data for the ratio ¢, = Ry/R, for the random walk chain
model and the fitted line denotes the relation,

Y = 0.798 + 1.506 N~1/2 — 442N ! (14a)
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Figure 3. The hydrodynamic radius and intrinsic viscosity of polymer chains are
estimated respectively from the electrostatic capacity C' and the mean polariz-
ability trace Tr (a) of perfect conductors having the same shape as the polymer
chains. The resulting estimates of C'/Rg = 1, and M[n]ar/ R} are shown as func-
tions of N~/2 in (a) and (b), respectively. The fitted curves (solid lines) are given
by equation (14).

and similarly in figure 3b our estimate of [n] obtained from our polarizability calcu-
lation,

M [n]y, Ry® = [6.61 + 28.6N~"/* — 46.5N '] (1.00 + 0.05). (14b)

The factor (1.00 4 0.05) arises from the uncertainty in equation (8). The leading
term in equation (28b) is often reported in terms of the “Flory-Fox number”, ® =
62 [a]y; MN,/RS, where Ny is Avogadro’s number. Our estimate of ® is then,

® = (2.714£0.14) - 10%, (15)

where the uncertainty again arises from the 5% relative uncertainty in equation (8).
The best experimental estimates for ¢, and ® at the theta temperature are [67]
0.79 £+ 0.04 and (2.5 £ 0.1) - 10%*. Our present estimates also closely correspond to
calculations for flexible random walk chains based on the Kirkwood-Riseman hydro-
dynamic equations without the configurational preaveraging approximation [65,68],
Yp(KR) = 0.77 + 0.03 and ®(KR) = (2.59 4 0.18) - 10?%. (The stated uncertain-
ties are estimates of sampling error. These values probably also contain systematic
finite V errors.) The leading term in equation (14a) is somewhat larger than the
value ¢, 2 0.77 found in previous random walk simulations by Douglas et al. [2], in
which the bead radius was one quarter of the bond length rather than one half and
for which N = 101. This discrepancy may be due to finite N effects, even though
this particular bead radius was employed because it exhibits relatively weak N de-
pendence. Further discussion of 1, relative to previous theoretical estimates and
measurements is given by Douglas and Freed [69].
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Figure 4. Representative image of a 12-arm star polymer containing N = 6001
beads.

4.2. Star polymers

We modeled star polymers as f different chains of L beads, each one grafted
by one end onto a central core bead. As with the linear polymer model, each bead
has diameter 2 and contiguous beads are required to be tangent, but overlaps are
permitted between non-contiguous beads. The total number of beads is fL + 1
(the 1 contribution comes from the core bead, which is not considered to belong to
any arm). Figure 4 shows a representative configuration for a 12-arm star polymer
where L = 500 for illustration. No reliable analytic methodology currently exists for
calculating the transport properties of branched polymers so that this path integral
formulation is especially useful in treating this type of problem.

The simulation protocols, including ensemble size, number of trajectories launch-
ed, and the skin size, were identical to those described above for linear chains. We
generated ensembles with f = 3, 4, 5, 6, 10, 12, 20, 40, and 60 with L between 25
and 1600, but subject always to the constraint fL < 6400, that being the current
practical limitation on the size of the model. The absolute magnitude of the various
measures of polymer size are sensitive to details of the model, but ratios of large
scale properties exhibit universality that can be exploited to discriminate between
different types of molecular architectures [16]. We thus consider dimensionless ratios
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Figure 5. Hydrodynamic property ratios for star polymers as a function of arm
length L. Numbers denote the number of arms. Solid curves are the extrapolation
explained in the text. (a) g(Ry) vs. L=Y/2; (b) g¢([n]) vs. L~1/2.
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Figure 6. Dependence of g(Rg), g([n]), and g(Rx) on arm number, f.
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Table 2. Fitting parameters for star polymers.

Ay By Ay By
1.094 | 1.081 | 60.4 | 182.2
1.219 | 1.082 | 81.8 | 194.1
1.320 | 0.964 | 100.5 | 230
1.395 | 1.088 | 116.6 | 280
8 | 1.520 | 1.096 | 148.6 | 299
10 | 1.613 | 1.149 | 174.3 | 363
12 | 1.697 | 1.048 | 201 360
18 | 1.880 | 0.864 | 266 378
20 | 1.923 | 0.866 | 283 | 405
40 | 2.207 | 0.845 | 418 011
60 | 2.374 | 0.772 | 516 537

o ot x| Lol

of properties, either two different properties of the same star model or the same
property of a star and a linear polymer of the same total number of chain segments.
The first ratio of this type compares the radii of gyration of a star and a linear

polymer [16,63],
g(R2) = R:(star) /R (linear). (16a)

For random walk chains of arm length L this ratio is
g(R2) = (1+ L)[2+ L(3f —2)]/(1 + fL)(2+ fL). (16b)

The above expression becomes independent of chain length in the limit of infinite
arm length [63],
g(RY) ~ (3f =2)/f? L — o0 (16¢)

To obtain estimates of the corresponding ratios for the hydrodynamic radius g(Rp)
and the intrinsic viscosity g ([7]) we calculate the ratios C'/ L'/? and Tr (a,)/L3/?
and fit our results to the scaling relation. We obtain our estimate of g(Ry) and
g ([n]) in the limit of long arm length (L — oo) from the ratios of C' and Tr (e,) for
stars and linear polymers in the long chain limit [See equations (11) and (12) for
the linear chain data in this comparison]|.

C/LY? = Ay + ByL /2, (17)
Tr (ae)/L?’/Q = AQ + BQL_I/Q. (18)

The fitted values of Ay, By, Ay, and B, from the simulation data shown in figures 5a,b
are given in table 2. The ¢ ratios in the large N limit are then given by ratios of
the leading coefficients in equations (11), (12), (17), and (18). These are listed in
table 3 and displayed in figure 6. The result for values for g(R?) were obtained from
equation (16). It is obvious from figures 5a and 5b that evaluation of A; and A,
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Table 3. g ratio for star polymers.

T a® | 9@ | 9@ | 9@ | o
equation (16) | our results | our results [70] [70]

3 0.778 0.969 0.851

4 0.625 0.935 0.749

3 0.520 0.905 0.659

6 0.444 0.873 0.581 0.86 £0.01 | 0.58 == 0.02
8 0.344 0.824 0.481

10 0.280 0.782 0.404

12 0.236 0.751 0.354 0.75£0.01 | 0.38 £0.03
18 0.160 0.680 0.255 0.66 = 0.01 | 0.24 £ 0.03
20 0.145 0.660 0.232

40 0.074 0.535 0.121

60 0.049 0.470 0.081

requires a relatively broad extrapolation, especially for larger values of L. Therefore,
the g values given in table 3 and in figure 6 are subject to some uncertainty.

We observe that the ratios g(R;), g(Ru) and g([n]) decrease monotonically with
the number of chain arms f. This general trend reflects the increasingly compact
nature of the polymer chain arising from the branching constraint. The extent of the
change is property dependent and collectively these ratios provide a useful means
for discriminating branching architecture [16].

There have been previous estimates of these ratios by alternative methods for
ideal (“Gaussian“) chains for a limited number of cases of arm number by alternative
bead model calculations of the hydrodynamic properties using methods that avoid
the substantial configurational preaveraging approximation [70]. We include these
former estimates of g(Ry) and g([n]) in table 3 for comparison. Both types of es-
timates agree to within statistical uncertainty. These calculations also agree within
statistical uncertainty with the estimate of v, for linear chains, as noted above. This
internal consistency between such different methods of calculation is very encour-
aging support for both methods. We note, however, that it is easy to incorporate
polydispersity in the shape and size of polymer beads, side branch structures and
other realistic features of the chain structure into the path-integration calculations
without substantial increase in computational complexity and these generalizations
would be rather involved in other methods of computation.

4.3. Diffusion-limited cluster growth without excluded volume interactions

Diffusion-limited aggregation (DLA) is an important model for particle aggrega-
tion under conditions far from equilibrium when particles stick irreversibly to a grow-
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ing cluster and the flux of the particles to the cluster is determined by diffusion [18].
In general, clusters can form either under equilibrium or non-equilibrium conditions
and a variety of ‘universality classes’ (diffusion vs. reaction limited non-equilibrium
clusters, linear vs. lattice animal equilibrium polymers, etc.) arise depending on
growth conditions. Knowledge of the dimensionless invariants that describe these
clustering types should be useful in differentiating these dynamic clustering process-
es. The probabilistic computational method should be especially useful in this type
of problem because it avoids the use of slender body point source model calcula-
tions (e.g. the Kirkwood-Riseman model [68]) that are more appropriate for slender
polymer chains than for relatively compact polymer clusters.

DLA clusters are generated according to the following formal algorithm [18]. A
sphere of unit radius is placed at the origin and becomes the first sphere of the grow-
ing cluster. A point-like random walker diffuses in from a great distance and stops
when it first makes contact with this sphere. The second sphere is then added to the
growing cluster so that it is tangent to the first sphere at the point of the first con-
tact. A second point-like random walker then diffuses in until it makes first contact
with either of the two spheres. The next sphere is then added to the cluster so as to
be tangent to the surface at that point. This process continues until the cluster has
grown to the desired size. Obviously, this growth process can be performed with just
a minor variation of the Zeno algorithm. However, this procedure involves a simpli-
fication from the algorithm described above where the random walkers are required
to diffuse-in from a “great distance”. At each iteration, we construct a new launch
sphere centered at the origin and having radius just sufficiently large to completely
enclose all spheres currently in the cluster. Any random walker approaching from a
great distance must first make contact with this sphere and so we do not have to
start tracking its trajectory until it does. In other words, the random walkers are
actually initiated from arbitrary sites on the surface of a sphere just large enough
to enclose the cluster. From that point on, the trajectory is generated just as in the
Zeno algorithm. As designed, this algorithm allows for overlap of the spheres in the
growing clusters, and therefore our clusters differ from conventional DLA clusters.
(We term our clusters theta-DLA clusters to distinguish them from their volume
exclusion counterparts.) Figure 7 shows a representative example of a theta-DLA
cluster corresponding to N = 5000 spheres having a unit radius.

The capacity (hydrodynamic radius) and the electrical polarizability (intrinsic
viscosity) were estimated using the “Zeno” algorithm [17]. We generated independent
ensembles for each cluster size (V) containing 5000 configurations and 1000 walkers
were launched at each cluster within each ensemble. The N values were chosen to
be 100, 150, 200, 250, 300, 400, 500, 700, 850, 1000, 1500, 2000, 2500, 3000, 4000,
5000 and 6400. The computational time increased substantially with N and the
simulation took about 1 week on a PC for the N = 6400 ensemble, although it was
considerably faster at smaller N.

The usual measures of aggregate size, viz., C, Ry, and Tr (a.)/3, scale as N*40.
Figure 8a shows our estimates of the ratio C'/ R, for the non-equilibrium aggregates.
It is apparent that the finite size N corrections are large in this model. The ratio
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Figure 9. Influence of generation number G on the ratio Ry/Rg for dendrimer
branched polymers.

Yy, = C/R, seems to extrapolate to a value near 1.28, near the exact value for hard
spheres, (5/3)'/? ~ 1.29. This strongly suggests that the diffusion-limited clusters
are approaching a relatively compact configuration in the limit of large cluster mass
N. The ratio Tr (e, )/ R} is shown in figure 8b, and extrapolates to a value of around
80 or more. The large value indicates that while the cluster may have a compact
overall shape, the cluster is “porous®, leading to a substantial increase of [n] relative
to a uniform hard sphere.

We remind the reader again that our clusters neglect self-excluded volume in-
teractions and that repulsive interactions should make the aggregates more diffuse,
leading to a reduction of ¢. Chen et al. have estimated the Ry/R, for diffusion-
limited cluster-cluster aggregates and this ratio to equal 0.875, independent of cluster
size [71]. The deviation from our result found in these calculations (which included
self-excluded volume interactions) seems to be rather large.

Dendrimer molecules are highly branched polymers grown through a successive
addition of multifunctional monomers (See [42] for illustration of their topological
form, [73] for general discussions of dendrimers.) During construction of each genera-
tion, multifunctional groups are added so that, unlike the theta-DLA, the topological
structure is nearly perfect. At low generation number G (G < 4) in their recursive
synthesis, the molecules resemble flexible star polymers and we can expect similari-
ties to the flexible polymer calculations of the previous section. At higher G (G > 4)
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the branching constraints begin to predominate and structures with relatively high
local segmental densities form which we can expect to have some similarities to the
densely branched DLA clusters. In figure 9 we show our previously obtained results
for v, as a function of G [17]. Consistent with the discussion above, the magnitude
of 1, is similar to those for flexible polymer chains when G is small and to the
uniform sphere values (¢, = 1.29) when G is large. (Technically speaking, 1, for
these molecules should not exceed the value for uniform spheres. That it does in the
higher generations is a consequence of the fact that one of the radii is computing
assuming point-like contributions from each bead, while the other assumes the beads
have finite volume.) These results all indicate a crossover from a random coil-like
structure to a compact structure with increasing G. As in the case of DLA aggre-
gates, the intrinsic viscosity of the dendrimer molecules is estimated to have a value
much larger than a sphere, consistent again with a sponge-like structure rather than
a uniform density sphere.

4.4. Influence of branching on the equilibrium charge distribution

There has been much interest in characterizing the multifractal properties of
branched polymers determined by the scaling of moments of the equilibrium charge
distribution with the mean polymer size [72]. Despite the extensive analytic work,

2
=)

04

C*P(r)
0.3

0.2

0.1

0.0

r/C

Figure 10. Influence of the number of star arms f on the radially averaged charge
density P(r) of random walk chains. The charge distribution is averaged about
the center mass of the polymer. Note occurrence of peak in density for f > 4.
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there is very little computational investigation of the charge distribution on model
branched polymers such as stars and dendrimers which can be used to test the
validity of the analytic theory or even to understand the qualitative nature of the
resulting charge distributions on such structures. In this section, we take a first quick
look at these distributions as a prerequisite to examining the multifractal spectra of
regular branched polymers (stars and dendrimers).

First, in figure 10 we show the radially averaged equilibrium charge distribution
P(r) of random walk star polymers having 6401 beads and arms of equal length for
f=1,3,4,5,6,8. The ensemble averaging is as described in section 4.2 above. The
radial coordinate r is normalized by natural scale C' governing the effective size of
the star polymers in the decay of the electrostatic field at large distances. P(r) is
multiplied by a corresponding C* volume normalization factor. We observe that the
maximum of the equilibrium charge density occurs near the origin in the stars with
f <4, but the maximum moves out to an increasing value of r/C" as the number of
star arms increases. For small f, the charge distribution can be fitted by a power law
for small r/C (e.g., —3/2 for linear chains and —1/2 for f = 3) and the exponent
becomes near zero for f = 4 (near uniform charge distribution). This qualitative
change in the equilibrium charge distribution with f does not seem to have been
appreciated before.

C3P(r)
0.08 0.12 0.16

0.04

0.00

r/C

Figure 11. Influence of cluster mass on the radially averaged charge density P(r)
of theta-DLA clusters. The charge distribution is averaged about the center mass
of the polymer.
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The development of a maximum in the equilibrium charge distribution is also a
conspicuous feature of our theta-DLA aggregates. For the same range of N values and
chain ensembles as described in section 4.3, we see in figure 11 that the distribution
of P(r) about its cluster center of mass in this case becomes increasingly peaked
and apparently more Gaussian as N increases. We find that the variance o of the
unreduced distribution increases as o ~ N %%, But since C' ~ N %4 the reduced
distribution of figure 11 becomes narrower with increasing N.

The origin of this transition in the character of the charge distribution is clear.
For a compact sphere the charge distribution reduces to a delta function on the
boundary of the sphere and for diffuse objects there is a penetration depth describing
the extent that diffusing species can enter into the domain before capture occurs.
The peak in P(r) means that the domain defined by the many-arm (f > 4) star and
theta-DLA branched polymer have well-defined “boundaries®, albeit diffuse ones.
The absence of the peak means the chains segments in the interior are very strongly
exposed.

This change in the nature of the charge distribution has many potential rami-
fications. In the case of the drag forces on these objects the (angularly averaged)
momentum force distribution on the polymer should follow the equilibrium charge
distribution [3] so that drag forces on a steadily moving polymer should become
more concentrated on the central region of the polymer in the case of linear chains,
but become concentrated on a well-defined polymer periphery in the case of highly
branched polymers. This change also has significance of the diffusion-limited binding
of associating groups onto polymer structures, i.e., linear chains can be more read-
ily penetrated along the entire chain length, but branched polymers largely screen
the interior structure so that binding becomes concentrated on the polymer exteri-
or. Further research is needed to fully understand this dramatic change in charge
distribution with branching morphology and its physical ramifications. The path-
integration method should be a useful tool in this type of study that seems to be
beyond existing analytical methods.

5. Conclusion

We have applied a numerical path-integration algorithm to the calculation of
the capacity C' and electric polarizability a, of star polymers and aggregates grown
under diffusion-limited conditions. Excluded volume interactions are not included
in these model polymer structures and the calculations assume the polymers are
conducting. These shape functionals have many applications to the scattering of
light and sound and are also important for describing effective properties of particle
dispersions and transport properties of macromolecules. We first summarize the pre-
viously obtained results for translational friction coefficient and intrinsic viscosity of
flexible linear (random walk) polymers and then generalize to star polymers contain-
ing f arms of equal length. Ratios of the star properties to those of linear polymers
are then calculated since these “universal” ratios are commonly utilized experimen-
tally to characterize branching morphology. Good agreement is obtained with pre-
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vious simulations of random walk stars based on completely different computational
methods. The results for regular stars were then compared with non-equilibrium
clusters grown according to a diffusion-limited aggregation model. These aggregates
ignore repulsive interactions between attaching spheres, so we term these theta-DLA
aggregates. We find that the ratio of the capacity C' to the radius of gyration of these
aggregates approaches a value close to that for a sphere in the limit of large mass,
suggesting these objects become increasing compact as they grow. The previously
obtained results for hierarchically branched dendrimer molecules (having the topol-
ogy of a Cayley tree, but having repulsive excluded volume interactions between
the polymer segments) show a similar trend with increasing generation number G,
the ratio of the capacity C to the radius of gyration changes from a value close to
random coil chain at low G to a value close to a sphere for large GG. Increasingly
branched growth again leads to a tendency to form compact polymer structures.

We also investigate the influence of branching topology on the equilibrium charge
distribution in f-arm star and theta-DLA clusters. The radially averaged charge
distribution about the chain center of mass changes it qualitative character with an
increasing number of star arms, i.e., exhibiting a maximum near the chain center of
mass for stars having 4 or less arms and a maximum at a finite value of C'/r (r the
distance from the center of mass of the cluster) for larger f. The theta-DLA clusters
exhibit a maximum in the charge density near C/r = 1 and the variance of this
distribution decreases as the cluster grows and becomes gradually more compact.
These results indicate that the “interior” of linear chains (central chain segments)
are much more “exposed” than the central segments in highly branched polymers
(many arm stars and DLA aggregates). This is an important qualitative aspect of
the charge distribution in polymers that has many potential physical ramifications
and which deserves further systematic study.
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OOuYMncNeHHs BNacCTUBOCTEN NepeHocCy 3ipKoOBUX
nonimepis i oomexeHux andysielo TeTa-arperariB
MeTOoAOM iHTerpyBaHHs 3a TPaeKTopisMu

M.J1.MeHcoing', Ox.®.Oyrnac?

Kadenpa ximii Ta ximiyHoi Gionorii,

TexHonoriyHnii iHcTuTyT CTiBeHca, XobokeH, Hbto Ixepci 07030, CLLA
Binain nonimepis, HaujioHanbHWM iIHCTUTYT CTaHOAPTIB | TEXHOMOrT,
Farntepcoypr, MD 20899, CLLA

OTtpumaHo 7 rpyaHsa 2001 p.

Xo4a po3paxyHOK BNaCTMBOCTEN MNEPEHOCY YAaCTUHOK CKIagHoi dpopmm
(cTanux wenakocTi CMONyXoBCLKOro Ans obmMexeHux andysieo peak-
uin, koediuieHTiB TepTa CTokca, BipianbHUX KoedilieHTiB ong NpoBia-
HOCTI, B’A3KOCTi 1 iHLWIMX BNaCTMBOCTE NepeHocy) € B nNpuHumni 6e3s-
nocepeaHimM, To4He OOYMCNEHHS LMX BENWYUH Ans 00’ekTiB 3arasbHOi
dopmMn NnpencTaBnsie cob0o0 KacMyHy 3a BaXKICTIO 3aaa4vy. Y AaHin po-
OO0Ti MU INIOCTPYEMO HEAABHO PO3BUHYTUIA YNCENBHUA METOL, iHTErpy-
BaHHS 3a TPAEKTOPIAMM, OO OLHUTM OCHOBHI BNAaCTUBOCTI NepeHocy
npeacTaBneHnx 06’ekTiB cknagHoi Gopmu, SKi NpeacTaBfsioTb HAyKo-
BUI | TEXHONOTIYHNIA iHTEPEC (Hanpuknag, 3ipkoBi noniMepn i obmexe-
Hi ouodysielo arperatn 6e3 BUKIOYEHMX 00’€EMHUX B3aemogint). MeTo-
CTOCOBHICTb A1 NEBHUX reOMEeTPIN, Ae BiAOMi TOYHI pe3ynstaTu, onm-
caHa B nonepegHiin ctatTi. TyT M1 0B6YMCIIIOEMO €1eKTPOCTATUYHY EM-
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HICTb | TEH30P eNeKTPUYHOI NONSPU30BAHOCTI LUMX MOOENbHUX 3ipKO-
BUX MOJNiMEpIB, | TOAI BUKOPUCTOBYEMO TOYHI i HABNMXEHI BNACTUBOCTI
eNeKTpoCTaTUYHO-TiAPOANHAMIYHNX 3B’A3KiB, W06 OUiHUTK KoedilieHT
TpaHcnsauinHoro Tepta CTokca i BipianbHi KoedilieHTn ons NpoBigHOC-
Ti Ta 3CYBHOI B’A3KOCTI (BHYTPILLIHbOT MPOBIAHOCTI Ta B’A3KOCTI BigNOBIA-
HO). Po3rnapaoTbcs 6€3MacoBi BiAHOLLIEHHS LiX BIACTMBOCTEN NEePEHO-
Cy i piBHOBaXHi MacwTaby po3Mipy 4aCTMHOK (pagiyc ripauii), OCKinbKK
L BiZHOLWEHHS BaXJIMBI Y BU3HAYEHHI MakpOMONEKYNAPHOI TONONOrYHOI
CTPYKTYpW Ta Knacy yHiBepcanbHOCTi. M1 Takox o6roBopumo i npointoc-
TPYEMO BIMUB rif4acTOi apXiTeKTYpPU Ha PIBHOBaXXHUI PO3N0Ain 3apaay
(“piBHOBaXKHMI PO3MIP”) LUX PO3ranyXXeHUX NoNiMeEPIB, A€ BOHU TPAKTY-
I0TbCS SIK NPOBIOHMKN. 3HAMAEHO HEOoUiKyBaHy SIKiCHY 3MiHy B ponogini
3apsay i3 3POCTaHHAM KiflbKOCTI FiIOK Yy 3ipKOBOMY NOJiMeEPI, WO MOXe
MaTn BaxnBi Qi3nYHi HaCiaKK.

KniouvoRi cnoBa: tepts Crokca, CrpuiHITINBICTb, BHYTPILLHS
B’I3KICTb, PO3rajiyXeHi nosaimepu, iHTerpyBaHHs 3@ TPAEKTOPISIMU,
iMOBIpHiCHa Teopisi noTeHxLjiany

PACS: 05.40.-a, 05.60.Cd, 36.20.-r, 47.11.4j, 66.20.+d, 66.10.Cb,
77.22.-d, 87.15.W

274



