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We investigate the influence of confinement on the steady state
microstructure of emulsions sheared between parallel plates, in a
regime where the average droplet dimension is comparable to the
gap width between the confining walls. Utilizing droplet velocime-
try, we find that the droplets can organize into discrete layers under
the influence of shear. The number of layers decreases from two (at
relatively higher shear rates) to one (at lower shear rates), as the
drops grow slightly larger due to coalescence. We argue that the
layering and overall composition profile may be controlled by
the interplay of droplet collisions (which can cause separation of
droplet centers in the velocity gradient direction), droplet migra-
tion toward the centerline (due to wall effects), and droplet packing
constraints. We also study the effects of mixture composition on
droplet microstructure, and summarize these results in the form
of a morphology diagram in the parameter space of mass frac-
tion and shear rate. We find that formation of strings of the sus-
pended phase (reported earlier by our group in flow-visualization
studies on confined emulsions) is observed over a broad compo-
sition window. We also find a stable (nontransient) morphology
wherein the droplets are arranged in highly ordered pearl-necklace
chain structures. C© 2002 Elsevier Science (USA)

Key Words: emulsions; finite-size effects; confinement; wall
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INTRODUCTION

Most studies on emulsion rheology have focused on systems
where the average droplet radius (r ) is much smaller than the
gap (d) between the confining walls (e.g., parallel plates or
the concentric cylinders forming the annulus of a Couette cell).
The regime where r and d are comparable, where wall effects
(1) on droplet motion are crucial, is poorly understood, mak-
ing this problem important from the scientific perspective. It is
also technologically attractive, given the recent explosion in re-
search on microfluidics (2, 3) and the potential for microscale
processing of emulsions. Migler (4) has recently reported the
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formation of strings in polymeric emulsions composed of poly-
isobutylene (PIB) and poly(dimethylsiloxane) (PDMS), sheared
between parallel plates in the regime where r ≈ d. The strings
observed in these emulsions are formed by the coalescence of
droplets of the suspended phase. The essential physics behind
the transition from the droplet to string morphology is governed
by the ratio r/d. In the regime where r ≈ d, strings are formed
when the droplets have grown sufficiently large due to coales-
cence. In the regime r � d, “bulk” behavior (whose metric will
be defined shortly) of droplets in a matrix is observed.

Our fundamental understanding of emulsion rheology stems
from the seminal experimental and theoretical work of G. I.
Taylor on droplet deformation and breakup (5, 6) in the 1930s.
Much effort has since been directed toward the study of the ef-
fect of deformation on the shape of emulsion droplets in flow
fields (7–9). A fluid droplet dispersed in another immiscible
fluid is spherical at rest. When a shear field is imposed on an
emulsion, interfacial tension effects tend to keep the droplet
spherical, while shear stress acts to deform it. The droplet con-
tinues to deform until the interfacial tension effects can no
longer balance the shear-stress-induced deformation and then
the droplet breaks up. These effects are quantified by the di-
mensionless capillary number, Ca = ηmγ̇ r

σ
, where ηm denotes the

matrix viscosity, γ̇ is the shear rate, r is the droplet radius, and
σ is the interfacial tension. Above a certain value of Ca (which
is a function of the viscosity ratio, λ = ηd

ηm
; ηd is the droplet

viscosity), the droplet is unstable, and the corresponding Ca
is known as the critical capillary number, Cac. Taylor quan-
tified droplet deformation (D) as D = L − B

L + B , where L and B
are the major and minor axes of the drop, respectively. He pre-
dicted that D depends linearly on Ca: D = Ca · F(λ), in the limit
of small deformation, where F(λ) = 19λ + 16

16(λ + 1) . Taylor’s theory is
derived for a single droplet. Another phenomenon, droplet coa-
lescence, occurs in addition to droplet breakup in concentrated
emulsions, whereby small droplets fuse together to form larger
ones. Chesters has provided a review of flow-driven collision
and coalescence in liquid–liquid dispersions (10). The major
issues related to coalescence phenomena are nicely discussed
in the Introduction section of a recent paper by Yang et al.
(11). Coalescence and breakup occur simultaneously in con-
centrated emulsions, leading to a statistical distribution of drop
1 0021-9797/02 $35.00
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motor. The gap width was consistently set to 36 µm in this
study, the smallest gap width studied by Migler (4). The circular

3 Certain commercial materials and equipment are identified in this paper in
order to adequately specify the experimental procedure. In no case does such
identification imply recommendation or endorsement by the National Institute
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sizes, which naturally results in a distribution of Ca for these
systems.

The newly discovered string formation phenomenon in
the regime where r ≈ d offers potential for experimental
investigation, given the rich parameter space that governs emul-
sion rheology (12). These factors include the mixture composi-
tion, the viscosity ratio, the component density ratio, the elas-
ticity of the component fluids, the presence of a surfactant in the
emulsion, etc. In this study, λ is fixed to a value close to 1. The
study of Migler (4) was limited to one composition (mass frac-
tion PDMS = 28%) and his work focused on string formation. To
study the influence of composition on steady-state droplet mor-
phology observed in the transition from bulk-like behavior of
droplets to strings in the confined emulsion, we varied the mass
fraction of the components in the mixture. We discuss the results
in the form of a morphology diagram, wherein we depict the mi-
crostructure pathway of the transition from droplets to strings in
the parameter space of mass fraction and shear rate. Video shear
microscopy data on PDMS/PIB blends seem to indicate that the
droplets move in discrete layers in the regime where r ≈ d. To
quantify these effects, we have measured the droplet velocity
distributions. At some shear rates, there exist two modes in the
velocity distribution, and the number of modes is a function of
composition and shear rate. We associate each mode with the
existence of a layer of droplets.

After extracting droplet velocity distributions and collision
rates from experimental data, we offer some arguments on the
physics behind the persistence of droplet layers in these con-
fined systems. We also calculate the collision frequency in a
layered system and find that it reasonably describes the depen-
dence of the experimentally measured collision frequency on
shear rate. By comparing the appropriate time scales for droplet
collision and droplet migration away from the walls, in conjunc-
tion with finite-size effects, we illustrate how the “stability” of
the two-layer state may be governed by the interplay of these
factors.

The formation of particle layers has been observed by
Ackerson et al. (13, 14), by in situ shear light scattering in con-
centrated hard-sphere suspensions. They established layering by
constructing a real space arrangement of particles from recipro-
cal space diffraction patterns. The arrangement of particles into
well-defined layers was ascribed by Ackerson et al. to the ten-
dency to minimize the energy dissipated by particle collisions
in the suspension (15).

Our velocity calculations are based on direct visualization
of the emulsion in real space, so that there is no uncertainty
about the nature of the phenomenon. Our results of a lay-
ered structure of concentration profiles in linear flow fields are
in contrast to those of prior reports (16, 17) of peaks in the
concentration profile adjacent to drop free zones at the wall,
which represent either transient profiles or more complex migra-
tion in quadratic flow fields. Droplet interactions and collisions

were also considered negligible in that study, in contrast to this
work.
ET AL.

EXPERIMENTAL

Materials, Rheological Characterization,
and Emulsion Preparation

Both the PIB (mass average molecular mass, Mw = 800;
PolySciences3) and PDMS (Mw = 62,700; Gelest) samples used
here have zero shear viscositiesη0 = 10 Pa · s at 25◦C (see Fig. 1),
yielding λ = 1. The standard uncertainty associated with the
measured viscosity is 0.2 Pa · s. The entanglement molecular
weights of PIB and PDMS at 25◦C are 7000 and 15,000, re-
spectively (18). We can expect the unentangled pure PIB chains
to be Newtonian at all accessible shear rates. The pure com-
ponent and emulsion rheology was measured on a Rheometric
Scientific ARES rheometer equipped with a Force Rebalance
Transducer, using 25-mm cone-and-plate fixtures. A viscosity
standard (Brookfield) withη = 0.95 Pa · s (25◦C) was used to cal-
ibrate ARES. Between γ̇ = 0.1 s−1 and γ̇ = 10 s−1, the viscos-
ity of both pure components was independent of shear rate and
the first normal stress difference was too small to be reliably
measured by the normal force transducer in ARES. The pure
components behave as well-defined Newtonian liquids under
these conditions. It is shown later that the density difference
between PIB and PDMS is small enough so that gravitational
effects are negligible (ρPIB = 890 kg/m3 at 20◦C and ρPDMS =
970 kg/m3 at 20◦C (19); droplet to matrix density ratio, κ =
1.08). The value of σ for the PDMS/PIB system is known to be
2.5 × 10−3 N/m (20).

Only PIB rich blends are discussed here. Six compositions
(1, 5, 10, 20, 28, and 35% mass fraction PDMS) were investi-
gated in this work. All compositions referred to henceforth in
this publication refer to mass fraction of PDMS. The mixtures
were prepared by weighing the components into glass jars and
then stirring them gently (to avoid chain scission and to create
a uniform dispersion) with a spatula. Trapped air bubbles were
removed by leaving the emulsions overnight under vacuum at
ambient temperature. No separation or sedimentation was ob-
served while the emulsions were stored overnight.

Experimental Apparatus and Procedure

All shear microscopy experiments were performed in a
Linkam CSS-450 commercial shear cell, consisting of two par-
allel quartz plates (diameters of the upper and lower plates are
30 and 40 mm, respectively). The bottom plate is connected to
a dynamic motor capable of both steady and oscillatory shear,
and the gap width between the plates is adjusted by a stepper
of Standards and Technology, nor does it imply that these are necessarily the
best available for the purpose.
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FIG. 1. Shear viscosities, η(γ̇ ), of PIB and PDMS.

observation window (diameter = 2.5 mm) on the top plate is
located at a distance of 7.5 mm from the center. The shear cell,
incorporated into an optical microscope (Carl Zeiss), is inter-
faced with a PC that controls the gap setting, shear rate, and
temperature. Objectives of 3.5X, 10X, and 40X magnification
were used. Images were acquired by an analog video camera
(Pulnix TM-9701) and recorded on S-VHS videotape on a VCR
interfaced with a video stopwatch (Horita VS 50).

All experiments (only steady shear experiments) were per-
formed at 25 ± 1◦C. The Reynolds number, Re = ργ̇ r2

ηm
, is very

small; Re ∼ O(10−8), and so Stokes flow prevails. The experi-
mental procedure involved a step down in shear rate using small
decrements. All experiments were performed at shear rates that
correspond to Ca approximately 0.2 at steady state. At each shear
rate data were acquired after shearing for at least 2 h. After
that, the shear rate was decreased and data were acquired at
the new shear rate, as described. All images were acquired in
the velocity–vorticity plane, enabling determination of droplet
dimensions in the velocity and vorticity directions, along with
droplet velocities. In some cases, after steady state was reached
at each shear rate, the flow was temporarily stopped for a few
seconds and the droplets were allowed to relax back from ellip-
soids to spheres. By equating the volume of the sphere to the
volume of the equivalent ellipsoid, the droplet dimension in the
velocity gradient direction was calculated. Due care was taken to
ensure that no coalesced particles were considered in this anal-
ysis. Finally, the reproducibility of the data has been verified by
repeating experiments on a few randomly chosen compositions
and then performing droplet velocimetry (discussed next) to en-
sure that for any given composition at any given shear rate the
velocimetry results give reproducible results.

Data Analysis

The recorded images were analyzed to quantify the velocity of

the droplets in the sheared emulsions. All droplets in each frame
were first identified manually and the velocity of each individual
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droplet was then calculated by determining the time taken by it
to travel a fixed distance. For velocity calculations, typically 80
to 100 drops were analyzed. In addition, the number of colli-
sions per unit time experienced by droplets was also calculated
from experimental data to determine the collision frequency. A
“collision” was defined to occur when two droplets flowed im-
mediately past each other (21). A droplet was picked at random
from the ensemble, and the number of unique nearest neighbor
droplets (within a distance approximately equal to the average
droplet radius) it flowed past, over a given time interval, was
used to determine the collision rate per unit time for that droplet.
An average of at least 50 drops was used for each data point.
Droplet sizes were quantified by means of National Instruments
IMAQ Vision Builder Software (v. 5.0). Spatial calibration was
done with the help of a Ronchi grating (Rolyn Optics) having
39.37 cycles/mm.

RESULTS

Finite-Size Effects and Droplet Dimensions

We first discuss the velocity distributions. Between γ̇ =
8.5 s−1 and γ̇ = 5.25 s−1, the velocity distribution in a 20%
PDMS/PIB emulsion is clearly bimodal (see Figs. 2a–2e), signi-
fying that the droplets are moving in two layers. Similar results
have been inferred in passing by Zhou and Pozrikidis (22) in
their 2D computer simulations on emulsions in confined simple
shear flows. In their analysis of the stability of the one-layer state,
double-file (two-layer) states were sometimes found to be stable.
For an isolated droplet, the velocity profile is linear, enabling
ready assignment of droplet location from its velocity. The ve-
locity profile in concentrated emulsions is nonlinear (23). The
center of a drop, which is traveling with a velocity vmax/3, will
not lie at a distance d/3 from the stationary plate. In concentrated
emulsions, only the locations of the minimum and maximum
velocities vmin = 0 and vmax = γ̇ d (dictated by no-slip condi-
tions for the matrix fluid at the stationary and steadily rotating
plates, respectively) and the centerline velocity 0.5 vmax (due to
symmetrical effects from each wall) are unambiguously known.
Thus, a trivial consequence of two modes would be two peaks
in the concentration profile (as a function of position between
the bounding surfaces). This result may be contrasted with the
histograms shown by King and Leighton (24), where only one
peak is seen in the volume fraction profile, under all conditions.
The r/d ratio for their system is �1 (see Table 1 in Ref. 24),
suggesting that the formation of droplet layers is a finite-size ef-
fect (gravitational effects are negligible here; see “Discussion”).
At γ̇ = 4.25 s−1 (Fig. 2f), the histogram shows a single mode
but a rather broad distribution of velocities, signifying that the
transition from the two layer to the one layer state has begun.
Below γ̇ = 4.25 s−1 (Figs. 2g and 2h), only one sharp mode is
seen in the histograms. The obvious consequence of a single

mode roughly halfway between the plates is that most droplets
have migrated close to the center. When only one mode exists,
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FIG. 2. Typical histograms of the velocity (v) distribution in a 20% PDMS/PIB emulsion at (a) γ̇ = 8.5 s−1, (b) 7.5 s−1, (c) 6.75 s−1, (d) 6.0 s−1, (e) 5.25 s−1,

(f ) 4.25 s−1, (g) 4.0 s−1, and (h) 3.5 s−1. The velocity of the top plate is denoted

comparison of the velocity distribution width, δ, and r may
be used to classify the system either as “bulk” (cf. King and

Leighton (24), where δ/(r γ̇ ) > 1) or as a single layer of drops,
as is discerned in Fig. 3, where δ/(r γ̇ ) < 1.
by vmax. The sketches denote the droplet arrangement in the layered states.

To elucidate the role of finite-size effects, we compare the
droplet dimension in the velocity gradient direction (the direc-

tion of confinement) with the gap width between the parallel
plates. The size in the velocity gradient direction was determined
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FIG. 3. Droplet dimension, 2c, in the velocity gradient direction versus γ̇ for
the 20% PDMS/PIB emulsion. Dimensionless droplet size, 2c/d, is plotted with
respect to the right ordinate axis. The bar on each data point reflects the standard
uncertainty (in this case, the standard deviation) associated with the point.

for the 20% PDMS emulsion at different shear rates (see Fig. 3).
At γ̇ = 8.5 s−1 (where the histogram indicates two layers of
droplets) the average droplet dimension (2c) in the velocity gra-
dient direction = 13.2 µm (d = 36 µm).4 This is consistent with
the observation of two layers of droplets in the system, as no
more than two layers of droplets of this size can be packed be-
tween the plates. The droplet size grows with decreasing shear
rate due to coalescence, and at γ̇ = 6.0 s−1, 2c = 16.5 µm, also
consistent with two layers. However, at γ̇ = 4.25 s−1 (where
only one mode is seen in the velocity histogram), 2c = 21.5 µm.
With d = 36 µm, it is certainly not possible to pack more than
one layer of droplets between the plates. Thus, finite-size effects
are important for determining the shear rate where the transition
from a two-layer to a one-layer arrangement of droplets occurs.

Since we have determined droplet dimensions in the velocity
gradient direction and since the confinement in this problem is
in the gradient direction, we compare our data to the prediction
of the quadratic theory of Rallison (25) for shear-induced de-
formation of a single viscous droplet in the low Re and small
deformation regime.

c

r
= 1 − 3CaFxy + Ca2

[
−12

5
F2

xy − 3

2
Lzz + 1995

4
Mzzzz

]
[1]

Here c denotes the smaller principal axis of the drop lying in

the plane perpendicular to the vorticity axis. Here, Fxy = f/2,
Lzz = −η/6 and Mzzzz = 3µ/35, while f, η, and µ are defined

4 This calculation is based on the assumption that the major axis of the drop
is parallel to the flow, i.e., the inclination angle is zero. Assuming an inclination
angle greater than zero causes the calculated magnitude of the principal axis to
decrease. A value of approximately 17◦ for the inclination angle yields a best
fit with Rallison’s theory (25) (cf. Fig. 4). Somewhat larger values are predicted
for unconfined drops (38, 26).
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below.

f = 19λ + 16

24(λ + 1)

η = 11419λ3 + 26583λ2 + 19152λ + 4096

3360(1 + λ)3
[2]

µ = 28538λ4 + 120305λ3 + 186883λ2 + 126496λ + 31488

544320(3 + 2λ)(1 + λ)3

The Rallison theory shows reasonable agreement with the
data, i.e., the prediction certainly lies within the uncertainty as-
sociated with the data points (see Fig. 4). Note that Ca weakly
changes with γ̇ , since we are in the regime where r ∼ γ̇ −0.66

(instead of r ∼ γ̇ −1.0). Admittedly, this is not a stringent test
of the theory as the Ca range covered here is small and the
value of the inclination angle is uncertain. However, agreement
between theory and experiment is somewhat surprising, since
the theory was developed for an isolated droplet. In the isolated
droplet case, Guido and Greco (26) have shown that the Rallison
theory makes quantitative predictions for the deformed droplet
dimensions and the droplet relaxation to spherical shape after
cessation of steady shear. This simple exercise demonstrates that
it is possible to estimate droplet dimensions in the gradient di-
rection, even from an experimental setup that is only capable of
visualization in the flow direction–vorticity plane. Many work-
ers (26–30) have recently performed elegant flow-visualization
experiments using elaborate experimental apparatus, some de-
signed specially for viewing deformed droplets in the velocity
gradient direction. Even without such equipment, droplet size in
the gradient direction can be extracted by using simple volume
conservation arguments.

How does the size of a droplet correlate with its location
between the plates at steady state? As an example, data at

Ca
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FIG. 4. Droplet dimension in the gradient direction (normalized by the
quiescent droplet radius) for the 20% PDMS/PIB emulsion versus Ca. Points
denote experimental data and the smooth curve denotes the prediction of the

Rallison second-order theory. The bar on each data point reflects the standard
uncertainty (standard deviation) associated with the point.
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FIG. 5. Typical histogram showing velocity distribution of only those
droplets whose size in the vorticity direction is less than half the mean size
in the vorticity direction, in a 35% PDMS/PIB emulsion at γ̇ = 4.5 s−1.

γ̇ = 4.5 s−1 for a 35% PDMS/PIB emulsion were used to deter-
mine the droplet sizes and velocities. A histogram (see Fig. 5)
was then prepared using the velocities of only “small” droplets,
defined as those droplets whose size is less than half the average
size in the vorticity direction. Small droplets are actually located
closer to the walls than to the centerline, and there are almost
no small droplets at the center. Larger droplets are preferentially
located at the center, because, as we will discuss shortly, droplets
migrate inward toward the centerline with a characteristic ve-
locity which scales as r4. Smaller drops lie close to the wall, as
during collisions with larger drops they are sent toward the wall.
These results agree with the observations of King and Leighton
(24), who also found that small drops are kept away from the
centerline by larger drops. Figures 2 and 5 reveal a depletion
zone (drop-free region) in the immediate vicinity of the confin-
ing walls, also reported by King and Leighton (24). This effect
is due to both excluded volume and droplet migration effects.
Excluded volume, of course, ensures that the distance between
drop center and the wall (l) must exceed the drop radius, r . If
l > r , wall migration effects will control the formation of the
depletion region.

Composition Dependence

The overall effect of composition on droplet microstructure in
general is shown in Fig. 6. The results for emulsions of various
compositions are summarized in this morphology diagram, in the
parameter space of mass fraction and shear rate. In concentrated
blends (between 10 and 35% PDMS), we see a transition from
two layers of droplets to one layer of droplets with decreasing γ̇ .

The formation of highly ordered pearl-necklace-like chains
of particles (shaded data points in Fig. 6) is observed in the
one layer state for emulsions containing 5 to 20% PDMS. Other
data points in the one layer state (e.g., for 1% PDMS and 35%
PDMS, which have not been shaded in Fig. 6), correspond to
a disordered one layer microstructure. Data on the 5% PDMS
emulsion at higher shear rates (γ̇ = 8.5, 10.8, 13.3, 15.0, and

17.0 s−1; some data not shown in Fig. 6), show a disordered
one layer microstructure; this system does not show a two-layer
ET AL.

state at any of the shear rates investigated. Optical micrographs
of a 5% PDMS emulsion showing disordered microstructure at
γ̇ = 8.5 s−1 and pearl-necklace arrangement at γ̇ = 4.25 s−1 are
shown in Figs. 7a and 7b, respectively.

While Migler (4) had observed the formation of necklaces as
a transient state during a study of the droplet–string transition
kinetics for an emulsion containing 28% PDMS, we find here
that the pearl-necklace morphology is a stable (nontransient)
steady state at lower volume fractions, which persists for time
scales on the order of several days without showing a transition
to any other state. Although this is the first reported observa-
tion of pearl-necklace formation in suspensions where the dis-
persed phase is made of deformable fluid droplets, there have
been related observations. Segré (31) reported the formation of
necklace structures in hard-sphere suspensions flowing in tubes.
Michele et al. (32) observed the alignment of hard-sphere sus-
pensions subjected to oscillatory shear flow between parallel
plates, with similar results reported by Petit and Noettinger (33)
and Lyon et al. (34). In hard-sphere suspensions necklace for-
mation has been observed when the matrix fluid is viscoelastic.
In our system, the component fluids are Newtonian, with no
measurable normal stresses. Further, while interfacial elastic-
ity certainly contributes to normal stresses in an emulsion, our
steady shear rheology experiments detect no measurable first
normal stress difference in our emulsions over the shear rate
range studied in the flow visualization experiments.

Finally, at the lowest shear rates, droplets in the one-layer
state coalesce to form strings. Strings and droplets coexist at the
lowest shear rate studied for each composition. A “dilute” (1%
PDMS) emulsion did not form strings and only showed a single-
layer disordered microstructure, due to the low concentration of
droplets. The threshold shear rate at which strings first form

FIG. 6. Morphology diagram describing microstructure in confined
PIB/PDMS emulsions, observed during step-down in shear (using the proto-
col described in Experimental), in the parameter space of mass fraction and
shear rate, for a uniform gap-width (36 µm) and a fixed viscosity ratio (λ = 1).
For each composition, experiments were started at 8.5 s−1. Points denote shear
rates where experimental data were obtained, and smooth curves are guides
to the eye. Shaded points denote experimental observation of ordered pearl-
necklace chains of droplets. The label “Strings” refers only to the experimental

points along the curve where we first observed strings, and we discontinued our
experiments there.
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FIG. 7. Optical micrograph of a 5% PDMS/PIB emulsion: (a) at γ̇ = 8.5 s−1,
showing disordered microstructure (note a pair of droplets colliding at the top of
the figure and another at the bottom left edge), and (b) at γ̇ = 4.25 s−1, showing
the pearl-necklace arrangement of PDMS droplets where collisions are essen-
tially arrested. Vorticity and flow directions in each case are indicated by arrows.

in the system increases somewhat with increasing composition.
This result may be understood qualitatively on the basis of an in-
crease in droplet size and also in the increase in the number den-
sity of droplets with composition. Migler (4) has shown that the
droplet–string transition occurs in the vicinity of r/d ≈ 0.5. As
the concentration of the droplet phase in the emulsion increases,
this limiting r/d is attained at higher shear rates, leading to an in-
crease in the threshold shear rate with composition. Finally, the
position of phases (along the shear rate axis) in this morphol-
ogy diagram is a function of the degree of confinement (r/d)
imposed on the system. It is conceivable that the effect of de-
creasing the gap width would be to shift the boundary between
the two-layer and one-layer states to higher shear rates, with
similar effects on the threshold shear rate for string formation.

DISCUSSION

Interpretation of Layering Phenomenon
We begin with a brief discussion of the relevant transport
phenomena that drive droplet motion in the velocity gradient di-
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rection. When an emulsion is deformed under shear, the droplets
drift away from bounding surfaces toward the centerline due to
an “asymmetric disturbance velocity” (24). This effect, termed
“wall migration,” was observed experimentally in emulsions by
Mason et al. (35–37). Chaffey et al. (38, 39) proposed an an-
alytical model that predicted droplet drift away from the walls
in Couette flow. Another model, by Schowalter et al. (40), was
found to reasonably describe the data of Smart and Leighton
(41) on droplet migration in emulsions in Couette flow. Chan and
Leal (42) derived the drift velocity of a droplet by accounting
for the effect of both walls in a Couette flow and later (43) veri-
fied that their model showed reasonable agreement with exper-
imental results. King and Leighton (24) determined that the re-
sults for droplet drift from single-drop experiments in a Couette
cell were well described by the analytical solution of Chan and
Leal (42). More recently, Imaeda (44) has provided a similar
analytical expression. Droplet migration has also been studied
extensively by Uijttewaal et al. (45, 46) and Kennedy et al. (47)
using computer simulations.

Droplet collisions become important at higher concentra-
tions of the dispersed phase and these collisions tend to cause
droplet motion perpendicular to streamlines. Such collisions are
random in uniform dispersions in the bulk and are thus equally
likely to result in positive or negative displacements. This motion
gives rise to droplet self-diffusion. However, the diffusivity is
anisotropic, being greater in the velocity gradient direction than
in the vorticity direction, as demonstrated by Loewenberg and
Hinch (48) in their numerical simulation of binary droplet colli-
sions in simple shear flow. They have also predicted that while
the self-diffusion coefficient Dself is only a relatively moderate
function of Ca it is a much stronger function of λ. Notably,
this diffusion-like process in emulsions does not have origins
in Brownian motion of drops, but in the random motions gen-
erated by flow. The Peclet number, Pe = γ̇ r2

Dself
≈ ηγ̇ r3

kT (k and T
denote Boltzmann’s constant and absolute temperature, respec-
tively), is the ratio of flow effects to Brownian effects. For the
flow situations here, Pe ∼ O(107), and hydrodynamic interac-
tions are much more important than Brownian motion. Drift of
droplets toward the centerline also sets up a concentration gradi-
ent, which is responsible for downgradient diffusion of droplets
toward the wall in bulk systems. da Cunha and Hinch (49) have
shown that the effective diffusion coefficient, Dgrad describing
downgradient diffusion exceeds Dself. King and Leighton (24),
followed closely by Burkhart et al. (50), have argued that bulk
systems at steady state have zero net droplet flux (diffusive and
convective fluxes balance) and arrived at a parabolic steady state
composition profile with a maximum at the centerline.

We had briefly alluded to the droplet composition profile ear-
lier. While the experimental conditions in this work are certainly
very different from those of the r/d � 1 case for which analyti-
cal composition profiles have been derived by King and Leighton
(24) and by Burkhart et al. (50), we nevertheless quantitatively
predict the droplet profile (using the model of Burkhart et al.)

for the bulk case and compare it to the experimental distribution,
purely for qualitative comparison purposes. The predictions of
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FIG. 8. Predictions of the model of Burkhart et al. (50) for the normalized
volume fraction (φ/φ0) profile (bulk solution) as a function of dimensionless
distance y/d between the plates.

the volume fraction (φ) profile (see Fig. 8; compare to Fig. 2) are
based on experimental r data on the 20% PDMS/PIB emulsion
and assume a dimensionless gradient diffusivity =0.16, which
is four times greater than the dimensionless self-diffusivity. In
Fig. 8 φ is normalized by the average volume fraction φ0. At
γ̇ = 8.5, 6.0, and 4.25 s−1, the width of the parabolic composi-
tion profile is roughly comparable to the width of the velocity
distribution. However, at γ̇ = 4.0 s−1, the velocity distribution
is significantly narrower than the predicted composition profile,
signifying the fact that confinement has quantitatively altered the
composition profile. We will argue shortly that confinement ac-
centuates the effect of wall migration and reduces collisions. The
effective φ at the center of the gap between the plates (y/h = 0.5)
increases with decreasing γ̇ , underscoring the importance of
wall migration effects which send droplets to the center at
lower γ̇ .

Molecular mass transfer due to concentration gradients (de-
scribed by Fick’s law of diffusion) results from random molec-
ular motions, but when molecules are severely confined, their
motion cannot be described in terms of Fickian diffusion (51).
In analogy to the molecular case, due to severe confinement,
droplet motion in the velocity gradient direction is not diffusive
(as the droplets are too spatially constrained to exhibit diffu-
sive motion). Due to the arrangement of the droplets in rather
well-defined layers, gradient-induced diffusion may also be ne-
glected. Diffusive motion of droplets may only be observed in the
limit of bulk systems. Packing constraints imposed by finite-size
effects can help us understand why it is not possible to fit more
than one layer of drops when they become sufficiently large (rel-
ative to the gap width). However, for the two-layer state we need
to understand what causes a spatial separation of droplets in the
velocity gradient direction, and for the one-layer state we need
to understand what causes the peak in the velocity distribution to
appear roughly halfway between the plates. We therefore con-

jecture that droplet collisions (which can send droplet toward
the walls) and wall migration (which sends droplets toward the
ET AL.

center) may be responsible for the formation of two droplets lay-
ers. We now substantiate our arguments by comparing the time
scales relevant to droplet collisions and droplet migration.

We first estimate the number of collisions experienced by a
droplet per unit time (collision frequency) from experimental
data according to procedures outlined under Experimental. The
collision frequency increases with shear rate (see Fig. 9), as
expected, as the collisions are shear-induced. The bars on the
data points reflect the standard uncertainty (standard deviation
of the distribution) and are effectively a measure of the width
of the distribution of the number of collisions suffered by the
droplets in the ensemble. The number of collisions/unit time
increases with increasing composition, when compared at any
given shear rate, due to the increase in the number density of
droplets with increasing volume fraction.

The classical von Smoluchowski (52) calculation of the colli-
sion frequency would seem to serve as the first choice to model
the collision data. Assuming all drops are of equal size, the
frequency with which one drop collides with another can be
calculated easily. If the flow direction is taken to lie along the
x axis, the velocity gradient along the y axis, and the test drop
is placed at the origin, then the relative velocity of another drop
at position y′ is γ̇ y′. The total collision rate can be calculated as

C0 = 2

D∫
0

2

(D2−y′2)
1
2∫

0

γ̇ y′ N (y, z) dz dy. [3]

N (y, z) is the number of drops per unit volume. While N may
be a function of position for a structured (i.e., layered) emulsion,
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FIG. 9. Collision frequency, C, as a function of γ̇ for droplets in PDMS/PIB
blends of different compositions. Points denote experimental data, while curves

denote predictions of Eq. [9]. The bar on each data point reflects the standard
uncertainty (standard deviation) associated with the point.
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it is uniform for a random (bulk) emulsion.

N̄ bulk = 6φ

πD3
. [4]

Here φ denotes the volume fraction of drops and D is the droplet
diameter. In the bulk case, the collision rate C0 reduces to the
familiar expression.

C0 = 4

3
γ̇ N̄D3 = 8

π
γ̇ φ [5]

In the layered state, the droplet concentration is nonuniform.
In a two-layer state, N (y, z) is asymmetric in y (remembering
that we have assigned the origin to the center of the test drop). For
example, if N is relatively large for positive y, it is nearly zero
for negative y. To calculate N within the layered structure, we
assume that wall migration (discussed shortly) has pushed all
the drops into the central region of a given layer, causing an in-
crease in the local concentration there. By volume conservation,
the average number of drops per unit volume within each layer
can be written thus.

N̄ 2–layer = 3φd

πD4
≥ N̄ bulk [6]

The collision frequency is written as follows in the layered
state.

C2–layer =
D∫

0

2

(D2−y′2)
1
2∫

0

γ̇ y′ N (y, z) dz dy [7]

The resulting collision frequency in the layered state is given by
the following expression.

C2−layer = 1

π
γ̇ φ

d

r
≥ C0

2
[8]

Since r ≤ d/4, the minimum collision frequency of the two-
layered state is half the bulk value, as a result of each droplet
colliding with only droplets to one side. Considering that r de-
pends on γ̇ , the collision frequency can be rewritten as

C2–layer = 1

π
γ̇ 1.6 φ

d

R1
, [9]

where R1 is a constant. The exponent on γ̇ in Eq. [9] was written
to be consistent with our experimental results. Different expo-
nents are possible. When the Taylor stability criterion applies,
the exponent on γ̇ equals 2 and R1 = Cacσ

ηm
. The layered state col-

lision rate can be calculated more accurately, if a function more
accurate than Eq. [6] were used to calculate N (y, z). N (y, z) is
not uniform within the layer, as was assumed, but, in the layered
state, has peaks at y = 0 and D. Since the integrand (Eq. 7)
approaches zero at these values of y, the actual collision rate is
less than that predicted by Eq. [8].
We evaluate R1 from our data on r (γ̇ ) for the 20% PDMS/PIB
emulsion from the intercept of a plot of r vs γ̇ . Thus the only
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unknown (R1) in Eq. [9] is determined from the experimental
data, and then Eq. [9] is used with no adjustable parameters
to predict the collision frequency data in the layered state. The
comparison between experimental data and the predictions of
Eq. [9] is shown in Fig. 9. The model describes the experimental
data well.

We now determine the time scale for droplet migration. Ex-
cluded volume effects ensure that droplets are found at least a
distance c away from the wall. To form a one-layer system, the
droplets would have to move inward (toward the centerline) from
either layer and migrate a distance O(c) in the velocity gradient
direction. We calculate the time required for droplets to travel
this distance. The motivation for this calculation is kinematical;
if droplet centers lie within a distance c from the centerline, it
is not possible to have two layers. We now calculate the drop
migration velocity to determine the migration time.

We invoke the expression derived by Chan and Leal (42) for
the droplet migration velocity, umig, for shear flow in narrow
gap Couette geometry of a single deformable Newtonian drop
in a Newtonian matrix (written here for the case λ = 1). This
expression also applies to the motion of a droplet between two
parallel plates, since the assumption of linear shear flow is well
satisfied in the narrow gap limit. The shear rate is nearly uniform
everywhere and is essentially the same as simple shear between
two parallel plates.

umig = Caγ̇ r
r2

d2

615

256

[
−y∗ + 1

(1 + 2y∗)2
− 1

(1 − 2y∗)2

]
[10]

Here y∗ is the coordinate describing the drop position between
the plates, centered in the middle of the gap between the two
plates, and rendered dimensionless with the gap width d: y∗ ∈
[−0.5, 0.5]. While umig vanishes at the center (y∗ = 0), it diverges
at the walls (y∗ = ±0.5).

In support of our conjecture that the interplay between droplet
collisions and wall migration may be responsible for the forma-
tion of droplet layers, we compare the migration time scale,
tmig, with the average time elapsed between droplet collisions,
tcoll. Both time scales were calculated using experimental data
on r for the 20% PDMS/PIB emulsion. The time scale tcoll was
calculated as the inverse of C2–layer (which is calculated from
Eq. 9), while tmig was calculated as tmig = ∫ dy

umig
(see Fig. 10). As

discussed earlier, the limits of this integral are dictated by the
excluded volume condition that the droplets must lie a distance
c away from the wall and also by the condition that the drops
should move through a distance c in the velocity gradient di-
rection. The ratio T = tcoll

tmig
increases and approaches unity with

decreasing γ̇ . When T < 1, collisions occur faster than migra-
tion, displacing droplets in the velocity gradient direction and the
two-layer microstructure results. When T ∼ O(1), collision and
migration occur on similar time scales, causing accumulation of
droplets in one layer.

The dependence of T on γ̇ can be understood by remember-

ing that r depends on γ̇ . We can easily discern from Eq. [8] that
tcoll ∼ r/γ̇ φ. Similarly, using Eq. [10], we derive tmig ∼ r−3γ̇ −2.
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FIG. 10. Calculated time scale between collisions, tcoll, (calculated from
collision frequency model) and calculated time scale, tmig, for drops to migrate a
distance O(c) inward from the wall (calculated using migration velocity) plotted
as a function of γ̇ . The ratio of these two quantities is also plotted versus γ̇ .
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Using these two scaling relationships, we get T ∼ r4γ̇ φ−1 ∼
γ̇ −3φ−1 (by using the Taylor relation r ∼ γ̇ −1.0). From these
simple scaling arguments, we see that T increases with decreas-
ing γ̇ , signifying that migration gains importance relative to
collision upon decreasing γ̇ . This is the basis of our argument
that when tcoll and tmig are comparable, the two-layer state shows
a transition to the one-layer state, leading us to anticipate that the
ratio T is a relevant dimensionless quantity in defining the na-
ture of the confined state of an emulsion. Note from Eq. [9] that
tcoll ∼ φ−1, so that T ∼ γ̇ −3φ −1. Mapping T ≈ 1 yields a curve
that approximately tracks the boundary between the one-layer
and two-layer states.

We also evaluate T for the system of Zhou and Pozrikidis (22).
From the information in their paper, we discern r/d = 1/8. From
Eq. [8], we calculate a collision frequency C0 = 1

π
γ̇ φ d

r = 8
π
γ̇ φ

in the two-layer state (since r/d = 1
8 ) and from Eq. [10]

the migration time scale as umig

r (y∗ = 0.125) = Caγ̇ r2

d2
615
256 =

1γ̇ 1
83

615
256 [ 1

8 ]. The ratio of these collision and migration
time scales is T = γ̇ 1

83
615
256 ÷ 8

π
γ̇ φ (Ca = 1 and λ = 1; see

Section III.A in Ref. 22). If we consider a length L = 2H , where
2H is the channel width (see Fig. 1 in Ref. 22), then we cal-
culate a local φ = πa2

4H 2 = π
4

1
42

∼= 0.05 (a/H = 1/4). This gives
T = 0.038 � 1. By our criterion, we expect the two-layer state
to be stable, in agreement with the simulation results of Zhou and
Pozrikidis (22) for perturbations to the one-layer state, where the
drops are displaced by a distance ξ = r or 2r in “an alternating
fashion across the centerline of the channel.”

Role of Body and Surface Forces
Since the densities of PIB and PDMS are not exactly matched,
PDMS droplets will show some Stokes sedimentation. Is Stokes
ET AL.

sedimentation significant in this problem? We also ask how
buoyancy effects and interfacial-tension-driven effects compare
with each other.

The Bond number, Bo, gives the ratio of hydrostatic pressure
relative to interfacial tension effects: Bo = �ρgr2

σ
, where�ρ is the

difference between component densities and g is the acceleration
due to gravity. Assuming an average r ∼ O (20 µm), we get
Bo ∼ O(10−4), and we conclude that interfacial tension effects
dominate buoyancy effects.

We compare Stokes sedimentation to wall migration effects
by evaluating the ratio of the droplet migration velocity to the
buoyancy-driven velocity (53), ubuoy, calculated independently
by Hadamard (54) and Rybczynski (55). When a droplet reaches
this velocity, by definition, the sum of the viscous retarding
(Stokes drag) force and the buoyancy force equals the weight of
the droplet (assumed spherical).

ubuoy = 2

9

(ρd − ρm)g

ηm

λ + 1

λ + 2
3

r2 [11]

The ratio of ubuoy and umig is used to calculate the relative
contributions of buoyancy and migration to the movement of
drops away from the top wall, written here for λ = 1. We use a
linearized form of umig here: umig = − 5535

256 Ca r2

d2 r γ̇ y∗.

umig

ubuoy
= 249075

3072
Ca

r γ̇

d2

ηm

�ρg
y∗ [12]

We set y∗ = 0.1 (where the linearization of umig is reasonable)
above, and find that umig exceeds ubuoy by a factor O(104). For
droplets close to the top plate (wall migration and buoyancy act in
the same direction for them), inward motion is controlled by wall
migration effects. For droplets close to the bottom plate (where
buoyancy and wall migration act in opposing directions), migra-
tion effects are far stronger than buoyancy effects. Alternatively,
we can also determine the y∗ where umig and ubuoy become equal.
In the 20% PDMS emulsion, at γ̇ = 8.5 s−1 (r = 7.8 µm and
Ca = 0.26), we find that this value of y∗ is 7×10−5. Buoyancy
and migration effects become comparable near the centerline
only, and wall migration clearly dominates Stokes sedimenta-
tion elsewhere.

Finally we consider surface forces relevant to this problem.
Stone and Kim (2) have alluded to the potential importance
of surface phenomena in microfluidic and nanofluidic flows.
What role do wetting and surface effects play in this problem,
if any? The surface energies of quartz, PIB, and PDMS are
50 × 10−3, 33.6 × 10−3, and 20 × 10−3 N/m, respectively (56).
Since PDMS has a surface energy lower than that of PIB, it will
preferentially wet the quartz substrate. Does this preferential
wetting play any role in the problem?

To quantify the van der Waals interactions between the PDMS
droplets (suspended in the PIB matrix) and the quartz substrate,
we calculate the Hamaker constant A , as suggested by
TOTAL

Israelachvili (56). He has provided the expression for ATOTAL,
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describing the van der Waals interaction between a droplet of
species “1” in medium “3” with the surface of medium “2.”

ATOTAL ≈ 3

4
kT

(
ε1 − ε3

ε1 + ε3

)(
ε2 − ε3

ε2 + ε3

)
+ 3hṽe

8
√

2

×
(
v2

1 − v2
3

)(
v2

2 − v2
3

)
(
v2

1 + v2
3

) 1
2
(
v2

2 + v2
3

) 1
2
{(

v2
1 + v2

3

) 1
2 + (

v2
2 + v2

3

) 1
2
}

[13]

Here εi denotes the dielectric constant of phase i , ṽe is the main
electronic absorption frequency in the UV (3 × 10−15 s−1), h is
Planck’s constant (6.626 × 10−34 J · s), and vi is the refractive
index of medium i . We are interested in calculating the van der
Waals interaction between a droplet of species 1 (PDMS) in PIB
(medium 3) with the surface of quartz (medium 2). Using the
permittivities and refractive indices of glass, PIB, and PDMS,
we determine that ATOTAL for this case is 2.2 × 10−21 J. Since
ATOTAL > 0, there is attraction between the PDMS droplet and
the surface, albeit a weak one. In the phase-inverted situation
where PIB is the droplet phase (1) suspended in a PDMS matrix
(3) interacting with quartz surface (3), ATOTAL is even smaller
(1.5 × 10−21 J), but still attractive. This smaller value of ATOTAL

is consistent with the wetting scenario: PDMS prefers to wet
the quartz walls over PIB. While van der Waals forces are long-
range forces, they are weak and their effect is expected to be
negligible over length scales on the order of the distance between
the droplets and the quartz walls. The separation between the
walls and the PDMS droplets is at least a few micrometers (wall
migration effects are strongest near the wall and our data show
that there are no droplets immediately adjacent to the wall). Since
van der Waals forces are important at submicrometer length
scales (typically ≤0.01 µm, Ref. 56), we conclude that surface
phenomena have a negligible role here. Fluid mechanics effects
such as wall migration and droplet collisions overwhelm the
(relatively) small surface effects. It is conceivable that surface
phenomena would become significant in this problem if we were
operating in the nanofluidic regime, however.

SUMMARY

We have studied droplet microstructure in emulsions sheared
under conditions where the average droplet size is of the order of
the separation between the confining surfaces. Finite-size effects
result in phenomena quite distinct from those observed in the
bulk. We find that the droplets organize themselves into layers in
confined emulsions sheared between parallel plates. The number
of layers that can be formed at any given shear rate is a function
of finite-size effects as well as two other well-known effects in
emulsion rheology: migration of droplets from the walls toward
the center and droplet collisions. We have argued why the two-
layer state may be stable under some conditions, by comparing

the time scales germane to droplet migration and droplet colli-
sions. While we have offered some simple arguments to attempt
TURES IN SHEARED EMULSIONS 401

the rationalization of our experimental observations, we stress
that the physics behind the formation of the layered morphology
is indeed poorly understood. It is our hope that these results will
stimulate some theoretical attempts to probe the underpinnings
of this phenomenon. We have also seen that the arrangement of
droplets in necklace-like chains in the one-layer state is a stable
morphology. The droplet microstructure in the droplet–string
transition is a function of composition, and we have summa-
rized the results of a composition dependence study in the form
of a rich morphology diagram in the parameter space of com-
position and shear rate. Current work is focused on exploring
the elasticity and viscosity ratio effects on the microstructure in
these confined emulsions, which will be reported in a subsequent
publication.
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