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New patterns of polymer blend miscibility associated with monomer shape
and size asymmetry

Jacek Dudowicz and Karl F. Freed
The James Franck Institute and the Department of Chemistry, The University of Chicago, Chicago,
Illinois 60637

Jack F. Douglas
Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

(Received 24 January 2002; accepted 14 March 002

Polymer blends are formulated by mixing polymers with different chemical structures to create new
materials with properties intermediate between those of the individual components. While Flory—
Huggins(FH) theory explains some basic trends in blend miscibility, the theorgpletely neglects

the dissimilarity in monomer structures that is central to the fabrication of real blends. We
systematically investigate the influence of monomer structure on blend miscibility using a lattice
cluster theoryLCT) generalization of the FH model. Analytic calculations are rendered tractable by
restricting the theoretical analysis to the limit of incompressible and high molecular weight blends.
The well-known miscibility pattern predicted by FH theory is recovered only for a limited range of
monomer size and shape asymmetries, but additional contributions to the LCT entropy and internal
energy of mixing for polymers with dissimilarly shaped monomers leathitee additional blend
miscibilty classesvhose behaviors are quite different from the predictions of classical FH theory.
One blend miscibility claséclass 1V) exhibits a remarkable resemblance to the critical behavior of
polymer solutions. In particular, the theta temperature for class IV blends is near a molecular weight
insensitive critical temperature for phase separation, the critical composition is highly asymmetric,
and the correlation length amplitude is significantly less than the chain radius of gyration.
Experimental evidence for these new blend miscibility classes is discussed, and predictions are
made for specific blends of polyolefins that should illustrate these new patterns of blend miscibility.
© 2002 American Institute of Physic§DOI: 10.1063/1.1476696

I. INTRODUCTION to the uncertain existence of a theory that is simultaneously
M Ay i " blend faccurate in detail, comprehensive in scope, and computation-
any commercially important materials are blends o ally managable, Flory suggested that the best strategy for

polymers having different chemical and physical CharaCte”S'effectively extending the FH theory is to consider simplified

tics, and the stability and state of dispersion of these multl—models of “reasonable generality” that can determine essen-

phase materials are often crucial in their applications. Flory—. L
Huggins (FH) theory"2 has long provided the basis for tial aspects of how molecular characteristics influence the
understanding the thermodynamic properties of blends, an%qu'“b”um properties of these complex liquid mixtures.

the theory also represents an essential input into the analysis ITheI problem of ur:dertstandlndg ;lhe (ljnte-rre-lstlllct)n hbetV\t/)een
of blend scattering dataand into kinetic models of blend molecular monomer structure and biend miscibility has been

phase separatich considered by several complementary methods. The lattice

While FH theory explains some trends in the thermo- ClUSter theory, developed by Freed and co-worﬁé_?_%,di- _
dynamics of polymer blends and solutions, the theory Com_rectly aqldrgsses the.effects of .blend compressibility, gham
pletely neglects the relationship between blend miscibilitySemiflexibility, and differences in monomer shapes, sizes,
and the chemical structure of the polymer constituents2nd interactions on the blend critical behavidtH theory,
Given improvements in synthetic chemistry that enable unWhich neglects these effects, is the leading order contribution
precedented control of polymer microstructdra, pressing I the lattice cluster theorfLCT).] The LCT generalization
need exists for a more molecularly oriented theory that preof FH theory provided the first explanation for the origin of
dicts how the monomer structural asymmetry affects blendhe “entropic” portiona of the Flory interaction parametgr
thermodynamic properties. Over 30 years ago, Flory rfotedin terms of differences in monomer shapes and sizes between
that while FH theory is rudimentary because of its neglect othe blend componentsgFlory” and Koningsveldet al™* an-
the detailed structure of polymer chains, the development diicipated the presence af and its physical origin, but the
a more refined theory must emerge at a considerable sacrifi¢€CT directly determines from monomer structures without
of simplicity (both in form and application Moreover, such the introduction of adjustable parametgithe LCT has also
a generalization would have doubtful practical value if it explained®*a number of measurements that are impossible
required the introduction of many “arbitrary parameters” to rationalize from FH theorye.g., negative values of the
that must be determined from fits to experimental data. Du@arameter, the variation in the nature of the phase transition
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with the microstructure of isotopic polybutadiene blefifls ever, the accord between the FH model and measurements
and has predicté@'® novel phenomende.g., pressure de- deteriorates for “real blends” where there are appreciable
pendence ofy parametet? ordering of diblock copolymers differences between the monomer structures of the blend
upon heating’) subsequently verified by experimenfs””  components. For example, the critical temperatiife of
However, the majority of its applications have been restrictelends of polystyrene with polyinyl methyl ethey (A
to numerical studies, since the theory is algebraically in—3.5) is relatively insensiti& to the magnitude oN, and
volved. the blend phase boundaries are often repdftédio be
Schweizer, Curro, and co-workéfshave adapted inte- asymmetric, even for “symmetric” blends\(~1), in con-
gral equation method$RISM), along with closures and ap- trast to expectations based on FH theory. A similar insensi-
proximations appropriate for modeling polymer fluids in tivity of T, to N has been fourfd for binary blends of poly-
their investigations of the factors controlling blend miscibil- isobutylene and several other polyolefins, where it is difficult
ity and blend structure. Their studies confirm many results ofo imagine that any “specific interactions” could be respon-
FH theory(e.g., scaling of the critical temperatufe with sible for the observed dramatic deviations from FH theory.
chain length and provide complementary insights into the Polyolefin blends Xy~ 1) studied by Batest al*° also ex-
molecular dependence of the Flory interaction paramgter hibit deviations of blend miscibility from the predictions of
especially the effects of chain stiffness, asymmetries irFH theory. All these “anomalous” behaviors are compared to
monomer interactions, etc. Perhaps the main impact of ththe predictions of our theoretical approach in Sec. V.
PRISM and LCT lies in producing a rationale for under- The present paper develops a different strategy toward
standing phenomenological extensions of FH the@yy., understanding trends in blend miscibility. We restrict our
the presence of an “entropic” contribution g the concen- analysis to the incompressible, long chain limit systems in
tration dependence gof, the role of equation of state effects, order to obtain dully analytictheory that can relate essential
etc). The complexity of the integral equation and lattice patterns of miscibility to monomer structural asymmetry and,
cluster theories, however, has so far limited their capacity tdherefore, can predict analytically how monomer structure
predictgeneral trendsn blend miscibility having as broad a influences blend miscibility(This simplified versioft of the
scope as the classical FH thediyBasically, these theories LCT has already been used by to explain a large body of
have provided a “license” to fity as a phenomenological experimental data for binary blengdVe systematicaly in-
parameter. vestigateall miscibility patterns that emerge from the SLCT
We also mention the continuous chain theory of blendtheory, and this procedure yields a new classification of bi-
miscibility developed by Fredricksort al'® The theory nary blend critical behavior and new patterns of polymer
treats athermal blendéaving polyolefin blends in mind blend miscibility that are not described by FH theory. The
and predictsy to be purely entropi¢an interesting contrast new classification schemébriefly presented in a recent
to FH theory where it is purely energetiand to be primarily communicatiof?) naturally explains the occurrence of blend
dependent on the difference between the “packing lengthsphase separation upon heatiigithin an incompressible
of the polymer blend components, where the packing lengtmode)?® and predicts dramatic changes in the molecular
is defined as the ratio of the square of the chain radius omass dependence of the critical paramef€gs ¢., Gi, etc)
gyration to the chain volume. This work yields a rationaliza-even for blends with symmetric polymerization indices(
tion of the important experimental finding that polymer =1). The patterns of miscibility predicted by the SLCT are
blends with similar molecular structures tend to have greatepreserved in the more complex LCT theory, although there
miscibility. 2021 are quantitative changes appearing when the incompressibily
Shortcomings of the FH theory that have been revealedssumption is lifted:*334 Since monomer asymmetry is of-
by its comparison with experiments and simulatféng'in-  ten the norm in commercial blends and other multiphase
dicate areas where theoretical improvements are needefiuid mixtures, our classification should have important im-
Treating the interaction parameteras a purely phenomeno- plications for technology and biological science applications
logical quantity, which absorbs all unknown information where complex liquid mixtures are often encountered.
concerning blend miscibility, largely eliminates the predic- Section Il summarizes essential characteristics of poly-
tive nature of the FH model. Experiments demonstrate thener blends and polymer solutions that can be derive from
existence of patterns of miscibility that are quite unlike thoseFH theory. Section Ill provides a brief description of the free
predicted by FH theory, and these findings give helpful cluegnergy expression obtained from the simplified lattice cluster
into necessary extensions of the FH model. theory (SLCT), followed by a derivation of the critical con-
Comparison between experiment and FH theory haslitions and equations for the second and third virial coeffi-
been favorable for blends whose components exhibit littlecients, the correlation length amplitudg, and the Ginzburg
difference between monomer structures. For example, smatlumber. The four general categories of binary blend critical
angle neutron scatterinBANS) measurements for sym-  behavior are described in Sec. IV, while Sec. V presents
metric (\=~1) isotopic blends have verified that the critical comparisons with experiments. The FH estimate for the criti-
value of the FH interaction parametgrscales in inverse cal compositionp. is shown to in error for blends displaying
proportionality to the polymerization indeX, and semi- a lower critical solution temperatufeCST) phase diagram,
guantitative agreement is obtained between the FH/RPAvhile small shifts from the FH critical compositio¢(cFH)
model and measurements of the Ginzburg number Gi in anay arise for upper critical solution temperatut¢CST)
blend of polyisoprene and pdlthylene propylene® How-  blends. The discussion section provides a review of the limi-

Downloaded 24 Jun 2009 to 129.6.154.189. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 116, No. 22, 8 June 2002 New patterns of polymer blend miscibility 9985
tations of the simplified lattice cluster theory and briefly de- Fluctuation effects limit the accuracy of mean field esti-
scribes the wider range of blend miscibility patterns thatmates of phase boundaries and critical properties. Monte
emerge when lifting some assumptions of this the@y., Carlo simulations of Binder and co-work&r$>demonstrate,
when including effects due to chain semiflexibility, com- for instance, that the error iif. evaluated from the FH
pressibility, monomer interaction asymmetry, gtc. theory is about 25%for low molecular weight dense “sym-
metric” mixtures and that compressibility effects can make
the error even larger. The fluctuation correctiait=T{™
—T. has been fourfd to decrease wittN (AT~N"?), in
accord with arguments by Holyst and Vilgis.For finite
chain lengths, the fluctuation corrections can be appreciable,
FH theory is based on a highly idealized model of poly- 3nd this fact should be kept in mind.
mer blends and polymer solutions, and much of its attraction Although Monte Carlo simulations have indicated sub-
and success derives from its simplicity. Notably, the theorystantial fluctuation-induced errors in the FH estimateTpf
assumes that the mixtures are incompressible and polymemng other blend properties, FH theory has been judged
chains are fully flexible. No distinction is made between«gyccessful’?>38in describing important qualitative features
polymers having different chemical structures, so that they plend miscibility(e.g., Tc~N and Gi~ 1/N).?224(Similar
theory does not differentiate between linear, branched, ringsonclusions to those obtained from Monte Carlo simulations
comb, star, etc., polymers. While the monomer structurahaye followed from PRISM calculations by Singh and
asymmetry in polymer systems is completely ignored, FHschweizef?) We note, however, that these simulations as-
theory accounts for another fundamental type of moleculagyme that polymers havielentical monomer structures, so

symmetry, the asymmetry of polymerization indicesthe “mapping”2® of real polymer blends onto the FH model
(N1,Nj) between the constituents of the mixture. In particu-is unclear, if possible at all.

lar, FH theory predicts a significantly different pattern of
miscibility in blends whereN; and N, are comparable to B. Miscibility of polymer solutions
each other from that corresponding to polymer solutions
whereN,; andN, differ considerably N;>N,).

Il. FLORY-HUGGINS THEORY: REVIEW OF BASIC
FEATURES

A strikingly different pattern of miscibility emerges from
FH theory in theAy—0 limit, corresponding to polymer
solutions. Polymer chain connectivity still leads to a dimin-
ished miscibility of polymer solutions relative to the misci-

FH theory indicates that polymer blends are much lessjlity of monomeric mixtures Il;=N,=1), but this de-
miscible than their small moleculenonomerig counterparts  crease in compatibility is less dramatic than that occurring
because of the reduction of the entropy of mixing associateghy high molecular weight polymer blends. IncreasiNg,
with the presence of chain connectivity. This limited blendyhile keepingN, constant(e.g.,N,=1) causesT. to ap-
miscibility is directly reflected in the dependence of theproach the theta temperatufg (defined as the temperature
blend critical temperatur@&; on the polymerization indices at which the second virial coefficient vanishes for the poly-
N; andN of the blend components: The critical tempera-  mer solution. Notably, T, for high molecular weight poly-
ture T, scales linearly with the “reduced” polymerization mer solutions(N;—=, N,=1) is independentf N; and
indext®23 N=N;N,/(N}?+ N2, and this scaling simpli- equals four timesT, for the monomeric mixturé® T.(N
fies to T,~N for “symmetric” blends (N;=N,=N). FH =1). This result is contrasted with the FH theory prediction
theory also predicts that an asymmetry in polymerization inthat T, for polymer blends increases proportionalNowith-
dices Ay=N,/N;#1) leads to an asymmetrical critical out bound. The large chain length asymmetry of polymer
composition¢, and to asymmetrical phase boundaries. Thesolutions is also responsible for highly asymmetric phase

A. Miscibility of polymer blends

well known FH formula ¢{™=¢®=1- ¢ = /\/(1
+\y) reduces tog.=1/2 only whenN;=N,. Note that
#™ is independent ofN;} if the ratio \y is held fixed, a

prediction readily subjected to experimental tests, although

these tests are rarely considefede Sec. V.
The description of other “critical properties” by FH

boundaries, as reflected in the highly asymmetrical critical
composition which tends to zero wheny—0 [
N)\]NIZ]-

Polymer solutions and polymer blends also display ap-
preciable differences in their osmotic and scattering proper-
ties. While FH theory predicts that with increasing polymer

theory requires the use of the random phase approximatiochain length, T, for polymer solutions approachds,, T.,

(RPA).2 In particular, the correlation length amplitudg,

andT, for polymer blends are expected to be greatly sepa-

determining the extent of composition fluctuation, is derivedrated, regardless of the molecular weiglits FH theory,
as a compositionally weighted average of the radii of gyra-T,=4T. whenN;=N,). The scale of composition fluctua-

tion [R{] for the blend components’ Hence, &, becomes
proportional toN? for “symmetric” blends On the other

tions is also predicted to be significantly smaller for polymer
solutions than for polymer blends. Specifically, the correla-

hand, the Ginzburg number Gi, which quantifies the width oftion length amplitude, [see Eq(24)] for polymer solutions

the Ising-type critical region, diminishes with increasiNg
andN,. The FH theory scaling Gi 1/N (for “symmetric”

scales within FH/RPA theory proportional i (i.e., to the
geometrical meanof the solvent and polymer radii of

blends implies the existence of a small critical region and gyration.** The scaling of £, with N affects the N-
provides the basis for claims that mean field theory shouldlependence of many other basic properties of polymer solu-

describe high molecular weight blentfs>®

tions, such as surface tension, interfacial width in the two
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from short-range correlations emerge from a high tempera-
ture cluster expansion in powers of reciprocal dimensionality
and the dimensionless van der Waals interaction enetdies.
I full account of the LCT is provided in our previous pap®fs,
and here we focus on the general types of phase behavior
PH1 PEP PIB predicted by a simplified version of the LCT for binary poly-

FIG. 1. United atom group models for monomers of gbéxene-1 (PH1), mer mixtures. . . .
poly(ethylene propylene(PEP, and polyisobutyleng (PIB). Circles desig- The full LCT involves lengthy analytic expressions, and

nate CH, groups, solid lines represent the C—C bonds inside the monomethe task of classifying the general types of blend phase dia-
while dotted lines indicate the C—C bonds that link the monomer’s CH grams can only be achieved using numerical analysis. On the

groups with those belonging to other monomers in the polyolefin chain ther hand. the availability of an analytica”y tractable hlgh
backbone. These three polyolefins are components of the two binary blends ’ ’

(PH1/PEP, PIB/PEPchosen to illustrate non-FH-types of critical behavior Préssure, high molecular weight limit of the LCT simplifies

that are predicted by the SLCT. Each blend component is characterizethis task enormousi§t An additional argument for the use of

within the SLCT by two geometrical parametetsand p;, and these pa-  this simplified LCT (previously termed “the pedestrian

rameters for these three polyolefins agg,=7/6, ppr=4/3, reep=Prer | CT” ) emerges from our tests indicating that many general,

=6/5, rpig=7/4, andppg=3/2. The difference$r,—r,| and|p,—p,| are i . I

measures of blend structural asymmetry. qualitative t_rends in blend miscibility are unchanged When
the constraints of high pressure and high molecular weights
are lifted(apart, of course, for the pressure dependence of the

phase regime, light and neutron scattering intensities, colleghase behavior and for the occurrence of phase diagrams

tive diffision coefficient, etc. with both UCST and LCST that can be describedth the

Fluctuation effects are especially large in polymer solu-full LCT).

tions, and the corrections to the mean field critical tempera- The free energy of mixinghf™* for a binary polymer

tureTgmf) are comparable to those derived for small moleculeblend is given in the SLCT bY

liquids® This arises regardless of arguments that Gi be- mix

comes small for polymer solutiori$.Swelling of polymers Af — iln b+ ﬂln(l— b))+ d(1— )

in the vicinity of the solution theta temperature manifests an kT M MA

additional type of critical phenomerid®*®leading to non-

trivial critical indices describing the interrelation between

polymer size Ry) andN, the concentration dependence of

the osmotic pressure, etc. Moreover, de Gehffblsas sug-

gested that the critical behavior of polymer solutions is + pzfﬁ}”, (1)

tricritical rather than Ising-type in they—0 limit sinceT,

is expected to approach,. Evidence supporting this con- where¢p=¢,=1— ¢, is the volume fraction of component

jecture has recently been reporf8dlthough arguments and 1, M=M; is the number of united atom groups in a single

findings relating to fluctuation effects in polymer solutions chain of blend species 4,=M,/M, denotes the ratio of the

lie beyond mean field theory, they serve to illustrate the largehain site occupancy indices= €11+ €20— 2€45 is the blend

potential impact of molecular asymmetrichain length exchange energy, designates the lattice coordination num-

asymmetry on the critical behavior of fluid mixtures. Even ber, andT is the absolute temperature. The chain occupancy

the qualitativetype of critical behavior may be influenced by index M; coincides with the polymerization indeX; only

molecular asymmetry if the de Gennes conjecture is provewhen a monomer is composed of one united atom group and

(ry—ry)? z-2 1
X 1222 +k_€T< 5 _E{pl(1_¢)

correct. occupies a single lattice site. Otherwise, when a monomer of
speciesi extends overs; lattice sites,M; is given by M;

I1l. SIMPLIFIED LATTICE CLUSTER THEORY =N;s;. The first two terms on the right-hand side of E)

OF BLEND MISCIBILITY represent the configurational entropy, while the contribution

The lattice cluster theorfLCT) (Refs. 6, 7, 31is based ¢(L—$)(r1—15)?/2° is the noncombinatorial entropy of
Lo Hmixing which arises from local correlations associated with

on two major improvements beyond the zeroth order F : .
J P Y the packing constraints imposed by the monomer structures.

theory. The first improvement lies in the use of united ato . - o .
models to represent individual monomers that are describrrelghe entropic coefficients; (i=1,2) are obtained from the

; ri r ; ;
as occupying several neighboring lattice sites. Figure 1 i”us_res_pectwe numberq“_ ) anq Si(tet) of tri- and tetrafg_ncﬂonal
trates united atom group models for a few polyolefins con-unltecj atom groups in a single monomer of speties
sidered in this paper. The individual Gin=0-3) groups Si(tri) Si(tetr)
are taken in these models as covering single lattice sites. ri=1+?+3?- 2
Thus, the monomers can assume a wide range of shapes and ' :
sizes, subject to the constraint of a discrete lattice represeffhe remaining terms in Eq1l) are of energetic origin and
tation for these structures. The second improvement of thavolve both monomer structure dependent and independent
LCT involves a superior solution to the resulting lattice contributions. A monomer structure dependence enters the
model. The FH free energy is the leading order approximaeomposition dependent energetic terms through the geo-
tion in the LCT, and corrections arising from chain connec-metrical factorsp; and p,. These topological parameters

tivity, asymmetries in monomer—monomer interactions, ancequal the numbers of distinct sets of three sequential bonds
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traversing single monomers of species 1 and 2, respectively. 1

Both p, andp, can be expressed in terms &f” ands®  —2acgi(1-¢)*+ v [2e(h— 1) ¢e+{b(A—1)

for certain types of monomer structures, and representative

calculations ofp; are described in Ref. 31. The monomer —c(4)\—1)}¢§+2(c—b))\¢c+ bA]=0. (8

structure independent leading energetic contribution ONotice that when both of the non-EH ternasand c are

zel (2kT) is merely the FH interaction term. This leading nonzero, thevl— limit leads to a highly asymmetric phase
order for the interchain interaction grossly overestimates th%iagramywithgb _Oorl
c .

number of nearest neighbor heterqcon.tacts. The replacement The critical temperaturd, is obtained by solving the
of the factor ofz in the FH approximatiorze/(2kT) by (z stability condition

—2) is consistent with the argument of GuggenH®ithat '
each interior unit in a linear chain is linkedy chemical 1 1

bonds to the nearest neighbor units. Consequently, these two M ¢ + MA(1—¢) 2X

neighboring sitegusing the language of the lattice moydel - . :

are unavailable for occupancy by units belonging to Othelevaluated aF the critical composmo(rvolume .fract|0|) ¢
chains. Beyond the application of the high molecular weight,” Pe determlngd by Eq(8). This leads to the simple expres-
high pressure, high temperature, fully flexible polymer chain>'o" for the critical temperature,

limit, Eq. (1) has been obtained by a truncation through sec- 2(b+cee)

ond order of the expansion inZthat describes nonrandom Te= 1 1 . (10)
mixing arising from packing of structured monomers. e M + M (1= o) —2a

term, given in Ref. 31, is omitted as small and numerically ¢ ¢
irrelevant for the binary blends considered. The largest contribution to the shift af. from its FH value
T(CFH) is due to the parameter. An increase ofa generally

leads to decreased blend miscibility.

=0 9)

A. Location of critical point

The incompressible limit SANS parameter is defined
in terms of the free energ ™,

PP(AF™/KT) 1 1 B. Theta temperatures

-2y, 3 _
d¢p* Mg MA(1I-¢) X @ In analogy to polymer solutions where the theta tempera-

where they parameter is expressed as an interaction paramt-ure Ty is identified as an essential reference

,3,42 ]
eter between united atom groufs-> Evaluating the deriva- E{St%egzt;;ﬁér ngn%asn gliicc);ebzi?heglrnggr:p?olreerisz]r‘eg%rinary
tive in Eq. (3) convertsy into the simple polynomial, S . s
a.() X pie poly blend can be the dilute species, there tave osmotic virial

x=a+(b+co)/T, (4) expansions and two osmotic pressures, §by and II,,
where the subscripts 1 and 2 denote the majority species.
These virial series are readily generated from Ek. by

a=(r,—ry,)%z% (5) evaluating the chemical potentials of speciesi (i=1,2)

and by expanding the logarithmic term about the vanishing

volume fraction limits(¢,~0 or ¢,~0),

with

beind’ the temperature independent portion yoind with
the coefficients

T M
b=(e/k)[(z—2)/2+ (L1/z)(—2p1+ P)] = = AL AL @S AL I
and $,~0, (11)
c=(elk)(312)(py~P2)- ©®  and
As shown below, the constanibsand c exert a large influ- L0 o Lo
ence onT dependence of and the shape of the phase che =—ﬁ:A§2)¢1+A(22)¢§+A(32)¢§+~--,

boundary. Equation&t}) and(5) provide a simple interpreta-

tion of the temperature independent portionyofis arising $1~0, (12)
from different monomer structures of the two blend . .

component4® When both blend components have monomersWhere the volume g is t_he average umted atO“_“ group vol-
with the same structurea,andc both vanishidentically and ume (the(i)volu(irr)]e assocggted with a single lattice )qu
the classical FH theory is recover&t where A}/, A}’, and Ay’ are the first, second and third

The critical compositionp. is determined from the van- virial coefficients, respectively, given by

ishing of the third derivative of the free energyf™>, AP=1/\, AP=\, (13
073Afmix 1 b+c
- = M= _ I
757 - 0, (7) A=5—|at ——|My, (14)
which, in tu.rn, when applied to Eq1), yields the following A(Zz):__ at=|M,, (15)
expression: 2 T
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1 2c¢ 1 2c cal point, but may be inadequate for dilute blends far from
A(sl):§+ 3 TM1 A(32):§_ 3 TMa2. (16)  the theta point where a more sophisticated description may
be required. Within the RPA approximatiog, is indepen-
with a, b, andc defined by Eqs(5) and(6). (Note that the  dentof T. We note that the mean field sum rujé~S(0)
third virial coefficient may be negative, while the second is[ 5(0) is the structure factor in the long wavelength limit and
positive) The virial coefficients are related to the interaction is proportiona| to the osmotic Compressib“ity and the sus-

parametery by ceptibility ] implies thaté, also controls the amplitude of
A(Zl): 12— y(d=1)M;, (17) comp_osition fluctuation?’ _ _
Finally, the monomer shape and size asymmetry influ-
AP =1/2— x(p=0)M,, (18)  ences the ranges af over which mean field and Ising-type
and critical behaviors are observed. Théseanges are expressed

in terms of the Ginzburg number Gi which provides a rough
1 (1) 1\ 3 W 1 estimate of the magnitude of the reduced temperature
=l A =5 5(1-d)A— 3 =(T—T.)/T at which the crossover from mean-field to
Ising-type behaviors occurs. Dudowiez al>® have intro-
_ 1 AR)_ 1) 3 AR)_ 1 1g  duced more refined criterion for specifying the three different
M, 2] 2 A3 (19 regimes. Mean field theory holds far=10Gi, while the

hich establish tion bet d the fund Ising critical behavior corresponds to<Gi/10. The range
which estabiisnes a connection betwaea € L(j,'; a(riT)1en- Gi/10< 7<10Gi describes a crossover regime witk Gi in
tal, model-independent fluid mixture propertie&’,As’].

Equations 14) and(15) imply that each binary blend has two the middle of this range. For an incompressible blend, Gi is

H 0
theta temperatures, given by , .
M~ 1o 3+ (MN) Y (1—¢) 32
) 2(b+C)M1 Gi= vcell[ fﬁc ( ) ( ¢c) ] .
= (20) 647 |M 1ot (MN) Y (1—¢) 1—2ald3’
1-2aM; ¢ o
(25
and with a andd, defined by Eqs(5) and(23), respectively*
2bM
(2)— 2
TY 1-2aM,’ (21)
The temperature®!") andT{? tend to be near each other for IV. CLASSES OF POLYMER BLEND MISCIBILITY
“symmetric” blends \ =1) since|c/b| is normally small. ~ A. The M dependence of ¢. and T,
C. Correlation length and size of the critical region The simplified LCT predicts that binary polymer blends

yield four distinct classes of critical behavior. This classifi-

The static correlation lengtlj is another characteristic o . .
N cation is based on the analysis of E¢8) and (10) which
property of polymer blends which is expected to be strongly nable the evaluation of the critical parametéps and T,)

influenced by monomer shape and size asymmetries. Withi . . .
mean field theory, the correlation lenggtis connected with ﬁor eight potential types of blends that are characterized by

the blend susceptibility = 1 5(f™/kT)/d?] through the (1) the sign of the exchange energy- e;,+ €5, 2¢;, and
general relation (i) the degree of structural asymmetry between the mono-

mers(i.e., whether or noa andc are nonzerbo Monomer
é=vdyw, (22 asymmetry leads to a nonvanishing “entropig” term a

. . - . ~(r;—r,)? and produces asymmetry in the phase diagram
whered, is the square gradient coefficient. The coefﬁuentwithin the SLCT when the coefficient~ (p;— p,) is non-

d, can be estimated within the incompressible blend random

L . - Zero.
hase approximatiofRPA) (Ref. 3 in terms of the critical . . . .
Eomposiggnqs and t(:; n1)0(r10me?Kuhn lengthg and|, The eight potential types of blend phase behavior arise
C y

becauséd may have two possible signs and becaasmdc
1 12 13 may each be either zero or nonzero. Generally, the theory
do:E + 1— . (23) predicts thata is always positive, whileb and ¢ can be
Sie  S2(1— ) " . X .

] ) ~ positive or negative(Note, however, that the sign af is
Equations(22) and (23) enable calculating the correlation reversed upon the label interchange:2 between the two
length amplitudet, at the 10/2““03' composition through the plend componentsAlthough experiments indicate thatfor
relation §=&,|(T—T)/T| . After some algebrag, can  some random copolymer blends can be negdfvéhe

be expressed as classes of critical behavior fa<<0 are not considered here
d.T 112 as they do not emerge from the SLCT.
&= m (24) In addition to different monomer structures, blend com-
C

ponents usually have different molecular weights. The latter
The RPA theory assumes that blending introduces ndlifference introduces an additional source of asymmetry that
changes in the polymer dimensions and that the chains aie quantified in the LCT by the chain site occupancy index
ideal® This assumption for dilute blends is most suitableratio A\=M,/M, which is the natural extension of the po-
near the theta point which can be far removed from the critidymerization index ratio\ in FH theory and which accounts
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TABLE I. Classes of critical behavior for binary polymer blends as predicted by the LCT in the high pressure, high molecular weiyht limit.

T TA-T
a b c M,\ T Gi 0__¢ v__¢c
¢C Cc TC -I-C §0
NN
I a=0 b>0 c¢=0 UCST 2bIM ~Mt SEALY A+24% ~M*2
1+ A
A—0%  UCST ~ N 2b ~M~12 ATt NN ~M
a=0 b<0 c¢c=0 m
I a=0 b>0 c#0 UCST %i ~2b’'IM ~Mt %HNX ~N+2N ~M2
1+\ A
a=0 b<0 c#0 m
1] a#=0 b>0 c¢c=0
M ! i
~ 2al
L NN 2bIM M1 1+2% N+24N Mo\
2al 1+ Jn 1-2alM 1-2alM N(1-2aM) 1-2a\M 1-2alM
1] a#=0 b>0 c#0
M ! [
~ 2al
el ucsT - W\ 2b’'IM Mt 1+2 % A+2% Mo \12
2al 1+ 1-2alM 1-2alM ~ \(1—-2aM)  1-2anM 1-2alM
] a#0 b<0 c¢=0
M ! m
g_
2al
L o W 2bIM M- 1+20% °© a+2Wn @ M )1’2
2al 1+ Jn 1-2alM 2alM—=1  \(1-2aM) 1—-2a\M 2alM—1
NN
M—o  LCST [b/a ~M~2 ~M1 ~M1 const
1+ U\
IV  a#0 b<0 c#0
=— m
M 2al
M>% LCST na na na na na na
al
c<0 M—x LCST ~M¥? |b/a ~M~Y2 c/b ~M~12 ~M4
1 [b—c] Y —12 c 14
c>0 M—» LCST 11— ~M ~M - ~M
10(W) a lb—c]|

q=N/(1+ \/X)Z, AN=M,y/M;, M=M, b’=b+cyI, mandi denote complete miscibility and immiscibility, respectively, aradindicates the nonexistence

of a physically meaningful solution.

PFor all other cases considereds<® <oo.

°A positive T{!) implies the conditiorM > (2a) ~* which is a stronger constraint than> (2al) ~*.

A positive T(ez) implies the conditiorM >(2a\) ~* which is a stronger constraint than> (2al) .

€The constant is a function @f, \, the Kuhn lengths$, andl,, and numberss,, s,) of united atom groups in the single monomers of components 1 and 2.

for different monomer sizege.g., volumes The limit A\ completely miscible or immiscible. Class b€0,c=0b
—0 describes a polymer solution with component 1 being>0) yields phase diagrams similar to FH thelotyand is
the high molecular mass polymer, as mentioned in the Introcharacterized by a UCST phase separation in which the criti-
duction. Itis also worth mentioning that because the SLCT i) temperaturél,, is proportional toM (M=M;) and in
formulated in the high molecular weight limit,the A\~0
limit corresponds toM;,M,>1 and M;>M,. Generally,
the treatment of polymer solutions must retaiiv}/contri- . B _
butions that are neglected in EQ) or, whenM,=1, must 2 symmetric blendM,=M) and leads taj= 1/2. .
use the free energy expression for one component polymer .The presen.cle of a nonzeeo(for a=0, b>0) shifts the
systems that differs consideraly®from the expression ob- Cfitical composition from the FH case @f.=\/(1+ ),
tained from Eq(1) by settingr,=p,=0. while the critical temperature is slightly altered &%

The main characteristics of these four distinct classes of2b’MX/(1+\)?, where b'=b-+c\/(1+\\). The
critical behavior are summarized in Table | along with ascalingT.~M remains, as well as the independencepgf
specification of which of the eight classes are predicted to ben M. Consequently, we still designate this pattern of phase

which the critical compositionp.. is insensitive toM, but
depends only on the ratia The case ok =1 corresponds to
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FIG. 2. The SLCT spinodal curves computed for a series of monodisperse
PH1/PEP blends with varying molecular weights. Both blend component£IG. 4. The critical compositior, of monodisperse PH1/PEP blends as a

are assumed to have identical numbers of united atom grdpsM,  function of the number of united atom groupt=M, in a PH1 chain for
=M (A=1) in individual chains, and values are indicated in the figure. three fixed ratios.=M, /M, as indicated in the figure. For all valuesxaf
The volume fractionp= ¢, refers to component 1, which is P1(H Figs. ¢ is practically insensitive td, in agreement with FH theory predictions.

2—-4). The spinodal temperature is normalized by the critical temperature
T [evaluated from Eq(10) by settinga=c=0].

Class lll @#0,c=0,b<0) is our first example produc-

) ) ] ing LCST behavior and dramatic departures from the FH
behavior as FH type or class |, in spite of the presence ofatiern of blend miscibility. The critical temperatufe in
some small quantitative changesTigand ¢c. the M—o limit no longer scales withV, but instead ap-

The remaining three classes exhibalitative depar-  h5aches theonstanib|/a. The critical composition, still
tures from FH behavior. Class 1l g#0,c=0b>0) also  gq,a15/x/(1+ JX) due to the fact that structural asymmetry
yields a UCST behavior, but with a stronger dependence of,, longer affects$. when c=0. Class IV @#0,c#0b
Tc on M than linear(see Table)l This stronger dependence _ ) ais yields LCST phase diagrams, but differs from class
evidently stems from the presence of a nonzar the ; in some aspects. First, the critical compositigiy de-
denominator of Eq(10). On the other hand, the critical com- pends strongly oM, as can be seen from the two larlye
position remains identical té. for the FH class. The occur- asymptotic limiting solutions of Eq(8),
rence of a UCST phase diagram is limited, however, to val-
ues of M smaller than the “critical” value M ;=(1

+\)?/(2a)n), whereT, diverges.[The solution forT, in [ /b1 111

Eqg. (10) ceases to be physical favl larger thanM ;.| Pe= 2ac W’i+ 2al M

Again, the presence of nonzecoonly induces quantitative

shifts in T, and ¢, relative to theT, and ¢, for thec=0 N —b?+c’A+bc) 1 e o0 (26)
case. The scaling df, with M and the insensitivity ot to a\\2ba33 | M7 ’

M remain as wherc=0. The FH relatioh® ¢.= /(1
+\) holds well whenb>c since this condition corre-

sponds to a limit of small structural asymmetry. and
4t 3t
ST 3
£ £ 2
3 =)
t 2r |:o
- =
1 2=0.3 |
0 e 0 —
0 10 20 80 40 50 0 02 04 06 08 1
M x 10 ¢

FIG. 3. The critical temperaturg, of monodisperse PH1/PEP blends as a FIG. 5. The SLCT spinodal curves computed for a series of monodisperse
function of the number of united atom groupg=M, in a PH1 chain for ~ PIB/PEP blends with varying molecular weights. Both blend components
three fixed ratios\=M,/M; as indicated in the figure. Component 1 is are assumed to have identical numbers of united atom grdips M,

PH1, andM is a proportional to the molecular weight of PH1. The normal- =M (A=1) in individual chains, and th&l values are indicated in the
ization of T, by T(CFH) provides a convenient visualization of departures of figure. The volume fractiop= ¢, refers to component 1 which is Pl

T, from FH theory whereT, /T (™ is independent ofl. The faster than  Figs. 5—7. The spinodal temperature is normalized by the critical tempera-
linear dependence &f, on M in three curves represents the SLCT predic- ture TM~*) corresponding to thél - limit. The critical behavior of
tions for the class |l critical behavior. PIB/PEP blendgsee Figs. 6 and)7s designated as class IV.
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FIG. 6. The critical temperatur&, of monodisperse PIB/PEP blends as a FIG. 7. The critical compositiors. of monodisperse PIB/PEP blends as a
function of number of united atom groupé=M in a PIB chain for three  function of number of united atom groups=M, in a PIB chain for three
fixed ratios\ =M, /M, as indicated in the figure. The critical temperature fixed ratios\ =M, /M, as indicated in the figure. For largé, ¢. ceases to

T, is normalized by the critical temperatufé” ~*) in the M — limit. As depend or\ and slowly approaches zero. The exchange enetugs been
M grows, the ratiol . /TM~*) slowly approaches unity. taken ase/k=—1K (Ref. 31.

cooling® For simplicity, both blend species are assumed to

[b—cf} 1 o have identical numbers of united atom groullk, =M

pc=1— 172 v S . g 2
2ac\ | M 2aN/ M =M (A=1) in individual chains, and the different curves

correspond to different values M, as indicated in the fig-

b2\ — (2N —1)—
— b™x—c(2h—1)~3bek) 1 S ure. (The molar mass in amu is obtained by multiplyikg
4\2|b—cla3c3\? M3z by a factor of 14). The spinodal temperature is normalized by
the FH critical temperatur€™"=2bM\/(1+ \)? in order
c>0. (27)  to eliminate the influence of the exchange energy on the
Secondly, in theM — limit, the critical temperatureT, ~ Phase boundary. This particular choice of the PH1/PEP sys-
approaches different limits depending on the sigrc,of tem has been made because of its rather small value of
=(1z%) (r,—r,)%2=(1/36)(7/6-6/5)>=3.09x 10 ° which,
T b N [2bc| 1 N [b[—2cA} 1 in turn, implies a relatively highM .= (1+ J\)?%/(2a\)
< |a a’ m17? 232\ | M ~6x 10" and a wide range ofl over which physically re-
alistic computed critical temperaturés are found. The criti-
. 1, /i(b+c)+ , /i(Zb cal temperaturd, [normalized byT{™] is plotted against
2a%\ 2ac 2ab M in Fig. 3 for PH1/PEP blends. Deviations of the ratio
1 T./TFY from unity provide quantitative measures of depar-
+eN)| |=apt+-r, €<0, (2g)  tures of T from FH theory, and some deviations can evi-
M dently be quite large. Figure 3 also shows the variation of the
while for positivec, critical temperaturd . with \. The already nontrivial differ-
ences betweef, and T{™™ for A=1 become even more
_ lb—c| /2|b—C|C) 1 profound forA >1. As mentioned earlier, the critical compo-
¢ a a>\ |MT? sition ¢ is insensitive toM, even wherc#0. This trend is
N [b—c|A+2c) 1
2. | M —
X 1 =] 02 :
222\ 2ach T '-
o] 01 - class Il ]
c 1 (G class M7= ——"77
+\/5=+———(2bx +2cN —c) )—m+ N
2alb—clx M O T iass iV
c>0. (29 0 10 20 30 40 50
Mx 10°

Notice that a similar type of scaling for the critical param-
eters (p.~M —1/2,TC_>C()nst) emerges from the SLCT for FIG. 8. The Ginzburg number Gi for “symmetric” blenda € 1;M;=M,

polymer solutions exhibiting an upper critical phase separa-: M) computed for different classes of blend miscibility as a function of the
tion temperaturésee Table) number of united atom groups. The normalization of Gi by GF?

< . . =0.01(a typical Gi value for small molecule mixtupeprovides a conve-
The two main non-FH classes of critical behavior, des-nient visualization of the differences between classes I-IV. Classes Il and IV

ignated as classes Il and 1V, are also described graphically tare represented by PH1/PEP and PIB/PEP blends, respectively. The example
better illustrate their characteristics. Figure 2 depicts thd°r class | blendsg=c=0b>0) is derived by choosing as identical td
spinodal curves Computed for a series of mb@(ene-)/ for class I, Whllg the example for class IlI bIenda;(O,b>0,c_:O) is

. generated by taking andb equal to those for the PIB/PEP mixture. The
poly(ethylylene propylene (PHL/PER blends which are exchange energies for PHL/PEP and PIB/PEP blends are takeneks
typical UCST polyolefin mixtures that phase separate upor-0.01 K ande/k=—1K, respectvelyRef. 31.
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evident from Fig. 4 which presents, as a function oM for hanced over FH scaling for class Il blends, while it is dimin-
a few values ofx. ished for class Il blends. Finally, of class IV blends ex-
The class IV critical behavior is illustrated by specializ- hibits a weakM dependence &~MY4, which coincides
ing to the polyisobutyleng/poly(ethylene propylene(PIB/  with the scaling behavior of, for polymer solutiongclass |,
PEP blend which is an example of a polyolefin blend thatA\~0M—x) predicted theoreticalff and observed
separates upon heatifyThe PIB/PEP blend is described experimentally® outside the critical regime where mean-field
within the LCT by a negativé, a rather large entropic con- theory is applicable. It is, thus, apparent that the scale of
tribution a to y (a=4.82x10%), and by a negative composition fluctuations in blends can be much smaller than
(Ic|<[b|).3 The phase boundarigspinodals computed for  predicted by FH/RPA theory.
this system for various values ™ and for the special case These dramatic departures in tMe dependence of,
of A=1 are presented in Fig. 5. We normalize the spinodafrom the predictions of FH theory are easily understood from
temperature by the critical temperatuTéMH”) in the M Eq. (24) which shows that, is controlled predominantly by
—oo |limit to remove the dependence @enAn increase oVl T. and ¢.. The constancy off; in the M—c limit for
leads to a decreased miscibility, as expected, and to flattelasses Ill and IV leads, in conjunction with E¢&3) and
phase boundaries, a typical feature obsefVddr binary  (24), to the scalingé,~ ¢ Y2 with the proportionality con-
blends of PIB with several other polyolefiisee Sec. Vil stant depending on molecular parameteisl,s;,s,,b,c).
The variations of the critical temperature and critical compo-The insensitivity of¢. to M for class Ill implies thaté, is
sition with M are presented in Figs. 6 and 7, respectivelyndependent ofM for large M, while the scaling ¢,
which also describe cases with# 1. The critical tempera- ~M Y2 in the M— limit for class IV yields the scaling
ture T, [normalized byT(cM_’m)] slowly converges to unity as  £,~M%Y4. We expect that the power lag,~ be V2 also ap-
M grows, andT. depends o\ only in the region of small plies to branched polymer solutions for whid@ becomes
M. A similar trend is exhibited byp., which slowly ap- constart’ when polymer molecular mass is large. Notably,
proaches zero with the M ~ 2 scaling of Table | and which this interelation betweed, and ¢, also appears to hold in
ceases to depend onfor largeM as in polymer solutions. the non-classical critical regime of polymer solutions
(The M-dependence of, and T, is illustrated for classes where® ¢.~M ~2385and £,~M021%
I-IV in our previous communicatio?f) The computed in-
sensitivity of T, to M in Fig. 6 accords with the experimental
observation of Krishnamoortét al?® for PIB/PEP blends. D. Gap between theta temperature and critical
Equations(26)—(29) provide very good approximations to temperature

both T, and ¢ of PIB/PEP forM>10". The ratios of the blend theta temperatuféy and T(?
to the critical temperaturé&; for phase separation also pro-
B. Width of critical region vide valuable information about the blend class type. We

h ) v inf define the reduced temperature géip, between the theta
Monomer shape and size asymmetry can greatly in Utemperature and, as

ence the width of the critical regime and its measure, the , ,
Ginzburg number Gi. For FH typéclass ) blends, the STYP=(TY-To)ITe, (30
33536 ~:  ng—1 i

SC_?“”@ ~ Gi~M " indicates a strong decrease of the 5,4 analyze how this quantity varies for the various classes.
c_rltlcal region width with increasind/. However,_the mag- o case (FH class, Table | indicates thab‘T(gl) and 5ng)
mr:uﬁe of Gi can pe Iarger for clas_s Il blends whph exhibit Aapproach zero for large molecular mass asymmétry: o
shallow minimumin Gi as a function oM (see Fig. 8 A 4\ o respectively, but both 5T{" and 5T{?) become
typical magnitude for the minimum value of Gi for class I large for symmetric blendssT(M)=sTP=3 for \=1 or

. . . . . 0 0 - ’
blends is about 0.001, which is small relative to typical Val'equivalently,TS,l)/TC=T%Z)ITC=4].58 WhenT, is near room

;Jes ?f Gl foLfmgll ?olecule mixtures (@0.0l)d.l T::e Gl ¢ temperature £ 300 K), the conditionsT{)=3 would imply

or class ”I. ends decreases even more rapidly than G.' Oh theta temperature of about 1200 K. Of course, most poly-

class_ 1',' W.h"e the dependence of Gi oh for (_:Iass N (_G' mers would thermally degrade at such temperatures, so that
~M %) is weaker than for class I, resembling the Gi Scal'this result does not appear very interesting. Indeed the study

H H 37
ing for UCST polymer solutionsee _Taple)l. Apparently, of theta temperatures in blends might be dismissed altogether
the examples of class lI-1V blends indicate large departureBased solely on this result

from the Gi~M ~* scaling of the FH modelsee Fig. 8, but We contrasT{ (i =1,2) for the FH class | to those for
there is nonetheless a general tendency for Gi to becomaass IV blends. Table I illustrates that in tik—oo limit,

small for largeM. one of the class IV theta temperatures coincides With
while the other is independent of molecular mass asymmetry
(N). Thus, it should be easy to observe a theta ggjirfor
Inspection of Table | indicates that thé dependence of class IV blend$®®° as well as the same type of associated
the correlation length amplitudé, provides a particularly chain swelling and contraction with varying “solvent qual-
good indication of blend class type. For symmetnc=1) ity” in dilute blends as found in dilute polymer solutioffsA
class | blends¢, scales as the chain average radius of gyraunique behavior oﬁT(;) is obtained in class Il where both
tion £,~M*2, a scaling that is a well known result of RPA §T{" and 6T{?) approach zero &gl — =, which implies that
theory’ for polymer blends. Th&/ dependence of, is en-  the limiting theta temperatures coincide with. Class II

C. Correlation length amplitude &,
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exhibits more complex behavior sinég@(" and sT{?) both is difficult to imagine that any “specific interactions” could
depend strongly on andM. In summary, the observation of be responsible for the observed dramatic deviations from FH
one or two theta temperatures in reédilute) blends should theory. (Notably, our explanation of the non-FH critical be-
be possible in many cases, providing direct evidence ohavior for PS/PVME blends likewise does not require invok-
non-FH classes of blend miscibility. Note that tﬁé(e') are ing “special interactions.) The LCST phase separation in
negative or zero for LCST type blends, and the two thetahese systems is predicted to arise within the SLCT from the
temperature§ (") and T{?) are close to each other for sym- competition between a negative energetic portion of the
metric blends X =1). TheM-dependence ofT{") for sym-  parameter and a sufficiently positive “entropic” partof y.
metric blends of classes I-1V is illustrated in our previous The PIB blends exhibit a large term due to the presence of
communicatior?? a tetrafuctional carbon atom in the PIB monomer. The nega-
tive exchange energy (implying b<<0) may occur because
50% of the PIB united atom groups are &£lgroups that
V. EXPERIMENTAL SUPPORT FOR NEW CLASSES have larger attractive interactiotise., Lennard-Jones inter-
OF POLYMER BLEND MISCIBILITY action parameteysthan the CH, CH, and C united atom
groups® This effect produces a large self-interactieny
= epg_pig (relative toe,,) and a large heterocontact interac-
tion €,,, leading to a negative= €1+ €5o— 2€45.
We contrast the scaling df. and other critical properties

As mentioned earlier, a linear scaling Bf with M has
been obtained from SANS experiments for symmetig (
=N,) isotopic polyolefin blend$where molecular monomer

structures are almost identigand has been confirmed by . :
Monte Carlo simulation&?*There are, however, several ex- found for PS/PVME and PIB/PEP blends with those obtained

perimental observations indicating that this FH pattern o2y Gehlseret al*® for an isotopic symmetric blend of poly-
blend miscibility is not general. Perhaps, the best docu!€thylene propylenewith its partially deuterated counterpart.
mented example of this nonuniversality is provided by the*S €XPected, this near symmetric blend exhibits scaling char-
polystyrene/polwinyl methyl ethey (PS/PVMB blend. The acteristics cgmpatlble with properties of FH glgss I plends,
SANS experiments by Haet al?’ reveal thatT, for this such as the inverse proportlonallty)@f(at the critical poink
system is nearly independent ¥, and the phase boundary © N and the proximity of¢ to 1/2.

is highly asymmetrié’28 For two PS/PVME samples speci- An interesting departure from FH theory has been re-

fied by approximately the same(\) but different molecu-  Ported by Bates and co-worké?svho find aweakerthan a
lar massesdiffering by a factor of 3, the experimental criti- Inéar dependence df. on M for poly(ethylene propylené

cal compositions¢cz¢ffs)~0.2 and 0.1 for these two poly(ethylene—co—ethylethyleme (PEP/F’E-PEE mixtures
blends depart significantly from the predictionﬁ(FH) which are random copolymer polyolefin blends. Notably, the
= W/ (1+\\y)~0.64 and 0.65, respectively ch FH Weaker than linear dependence is inconsistent with the scal-
theory. The SLCT predicts that, should scale ab ~*? for ings predicted by the SLCT for homopolymer blen@ee
class IV, so that a factor of 3 increaseNh between the two 120le ). [The extensioff of SLCT to copolymer systems
blends should thus lead to a reduction @f by v3~1.7. y'EIdS_XW'th the same structure as in Ed), but with more
This prediction is consistent with the data of Hanal?’ ~ cOmPlicated expressions far, b, andc.] As already men-

where roughly a factor of 2 reduction is observéBS/ tioned, the "entropic” parta of the y parameter is non-
PVME blends are classified as type IV blends, based on fit egative within the SLCT theory. Experiments, on the othe_r
to blend scattering data and the resulting conditibrsO, and, demonstrate that some random copolymer polyolefin
anda,c#0.) Other aspects of non-FH-type critical behavior blends exhibit’ a negativea. While we can not account for

of PS/PVME blends are described in our prior studies of this}h,e_ negative s_ign Oa_ vyi_thout Iifting_both the incompress-
systen 34 Measurement&®2 and LCT computatiorid for ibility and chain flexibility assumptions of the SLC{Bee

PS/PVME mixtures over a limited range & indicate a bezlovlv),\,/l allgw!ng dfofr a<|0 in ltlhe ex?l_reslsmg_c:z*?r”\gl/ (1|
weak M -dependence of the correlation length amplitéde . alM) derived for class Il UCS endssee Table )

(typical value8® of £, are on the order of 10 A and the immediately explains the observed weaker than FH variation

theta temperature of PS dispersed at a low concentration ﬁf T with M for PEP/PE-PEE blends. Since these systems

PVME has been estimat®as T%PVME):147QC’ a value phase separate upon coofifignd exhibit a very smallal-

. . O .
remarkably close to the critical temperature values found by"0St vanishing x paramete?” a negativea must compen-
Hanet al,?” T,=145+5 °C. A similar insensitivity ofT, to sate the positivéd/T term in order to producg~0. We are

M is reported® for binary blends of PIB with several other unaware of other molecular mass studies of blend miscibility

polyolefins, which provide additional examples of LCST sys-thf"‘,t could be_used to test our classification of binary bI.end
tems and class IV blends. All these measurements are coﬁ[Itlcal beha_wor. Stronger support for t(r')e _theory requires
sistent with the properties derived for class IV polymerda,lta djscnbmg LhM ?e"pender?%e OTC’.l-lrg (I:1'I’2t)>I' ¢.C’ h
blends, which strikingly resemble properties of upper critical?" andg,, and hopefully such data will be available in the
temperature polymer solutions. As shown in Table I, the scaltuture.
ings of T¢, ¢, Gi, 6TV (i=1,2), andé, with M are iden-
::llc:;lslsfcl)er4 LCST blends(class IV} and polymer solutions of VI. DISCUSSION

A similar insensitivity of T, to M has been observed for The simplified lattice cluster theoySLCT) predictions
binary blends of PIB with several other polyolefins, where itdemonstrate that monomer structural asymmetry in polymer
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blends qualitatively affects the miscibility, chain conforma- even lead in some cases to a reentrant phase diagram or to a
tions, and critical properties of binary polymer blends. Thephase boundary with separate upper and lower critical tem-
theoretical analysis has been applied to eight potential typegserature brancheés®> Obviously, blend compressibility must
of blends characterized by the sign of the exchange energyaffect the shape of the phase boundary, especially vehen
(b), the degree of monomer structural asymmetryc], and  and e,, are disparaté® A useful illustration of how com-
whether or not the “entropic” portiom of the y parameter is  pressibility alters the phase boundary is provided by our pre-
nonzero.(When botha andc are zero, the effective interac- vious LCT calculation® for PS/PVME blends. The PS/
tion parametely reduces to a form similar to that predicted PVME spinodal curves computed by the LCT are highly
by FH theory) In addition to structural asymmetry, the two asymmetric and steefsee Fig. 2 of Ref. 50 in contrast to
blend components may exhibit chain length asymmetrythe spinodals generated by the SLCT. The computed highly
which is represented in the SLCT by the ratie=M,/M,  asymmetric phase diagrams for the compressible PS/PVME
(where M, and M, are the chain site occupancy indiges blends arise from the presenteof quite different self-
The ratio\ is the natural extension of the polymerization interactions €;,= eps_ps and €= epyme_pyme Which, in
index ratioky in FH theory to account for different mono- turn, induce a large variation of the blend compressibility
mer sizes. Within these eight possible categories, we distirexcess free volumewith the blend composition. The SLCT
guish four classes of distinct critical behavior that are specispinodals for PS/PVME blendsiot shown hergare rather
fied by unique scalings withM=M, of the critical flat and resemble those presented in Fig. 5 for PIB/PEP mix-
temperaturd .., critical compositiong,, the Ginzburg num- tures. The experimental observafidiof the insensitivity of
ber Gi, the correlation length amplitudg, as well as the the spinodal temperature to the composition of PIB/PEP
distancessT{)(i=1,2) of the theta temperatur¢s") and blends can be explained by near equality betwegp
T{?] for the two possible dilute blend limits from the critical = €pia_pis @nd €5,= €pep_pepand by the resulting constancy
temperatureT .. While both T, and ¢, govern the position of the blend free volume over the whole range of blend com-
and shape of phase boundaries, &;ng), andé&, control the  positions. Thus, when the blend compressibility is indepen-
width of critical region, the extent of chain swelling ndar, ~ dent of blend composition, it may affect the magnitude of
and the scale of composition fluctuations in the mean fieldoth T and ¢, but does not introduce an extra asymmetry
regime, respectively. The correlation length amplitude alsdnto phase boudaries. We also expect that compressibility
regulates the magnitude of the blend interfacial terféiand ~ should influence the dependence of the correlation length
other important propertiegscattering intensity, collective amplitude&, and the Ginzburg number Gi avi. The class
diffision coefficient, etd. A graphical illustration of the gen- 1V scaling for the correlation length amplitudg,~M**
eral scalings off (M), ¢¢(M), £(M), and 6T ,(M) with compares reasonably well with the dependencé,obn M
molecular weightdM is presented in Ref. 32 for these four estimated by the full LCTsee Fig. 17 of Ref. 50for large
different classes of symmetrid;=M,=M) blends, while M, with deviations occurring mostly in the region of small
Figs. 2—7 of the current paper describe rather specific exM. (¢, from compressible LCT calculations is nearly inde-
amples of classes Il and IV blends. pendent ofM whenM is small®®) Apparently, power laws
for critical properties should be different in the very long and
shorter chain limits, and these differences have recently been
discussed in connection with the properties of polymer
Our description of four general categories of critical be-solutions®® The predicted scaling of the Ginzburg number
havior for polymer blends is based on the simplest version oGi~ M ~Y2 for class IV blends from the SLCT model exhib-
the lattice cluster theor}. This choice is dictated by analyti- its a more significant departure from the full L& The
cal tractability and the simplicity of the SLCT which con- discrepancies in Gi due to the neglect of compressibility ef-
tains only a single adjustable parametae exchange energy fects can be as large as a factor of five for PS/PVME blends
€). An additional argument for the use of the SLCT stems(see Fig. 8 of Ref. 50
from our observations that the theory faithfully reproduces  The limiting high pressurgincompressiblg high mo-
many trends predicted by more general versions of the LCTecular weight LCT can readily be extended to include chain
that, of necessity, require the introduction of additional pa-semiflexibility’ (and thereby model chain tacticitybut only
rameters. The SLCT, however, exhibits some obvious limitaat the expense of introducing “bending” energigg that
tions, and we now discuss the differences that would emergeeflect the conformational energy differences in the actual
from the use of more general LCT formulatichs>° polymers’ This extensioftt merely renders the two basic
The assumption of the high pressuiiacompressible  counting indices; and p; as dependent on temperatufe
limit implies that all computed excess thermodynamic prop-whereupon the, b, andc in Egs.(8) and(10) then become
erties of binary homopolymer blends depend on a single erfunctions of T. The same Eqs(9) and (10) still determine
ergy parameteg, which is a linear combination of homocon- the spinodal curve and critical temperature, respectively, but
tact and heterocontact van der Waals interactionsthe equations can only be solved numerically.
Consequently, any influence of asymmetry in polymer-  The full LCT for compressible systems of polymers with
polymer homocontact interactiorise., differences between finite molecular weights is essential for describing the pres-
€11 and e,,) on the predicted phase behavior cannot be exsure dependence of phase behati@md this theory predicts
amined within the incompressible limit. In general, com-the emergence of additional patterns of blend miscibility,
pressibility magnifies nonrandom mixing effects and maysuch as phase boundaries with closed loops, with both upper

A. Compressibility, interaction asymmetry, and chain
stiffness
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and lower critical points, or with a miscibility gajpe., with-  miscibility (T.,¢.), phase boundary shapep{), chain
out a critical temperatuj€->® These compressible systems swelling (T{"), the magnitude of composition fluctuatidhs
are affected by energetic asymmetries between the constit@¢,), as well as the width of the critical region over which
ent monomers, and numerical treatments are generally résing critical behavior is observe@Gi). The FH class of
quired for specific systems. blends corresponds to just one of four basic classes of blend
It should be noted that the LCST phase diagrams emergmiscibility indentified by our simplified lattice cluster theory.
from the simplified LCT for incompressible systems due toOne of the three remaining classgise LCST class IV ex-
the presence of an entropic(the a term) and a negativé  hibits critical behavior resembling that of UCST polymer
(effective attractive interactionsThis mechanism is quite solutions. Apparently, the monomer scale asymmetry in these
different from the common explanation of a LCST critical polymer blends plays a similar role to the molecular mass of
behavior that attributes the occurrence of a phase separati@npolymer in polymer solutions. The other two non-FH blend
upon heating to the increasingly disparate densities of theniscibity classes have their own unique characteristics. Class
polymer components at elevated temperatures, thereby prdi- blends exhibit a stronger dependence Tof on M than
ducing an entropic penalty to miscibilif§. This behavior is  FH-type blends, and Gi does not vanish\a$ecomes large.
readily understood for polymer solutions where the LCST isClass Il blends provide another pattern of blend miscibilty:
usually neafT, for the pure solvent! However, the compo- T is insenitive to molecular mass, bt depends on in a
nents in binary blends of polyolefins, for instance, havesimilar fashion as for FH-type blends. The Gi is predicted to
rather similar densities and coefficients of thermal expandecrease more rapidly for case Il than for class |, while the
sion, thereby vitiating for these blends the compressibilitycorrelation length amplitude in class Il is independeni/af
mechanism that describes LCST phase behavior in polyméFhese strong differences in tih& dependence of blend criti-
solutions. Compressibility effects have been excluded as theal properties(see Table | for a complete revi¢vehould
origin of the LCST critical behavior for PS/PVME blentfs. have practical ramifications in controling blend properties.
Our analysis of binary blend critical behavior also produces
B. Copolymer blends and other complex systems an important message for experimental studies. The estima-
tion of T., &, and other critical properties of polymer
blends often assumes the validity of the FH expression for
the critical compositiong{™=\\y/(1+\\y). This as-
sumption can lead to gross errors in estimated critical param-
eters @¢:,T¢,&0,.-.), especially for LCST systems. Since
6l?e coefficientsa, b, and c can be obtained from other
sources than the SLCT, such as computer simulations, ex-
oPeriments, or PRISM theory, the classification of blend mis-
cibility in Table | may apply more generally.

The limiting high pressurdincompressiblg high mo-
lecular weight LCT is likewise readily extended to treat the
critical properties of blends containing copolym&sThe
evaluation of theb andc parameters for copolymer systems
is somewhat more complicated becauselihierm depends
on monomer sequence, while the magnitudes and signs
bothb andc are affected by the copolymer compositions
andy and by energetic asymmetries between different mon
mers, a feature that could possibly yield larger ratidb
and, hence, more asymmetric phase diagrams and shifts to Gi
in classes | and Il. Because of the greater computationghCKNOWLEDGMENTS
complexity and the presence of additional adjustable param-
eters(i.e., more interaction energigshe study of how chain
semiflexibility and the copolymer nature of the blend com-
ponents affects phase behavior is deferred to the future.
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