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Autocorrelation is shown to be useful in
describing the periodic patterns found in
high- resolution mass spectra of synthetic
polymers. Examples of this usefulness
are described for a simple linear homo-
polymer to demonstrate the method
fundamentals, a condensation polymer to
demonstrate its utility in understanding
complex spectra with multiple repeating
patterns on different mass scales, and a
condensation copolymer to demonstrate
how it can elegantly and efficiently reveal
unexpected phenomena. It is shown that
using autocorrelation to determine where
the signal devolves into noise can be useful
in determining molecular mass distribu-
tions of synthetic polymers, a primary
focus of the NIST synthetic polymer
mass spectrometry effort. The appendices
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formation from time to mass space when
time-of-flight mass separation is used, as
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on the autocorrelation function.
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1. Introduction

The advent of rapid, high-resolution, broad-
mass-range mass spectrometry has revolutionized
synthetic polymer single-chain characterization [1].
Along with this new measurement technology has come
a flood of high-quality mass spectral data of an exceed-
ingly complex nature. It is not unusual for synthetic
polymer mass spectra to contain hundreds of separate
peaks even when excluding those simply derived from
naturally-occurring isotope distributions. Automated
data analysis methods are needed in order to make full
and timely use of the data.

Time series analysis, which first came to fore
with the publication of Norbert Wiener’s seminal
text Extrapolation, Interpolation, and Smoothing of
Stationary Time Series with Engineering Applications
[2] in 1949, has proved invaluable in many fields of

data analysis. Weiner’s text represents the first complete
exposition of the study of operations on time series,
including autocorrelation and cross-correlation. In
the intervening years these correlation methods have
been applied to many types of mass spectral data
for many purposes [3-5]. Owens has reviewed the
use of correlation functions in mass spectroscopy,
in particular, the use of autocorrelation and cross-
correlation as applied to ion fragments in order to
identify small organic molecules in standard libraries
[6]. Hercules and coworkers have used autocorrelation
of isotope distributions as a method to optimize
automated data collection [7]. Here we discuss the
application to synthetic polymer mass spectra for the
purpose of efficiently extracting information from
complex data.
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First we define the mass autocorrelation and show
how to treat the data properly for its use. Then we
present autocorrelation for a spectrum of a simple
polyethylene oxide homopolymer to establish the
fundamentals. Following that we present data on
two more complicated structures, specifically two
silsesquioxanes produced by condensation polymeriza-
tion [8] in which the mass spectra can be related directly
to the polymer architecture. Finally, we apply autocorre-
lation to the issue of quantitation in polymer mass
spectrometry using the example of polybutadiene.

2. The Mass Autocorrelation Function

We define the mass autocorrelation function as

G (L ) = �i S (mi )S (mi+L ) / �i S (mi )S (mi ) (1)

where S (mi ) is signal at mass mi taken on equal intervals
of mass, �m . Equal intervals of mass are used because
most correlation algorithms, and the closely related field
of fast Fourier transforms (FFT), require the signal to be
evenly spaced points on the scale of interest.

Time-of-flight (TOF) mass separation [9] is the
technique most often applied to synthetic polymers due
to their high molecular masses, typically in excess of
1000 u and often much greater (into the 100 000 u range
and beyond). No other mass separation technique can
reach such high masses. The TOF signal, s (ti ), is col-
lected on equal intervals of time. The transformation
from this time-base signal s (ti ) to a mass-base signal
S (mi ) involves both an interpolation and a change of the
signal itself by a Jacobean transform. The mathematics
to affect this transformation is discussed in Appendix A.

3. Example 1: A Simple Linear
Homopolymer

The most obvious use of mass autocorrelation
function is to get an accurate representation of the repeat
unit of the polymer. This can be difficult in a spectrum
with noise where identification of peak position will
inevitably lack precision and lead to inaccuracies in
calculating the repeat unit mass. Figure 1 shows the
mass spectrum for a low-molecular-mass polyethylene
oxide (repeat unit: [–CH2–CH2–O–]); while Fig. 2 is its
autocorrelation function with different values of �m .
Data were obtained by matrix-assisted laser desorption/
ionization (MALDI) TOF mass spectrometry [10, 11].
Before autocorrelation a baseline was pulled off the
data in time space and the data was subsequently
transformed from time space to mass space by the
partial integration method described in Appendix A.
The autocorrelation clearly shows the 44.03 u repeat
unit of polyethylene oxide with a precision difficult to
match by simply picking adjacent peaks and calculating
a mass difference.

Now consider the effect of varying the �m for partial
integration or interpolation. The spectrum and its
autocorrelation function with �m chosen to be from
0.1 u to 2.0 u are also shown in Fig. 2. It is clear we
get a varying representation of the repeat unit and
its isotope effect depending on the choice of �m .
By increasing �m , that is, by integrating over a wider
window of the data for each point, we obtain less
sensitivity to the isotopes, that is, a greater smoothing
effect on the data but less accuracy in peak position.

Fig. 1. Matrix-assisted laser desorption/ionization time-of-flight mass spectrum from a polyethylene
oxide of a molecular mass centered around 1440 u.
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4. Example 2: A Complex Homopolymer

Polysilsesquioxanes are three-dimensional polymers
with a tri-functional repeat unit of the form [RSiO3/2]
where each silicon atom is coordinated with three
oxygen atoms. They are most often produced by a low
temperature sol-gel hydrolysis-condensation reaction
from silicon alkoxides [12]. One important unknown in
the processing of silsesquioxanes is the “degree-of-
condensation” as a function of molecular mass. That is,
how many of the silicon atoms are three-fold coordi-
nated with bridging oxygen atoms and how many have
terminal silanol (≡SiOH) groups?

The mass spectrum of methacrylpropyl silsesqui-
oxane (R = (CH2)3–O–CO–CCH2–CH3) is seen in Fig. 3
[13, 14]. Each major cluster of peaks corresponds to a
single oligomer with a given number of repeat units n .
Since the monomer contains one silicon atom the value
of n also corresponds to the number of silicon atoms in
that oligomer. For this material this average mass of the
basic repeat unit is 188.25 u. (The average is taken over
all isotopes of each element present using their natural
abundances.) This is the value of the mass difference
between groups of peaks seen in Fig. 3. Knowing that
ionization occurs via the attachment of adventitious Na+,
and by including the mass of the two O1/2 H end groups,
an exact identification of each oligomer present in the
sample can be made.

Figure 4 shows the detail of a single low-mass
oligomer from Fig. 3. The maximum possible mass of
an oligomer with n repeat units occurs when every sili-
con atom has one silanol group in addition to one R-
group and two bridging oxygen atoms. Two bridging

oxygen atoms are the minimum number necessary
for the formation of a polymer, that is, conceptually
polymerization requires difunctionality at a minimum.
Thus, the repeat unit in this case can be given as
[RSi(O1/2)2OH]. For an oligomer with n repeat units the
mass of the heaviest oligomer is n times the mass of this
“difunctional” oligomer (plus the mass of the Na+ ion
and the end groups). This heaviest oligomer is the linear
or branched structure. However, the highest intensity
peak generally does not appear at the maximum possible
mass. Instead, lower mass peaks are more intense. These
peaks correspond to the loss of water as pairs of Si-OH
groups react. This in turn immediately indicates that
intramolecular reactions are occurring during polymer-
ization. If intermolecular reactions were occurring the
value of n would change and a new, higher mass,
oligomer would be formed. In Fig. 4, n = 10 and the
number of closed loops t is given across the top of the
figure. The value of t ranges from 0 to 6 with 3 being the
most likely value. Note that each peak is separated by
18 u indicating the loss of water.

For the condensation polymer derived from the
silsesquioxane monomer considered here, the mass m of
the linear oligomer having n repeat groups is given in
units of u by the equation:

m = (188.25 n ) + p + 18 (2)

where n is the number of repeat groups whose mass is
188.25 u, p is the mass of the cation (either 23 u for
sodium, or 39 u for potassium), and 18 u is for the two
O1/2H end groups. It is easy to show that either a strictly
linear or a branched-linear polymer, which does not

Fig. 2. Mass autocorrelation of the data in Fig. 1. The effect of various coarse
graining parameters on the representation of the data is seen. Notice as �m increases
above 0.5 u the isotope resolution is lost.
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Fig. 3. The full mass spectrum of the methacrylpropyl silsesquioxane showing the characteristic
shape of a condensation polymer. Estimated standard uncertainty (Type A) of the peak position
from calibration and repeatability studies is 0.2 u, and the estimated standard uncertainty in
overall signal intensity from repeatability studies is 15 %.

Fig. 4. Detail around a single oligomer of the methacrylpropyl silsesquioxane from Fig. 3 for
n=10. Across the top of the figure is given the number of closed loops t indicated by the loss of
water (18u). The maximum value for t was 3 with the lowest t being 0 and the highest being 6.
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have one of the branches forming a closed loop with the
oligomer itself, follows the above formula for mass. This
formula would explain a single peak for each oligomer
but cannot explain the major clusters that were observed
and ascribed to intramolecular ring formation.

This suggests a modified version of Eq. (2) that
includes intramolecular closed loop formation:

m = (188.25 n ) + p – (18 t ) + 18 (3)

where again n is the number of repeat units, p is the
mass of the cation, t is equal to the number of closed
loops in the molecule (i.e., the number of lost water
molecules), and 18 u in the last term is for the added end
groups.

Applying these concepts to the full mass spectrum,
Fig. 5 gives the number of closed loops t per oligomer
with n repeat units, that is t vs n . The solid circles give
the number of closed loops for the most intense minor
cluster of each major cluster. (Recall that a major
cluster corresponds to an oligomer with n repeat units.)
The points marked with an x are for the least intense
peaks observed in each major cluster, that is, the
weakest peaks found before the baseline noise over-
takes the signal. The regression fit of the solid circles
given by the solid line in Fig. 5 has a slope of 0.273 with

a standard uncertainty of 0.006, an intercept of 0.226
with a standard uncertainty of 0.192, and a correlation
coefficient of 0.998. (The “standard uncertainty” is the
estimated standard deviation of the fitted parameter.)
The first observation is that the ratio of t/n remains
roughly constant for all n with a value of about 1/4. This
suggests that the molecule is no more or less likely
to interact with itself based solely on its size. Stated
another way, the molecule may be fractal-like with its
closed-ring topology independent of molecular size
[15]. A fully-condensed polyhedral structure with an
even number of repeat units will follow the equation
t = 1/2n + 1, while for an odd number of repeat units the
governing equation is t = 1/2(n – 1) + 1. This is shown
as a dashed line in Fig. 5 on the other hand, a branched
linear chain with no closed loops will have t = 0 (by
definition), and thus t/n = 0 which is merely the abscissa
of the graph. Therefore, in general it appears as if the
specific silsesquioxane studied has on the average an
assortment of closed loops and linear branches in each
molecule. No fully-condensed polyhedra were observed
except at very low mass (n<10) because the experimen-
tally-observed t/n ratio was on the order of 1/2 well
below the fully-condensed-polyhedron value of (for
large n ). The analysis of this data requires analysis of
each peak and identifying it with each species. This can
be very laborious if one wishes to screen a large number
of compounds.

The mass autocorrelation function was applied to the
data in Fig. 3 with the lag, L , in the range from (0 to
1000) u and with �m = 1 u and is shown in Fig. 6. It
largely replicates the original mass spectrum without
much of the baseline noise. In this way it can be roughly
thought of as a kind of “averaging.” The peaks at
188.25 u are for correlations of �n = 1, those at 376.5 u
are for �n = 2, etc. Figure 7 is the low mass region of the
autocorrelation function expanded. There are a series of
five low mass peaks, marked with stars in the figure,
starting at 18 u and each 18 u apart. This indicates that
the number of closed loops per oligomer should be about
five, that is, there should be five peaks in each major
cluster. Recall that this was shown in Fig. 4 where the
difference for each oligomer between the maximum and
minimum number of closed loops observed, t , is about
five. Likewise, in Fig. 7 the number of peaks in the
autocorrelation function around mass 188.25 u should
be about 10, marked with the symbol x in the figure, that
is, correlations of the five peaks of two adjacent major
clusters. Lastly, since the spacing used in this autocorre-
lation function is 1 u, the isotopic resolution that should
be apparent at 1 u is not seen, instead autocorrelation
within the minor peaks is simply smeared out.

Fig. 5. plot of the number of intramolecular closed loops, t , versus
the number of repeat units in a given oligomer, n . The solid circles
represent the maximum intensity peak for each oligomer, and points
marked with an x give the maximum and minimum number of ob-
served loops. The solid line is a linear regression fit to the solid
circles, while the dashed line is the expected value t = 1/2n + 1 (for n
even) for the fully-condensed polyhedral structure. The sample
showed an intermediate behavior between a branched linear structure
and a fully-condensed structure.
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Figure 8 shows the autocorrelation function centered
at 941.25 u (corresponding to correlations over five
repeat unit masses, i.e., 5�188.25 u = 941.25 u) super-
imposed over the autocorrelation function at
188.25 u. This was done simply by subtracting
753.0 u = 4 � 188.25 u from the autocorrelation func-
tion centered at 941.25 u. Notice that the maximum

peak for 941.25 u group is 18 u to the left of the maxi-
mum peak for the 188.25 u group. This indicates that as
four repeat units are added to an oligomer (n = n + 4)
one added closed loop is formed per molecule on aver-
age (t = t + 1). Once again this can be seen from the
slope of the line in Fig. 5: for each step of n equal
to four, t is increased by about one. (Strictly, since

Fig. 6. The full autocorrelation function with a lag, L , from (1 to1000) u for the mass spectrum
shown in Fig. 3. The autocorrelation coefficient is plotted versus L in units of u.

Fig. 7. Low-mass-region detail of autocorrelation function shown in Fig. 6. The stars show the
5 peaks shifted by 18 u found in each major cluster. The positions marked with an x are the 10
peaks found by correlations between major clusters 188.25 u apart.
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experimentally t/n = 0.273, an increase in n of 4 should
yield an increase in t of 1.1. This is hinted at in the peak
heights of Fig. 8). This provides another view that the
molecule is self-affine in that adding additional repeat
groups changes proportionately the number of closed
loops. In contrast, a strictly linear polymer undergoing a
random walk crosses itself in proportion to the square
root of the number of repeat units, i.e., t � �n . This
behavior is clearly not seen in this material. Each of
these trends is revealed rapidly by mass autocorrelation
and would not be as readily apparent in a peak-to-peak
indexing of the data.

5. Example 3: A Copolymer

MALDI-TOF mass spectrometry was performed
on a low molecular mass fraction of a copolymer of
methyl silsesquioxane (repeat unit: [CH3SiO3/2]) and
dimethysiloxane (repeat unit: [(CH3)2SiO]) monomers
(Dow-Corning Metflex)1. This fraction had a nominal
mass of 3400 u by size-exclusion chromatography.

Figure 9 shows the full spectrum of sample while
Fig. 10 shows a detailed region of this spectrum high-
lighting individual oligomers. The traditional way to
analyze this data is to take knowledge of the mass of the

1 Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

two monomers along with the polymerization reaction
involved and assign each individual peak in the spectrum
to a particular composition, typically several hundred
peaks for a condensation-hydrolysis resin such as this.
Although this may be the most thorough method to
analyze the data it requires very high precision data and
may not reveal significant trends in the data. Typically
it is discovery of these trends and not accounting of
each peak in the spectrum that is desired, especially in
production quality control situations.

Figure 11 shows the autocorrelation of the data in
Fig. 9. Peaks appear in the autocorrelation at each of the
repeat distances of the main spectrum. There is a large
peak at 74 u indicative of the dimethyl siloxane unit (D).
That is to say that there frequently occurs pairs of
oligomer separated in mass by 74 u, i.e., that the higher
mass oligomer has grown by one D unit. Interestingly
there is no peak at 67 u, which is the mass of the methyl
silsesquioxane unit (T). However, there is a peak at
134 u that is twice the mass the silsesquioxane unit (2T).
This immediately indicates that each oligomer present
has an even number of T units. (Actually, to show this
you also need to observe that there are also peaks at 4T,
6T, 8T, etc., but not at 3T, 5T, 7T, etc.) Each of the other
peaks in the autocorrelation can be shown to be linear
differences of 2T and D units forming the general func-
tion n2T–mD. Table 1 shows some of these combina-
tions at lower mass. Notice that for every combination
there is a peak in the autocorrelation and there are no
peaks in the autocorrelation that are not in Table 1. Since
the interpolation was done at 1 u intervals there are
uncertainties of about 1 u between the table and Fig. 11.

Fig. 8. Shift of the five-repeat-unit correlation function (dashed line) onto the single-repeat-unit
correlation function (solid line) showing the 18 u offset between the maximum peak for each
group.
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Fig. 9. The full mass spectrum of the methylsilsesquioxane/dimethylsiloxane copolymer showing
the characteristic shape of a condensation polymer. Estimated standard uncertainty (Type A) of the
peak position from calibration and repeatability studies is 0.2 u, and the estimated standard uncer-
tainty in overall signal intensity from repeatability studies is 15 %.

Fig. 10. Detail of the mass spectrum shown in Fig. 9 showing the complexity of the signal.
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The next observation to be made is that there is no
peak at 18 u in the autocorrelation. The hydrolysis-con-
densation reaction gives off water when two silanols
combine to form a bridging oxygen. As discussed previ-
ously, in incompletely-condensed silsesquioxanes a
strong autocorrelation peak is seen at 18 u indicative of
oligomers with the same number of repeat units but
different degrees of condensation. The lack of a peak at
18 u immediately indicates that either full intramolecu-
lar condensation of silanols has taken place, or no in-
tramolecular condensation of silanols has taken place.
Only an exact indexing of peaks in the mass spectrum
(which can be quite time consuming) can answer this
question, however, it seems unlikely that condensation
can occur to polymerize the material (intermolecular
condensation) with some concomitant intramolecular
condensation also occurring [16]. Additionally, an even

number of T units is a strong indication of complete
condensation since an odd number of T units would
always leave at least one silanol in the material leading
to further condensation reactions.

6. Autocorrelation in Signal-to-Noise
Determinations

Up to now the autocorrelation function has been ap-
plied over the whole range of the polymer spectrum to
understand polymer structure. However, in addition to
polymer structure it is also often used to calculate
moments of the molecular mass distribution (see
Appendix C). To do so it is important to find the low-in-
tensity oligomer peaks at the extrema of the molecular
mass distribution. To accomplish this consider the use of
the autocorrelation over only a part of the polymer
spectrum. (This is not the “partial” autocorrelation
function often discussed in time series analysis.) This
“windowed” autocorrelation, analogous to a windowed
FFT, is useful to determine where the signal has
returned to baseline, that is, where does the signal
devolve into the noise. This is crucial in the calculation
of molecular mass distributions (MMD) from mass
spectral data as the low and high mass oligomers at the
extremes of the distribution have a disproportionate
effect on the calculation. Since the thrust of the NIST
polymer mass spectrometry effort is to make such deter-
minations of MMD from mass spectral data it is of
primary importance to us.

Fig. 11. Mass autocorrelation of the data in Fig. 9. Labels indicate that the silsesquioxane repeat
unit only appears as a dimer (134 u) and not as a monomer (67 u) while the siloxane repeat unit
does appear as a monomer (74 u).

Table 1. Identification of peaks in the mass autocorrelation of the
copolymer resin using �n2T–mD�

n

m 0 1 2 3 4

0 0 u 134 u 268 u 402 u 536 u
1 74 u 60 u 194 u 328 u 463 u
2 148 u 14 u 120 u 254 u 389 u
3 222 u 88 u 46 u 180 u 315 u
4 296 u 162 u 28 u 106 u 240 u

9



Volume 107, Number 1, January–February 2002
Journal of Research of the National Institute of Standards and Technology

Figure 12 shows such a situation for polybutadiene
(PBD, repeat unit: [–CH2–CH = CH–CH2–]). We pro-
pose to use the autocorrelation function to tell us more
about where there is no signal in the noise. Let us say we
use an integration window of a width 8 to 10 times the
mass of the repeat unit and a maximum lag one half of
the window length. Then we can move the integration
window with increasing initial masses, mi, to higher and
higher values. There will be a mass mi where the corre-
lation coefficient at the repeat unit mass will not rise
above background. At this mi, we assume we have no
signal while below it, we take it that we have signal.
However, we must be careful about the baseline. If we
have not taken the baseline off correctly, we will still see
positive signal for the autocorrelation function not at the
repeat unit. In fact, the baseline alone should be smooth
signal between the repeat units with no peaks. Peaks
should only appear at the repeat units. If they appear at
other places at these high masses, we may suspect sig-
nificant loss of an important signal (or perhaps a repeat
unit present only at high mass).

In Fig. 13 we apply our window choice on real
polybutadiene data of Fig. 12 for about 10 repeat units
(a range about 500 u wide) for lags out to nearly 3 repeat
units starting each new window at 250 u increments
with windows moving from 4877 u to the high molecu-
lar mass tail of the distribution. We notice a repeat unit
in the window from the middle of the MMD at 54 u.
This is the polybutadiene repeat unit mass. Additionally
there are much weaker peaks at about 20 u and 34 u that

are due to fragments along the chain backbone. For
windows above mi of 5377 u, we see no repeat unit
signal at all. We then take our cut off of signal at 5627 u,
the start of the next window. One might expect the
autocorrelation function of a baseline of pure noise to be
zero but it is not. If the noisy baseline were offset by a
constant, the autocorrelation function would be unity.
The linear autocorrelation function indicates an essen-
tially constant baseline in time (see Appendix B).

In Fig. 14 we apply the same window width on the
same data with windows moving toward the low tail of
the distribution. Again, we notice a repeat unit in the
window taken from the middle of the MMD at 54 u as
well as much weaker peaks at about 20 u and 34 u. For
windows with masses above 2127 u, we see only a re-
peat unit signal. Below this we may see some signal.
Clearly here, the baseline signal is causing difficulty so
we have redrawn the baseline for this data and the auto-
correlation functions for windows starting at mass
1636 u are shown in Fig. 15. Once we draw a more
correct baseline (i.e., through the noise in the spectra),
the balancing of noise and the signal become clearer.
For the peaks at mass 54 u on window 1636 u to 2386 u
there are clearly peaks and some new peaks appear,
apparently the appearance of another repeating species
perhaps matrix clusters or silver cation clusters [17]. In
this particular polymer, the average mass of silver
(107.88 u), introduced as a cationizing agent, is about
the same as two polybutadiene repeat units, confusing
the issue somewhat.

Fig. 12. Matrix-assisted laser desorption/ionization time-of-flight mass spectrum from a poly-
butadiene of a molecular mass centered around 4100 u.
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Fig. 13. Mass autocorrelation of the data in Fig. 12 with windowing at the high mass edge of the
mass spectra. The mass in the legend refers to the mass at the low edge of the window.

Fig. 14. Autocorrelation function windowing at the low mass edge of the mass spectra. The
mass in the legend refers to the mass at the low edge of the window.
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7. Conclusion

We have shown that the autocorrelation function
applied to the mass spectra of synthetic polymers allows
one to more easily gain insight into the polymer single-
chain structure. This offers a tool for looking at
homopolymers with architectural changes like the
silsesquioxanes and at the structure of complex poly-
mers like the siloxane-silsesquioxane copolymer
presented. Finally, we have shown how the windowed
autocorrelation function can be used to separate signal
from noise.

8. Appendix A: Transforming From
Time to Mass When Using
Time-of-Flight Mass Separation

To obtain correctly S (mi ) from s (ti ), the mass-based
signal from the time-based signal, for the purpose of
autocorrelation both a multiplicative factor equivalent to
the Jacobean transform and subsequent interpolation are
needed. Recall that while the points in time are evenly
spaced conversion to mass places the data on a square-
root point spacing. The easiest and most convenient
method is to take the original data in time space and
convert it to mass space with no signal conversion
using a normal calibration program (this is what most
commercial data programs output). This data is then

interpolated onto equal mass intervals using a simple
function with nothing being done to the signal intensity
axis. The autocorrelation function is then taken on this
data. This is simple but not rigorously correct; however,
in our experience it gives a good representation and we
regularly use it as a first approximation. Furthermore,
this method will work with or without a subtracted
baseline off although as seen below there are some small
effects of the baseline of broadening of peaks.

A second more accurate method is to multiply these
interpolated signal points which are equally spaced on
the mass axis by dm/dt from the calibration curve [18].
Although this gives a correct signal it may give an
incorrect representation of the noise (it will multiply the
noise error by the factor dm/dt and will magnify any
early time baseline by the same factor). This method is
only rigorously correct if a baseline is pulled off the
data; however, it will determine the autocorrelation
function peaks correctly.

A third method is equivalent to the second in that it
represents the data correctly on the mass scale. The
protocol is as follows: go to the highest mass in the
spectrum and determine the �m between it and the next
closest mass, essentially

(�m )max mass = (dm /dt )max mass � �t (4)

where �t is the time interval of the digitizer and
(dm /dt )max mass is the calibrating derivative evaluated at

Fig. 15. Autocorrelation function windowing at the low mass edge of the mass spectra after redraw-
ing of the baseline. Compare to Fig. 12 where little signal is noticeable between the 1877 u window
and the 2377 u window. Even the lowest window starting at 1636 u going to 2136 u shows mass signal
at the repeat unit. It is mixed in with other repeats not identified yet. The mass in the legend refers
to the mass at the low edge of the window.
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the maximum mass in the spectrum. Then partial inte-
grals are taken on the data over some interval larger than
(�m )max mass. This is now viewed as the new data. Only
the issue of interpolation of the time data to obtain the
partial integrals is a problem with this technique.

The reader should note there is a loss of information
as one goes from equal-time-interval data to equal-
mass-interval data, due to the nature of the m � t 2 func-
tion. The integration or interpolation must be done with
�m larger than (�m )max mass, the mass difference for one
time unit at the highest mass considered. Otherwise, we
are interpolating into a region where there is no signal.

9. Appendix B. Effect of Some Simple
Model Baselines on the Mass
Autocorrelation Function

Assume that the signal for any synthetic polymer is
given by a sum of the signal from the baseline and a
signal from the molecular mass distribution (MMD) of
the polymer itself. We assume here as usual that the
contribution from the baseline is additive to the true
signal, then the total signal as received in time space,
ST(ti ), is:

ST(ti ) = Sb(ti ) + Sp(ti ) (5)

where Sb(ti ) is the signal from the baseline and Sp(ti ) is
the signal from the polymer. The baselines are added to
the data in time space. As we shall see there is an effect
of converting from time to mass space even for the
baseline.

We take for the signal of the polymer the simple
polyethylene oxide (PEO) spectrum given in Fig. 1 but
now in time space. We have carefully pulled the baseline
off before using it. This can be seen from Fig. 16 where
on the signal conversion to mass space from time space
using the partial integration method with no baseline
pull off we see the signal in mass space is also at zero.

Here we present three models for a baseline. These
signals are given in time space and are added to the PEO
signal in time space. Since the baseline naturally occurs
in time space, it seems most appropriate to offer a base-
line in time space and transform it to mass space.

The most naive baseline model is a constant offset in
time space,

Sb(ti ) = A (6)

where A is a constant independent of time. For the
calculation given we chose A = 100. Notice our maxi-
mum signal in Fig. 1 for the PEO is 800 so this is a
substantial baseline offset. It is our experience that this
is not unusual.

Our second chose is a baseline linearly decreasing in
time ti

Sb(ti ) = 2 � A � (Npoints –i )/Npoints (7)

where Npoints is the number of points in time space, i is
the index of the time ti and 2 was chosen to keep the
integral of this baseline signal identical to that of the
constant baseline model above.

Fig. 16. Transformation of mass axis with from equally-spaced points in time to equally-
spaced points in mass with no added baseline in time, with a constant added baseline in
time, with a linear added baseline in time, and with an exponential added baseline in time.
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The third model is a decreasing exponential baseline.
This is the one most commonly experienced in MALDI
TOF mass spectrometry and is thought to be a result of
matrix ions that are not energy focused. For this we
chose:

Sb(ti ) = 3 � exp(–3 � i /Npoints) (8)

where Npoints is the number of points in time space, i is
the index of the time ti and 3 was chosen to keep the
integral of the baseline signal identical to that of the
constant offset model (and is set by the choice of the
decay exponential as 3). Choice of the decay constant as
2 or smaller gave results close to that of the linear, as
would be expected.

In Fig. 16 we show the signal for the various baselines
converted to mass space. These show an effect of the
baseline on converting from time to mass space. As
would be expected partial integration over a varying
width of integral space as we go from high mass to low
mass over a constant window will lead us to not a con-
stant baseline in mass space for a constant time baseline
but one essentially linear in time. This is easily seen
from the figure: the linear-in-time baseline leads to an
apparent quadratic baseline in mass. For the exponential
baseline it is not clear what it should lead to upon con-
version to but most likely a modified exponential.

The autocorrelation function for these various choices
of baseline is shown in Fig. 17. What is clear is pulling
off the baseline gives one a much better representation
to study the autocorrelation function. In Fig. 18 we

expand the low region of the autocorrelation without
baseline and show we can see up to at least eight masses
of the isotope distribution. For the autocorrelation with
baseline when we expand that region we can see at best
six of these isotope regions. Thus even in the expanded
region the addition of a non-zero baseline blurs the
signal even when all significant figures are kept.

Finally we look at what the baseline does to the
moments of the MMD. In Table 2 we show the change
in the MMD moments as we change baseline. We notice
that this is a little unfair since not unexpectedly the total
area in the spectra with baselines is almost five times the
area in the spectra without. Still the effect is striking and
the lesson taken away is very important: leaving in
a constant baseline in time affects the Mw and Mz

moments significantly since these are dominated by the
higher masses in the spectrum. Quadratic and cubic
baseline functions contribute to increasing the higher
moments by 3 % to 7 %. By leaving in the linear and
exponential in time baselines, the quadratic and cubic
mass contributions are overwhelmed by the excess
contribution of the baseline at lower molecular masses.

Even if we choose a much smaller baseline the effect
is significant. For example choose a baseline offset of
A = 10 instead of the A = 100 signal units chosen in the
discussion above. Figure 19 shows that the spectra all
look quite similar. But the moments are affected
significantly as seen in Table 3. For the simple exponen-
tial decay of the baseline in time, we see effects on
Mn of 12 %.

Fig. 17. Autocorrelation function from equally-spaced points in mass space
with no added baseline in time, with a constant added baseline in time, with a
linear added baseline in time, and with an exponential added baseline in time.
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Fig. 18. Expanded view of the mass autocorrelation shown in Fig. 17. Notice
that 8 isotope peaks can be seen. This is derived from the observation that there
are 17 peaks total which is equal to 2 � 8 + 1.

Table 2. Computed MMD moments for various baselines with
A = 100 in Eqs. (6), (7), and (8)

Mn Mw Mz

(u) (u) (u)

Without baseline 1424 1447 1468
Constant baseline 1420 1504 1580
Linear baseline 1229 1290 1353
Exponential baseline 1174 1239 1313

Table 3. Computed MMD moments for various baselines with
A = 10 in Eqs. (6), (7), and (8)

Mn Mw Mz

(u) (u) (u)

Without baseline 1424 1447 1468
Constant baseline 1422 1486 1546
Linear baseline 1289 1343 1395
Exponential baseline 1254 1315 1375
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10. Appendix C: Mass Autocorrelation
Function as Estimated From the
Mass-Average MMD Rather Than
the Number-Average MMD

The normal autocorrelation function discussed in
earlier sections has been an autocorrelation function on
the number-average MMD as obtained from simply
the spectra corrected as discussed above. This is the
number-average MMD because under ideal circum-
stances we assume that the integrated area under any
peak is proportional to the number of n-mers at that
repeat unit. Another distribution commonly used in
polymer science is the mass-weighted-average molecu-
lar mass distribution. This is the fraction of the mass at
a given molecular mass. This is the MMD, which is
usually obtained by size-exclusion chromatography
using an ultraviolet or refractive index detector.

The autocorrelation function defined from this mass
MMD is

G (l ) = �{[f (mi )�mi ]�[f (mi+lm )�(mi+lm )]}/
�{[f (mi )�mi ]�[f(mi )�mi ]} (9)

where fi be the correctly normalized fraction for the
number-average MMD. We have used this in a window-
ing program described in Sec. 6 looking specifically at
the high mass region to see if weighting the distribution
by the mass would make one choose a different window

to consider in which the repeating mass started. Using
this distribution we found no change from Fig. 13.

Finally often in studies of the autocorrelation function
the mean value of the spectrum is pulled off the value at
a given i th n-mer. Although we might have done this
in our exploration of the baseline studies, there is no
intrinsic physical or chemical meaning to the mean
value of the number fractional spectrum. For a correctly
normalized mass-weighted-average MMD is the mean
value of mass, the Mn of the polymer and in considering
the autocorrelation function in Eq. (9) it may be worth
considering looking at it with Mn pulled off.
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