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Synopsis

For compressible materials, the mechanical response to a torsional defor(aagafficiently large

levels of deformationincludes the nonlinear effects of a compressive normal force along the axis
of the cylinder and a radial expansion of the cylinder, in addition to the expected torque response.
The National Institute of Standards and Technology torsional dilatomiBigran and McKenna,
(1990] has been used to measure simultaneously the torque, the axial normal force, and the volume
change in response to a torsional deformation. In stress-relaxation experiments with an epoxy
cylinder just below its glass transition temperature, the torque and normal force decay
monotonically, but the volume change associated with the torsion shows an extended relaxation
behavior with significant nonmonotonic decay at the lowest temperature investigated. The
measurements are modeled with a series solution for torsion of an elastic, compressible material
[Murnaghan(1951)]. The elastic solution is adapted for viscoelastic behavior by assuming that
isochronal data can be treated as equilibrium elastic data, following a suggestion of(R9dB).

© 2002 The Society of RheologyDOI: 10.1122/1.1475980

I. INTRODUCTION

The nonlinear mechanical behavior of polymeric glasses is a field of study that has
eluded complete understanding for a variety of reasons. For example, cooling an amor-
phous material below its glass transition tempera(ligg places it in a state that is not in
thermodynamic equilibrium. If the glass is then held at a temperature béjpwthe
structure of the material evolves slowly toward equilibrium. This evolution can be ob-
served in measurements of different properties of the material, such as the volume,
enthalpy, optical behavior, or the mechanical response of the mdtknabcs (1963;

Struik (1978; Kovacset al. (1979; Scherer(1986; McKenna(1989; Hodge (1994);
Mijovic et al. (1994]. In such aging experiments, the ability to make simultaneous mea-
surements on a single sample eliminates any questions of differences between samples or
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differences in thermal histories. The National Institute of Standards and Technology
(NIST) torsional dilatometefDuran and McKenn&l990; Santoreet al. (1991); McK-

ennaet al. (1994; 1995%; Schultheiszet al. (1995] can be used to make such simulta-
neous measurements of the torque, the axial normal force, and the change in volume of a
cylindrical sample in response to an applied twist and/or a change in temperature. These
capabilities have been very useful in comparing the evolution of the sample volume and
the mechanical response of glassy polymers in physical aging experiments. The current
work focuses, however, on a series of experiments using the NIST torsional dilatometer
that were performed on an epoxy glass that was aged into thermodynamic equilibrium
prior to performing the mechanical measurements.

In the present paper, we are interested in the nonlinear viscoelastic response of a
cylinder held at constant length and twisted to a fixed angle of twist. In particular, we
have observed an apparently anomalous nonmonotonic relaxation of the cylinder’s vol-
ume change, and we examine the possibility that this honmonotonic behavior can be
described within a viscoelastic extension of the Murnagh®51) series solution for the
torsion of a compressible elastic cylinder. The nonmonotonic volume change has not been
reported previously. The approach we take to model the deformation is to adapt the
finite-deformation analysis of Murnagh&h951) to isochronal viscoelastic behavior. This
is also new. The main question we address is whether the model can capture the differ-
ences in the observed behaviors using reasonable physical assumptions. The model is
successful to the extent that it suggests that the differences in the relaxation of the torque,
normal force, and volume change resulting from a torsional deformation are allowable
within the context of the theory, while the viscoelastic modulus functions involved are
well-behaved and relax monotonically. The nonmonotonic volume change results from
differences in the rate of relaxation of different modulus functions. Within the context of
finite deformation elasticity theory, the problem of torsion of a circular cylifdetube
has been investigated for both incompressible mateiiRildin (1948; Penn and Kears-
ley (1976] and compressible materidRivlin (1948; Murnaghan(1951); Green(1955;
Levinson (1972; Wack (1981, 198% Wu and van der Giessef1993; Wineman and
McKenna(1996]. Penn and Kearsle§1976 showed that, for an incompressible mate-
rial, measurements of the torque and normal force as a function of angle of twist were
sufficient to determine the derivatives of the strain energy function with respect to the
first two strain invariantgthe third invariant being a constant for incompressible mate-
rials). Their approach relied upon the fact that a cylinder made of an incompressible
material occupies the same space in both the undeformed and deformed configurations
when only torsion is involved. It was originally thought that the three measurements of
the torque, normal force, and volume charigadial expansionin the NIST torsional
dilatometer would be sufficient to determine the derivatives of the strain energy function
with respect to all three of the strain invariants for the case of elastic compressible
materials. However, Wineman and McKenfi®96 recently concluded that such a de-
termination was not possible. While the measurement of the volume change would iden-
tify the radial position of the outside surface of the cylinder, the radial displacement in
the interior of the cylinder would follow an unknown function that depends on the
material properties, so that the approach used by Penn and Ke&tSiég for the
incompressible material would not work. The measurements of the torque, normal force,
and volume change are therefore insufficient to determine directly the derivatives of the
strain energy function with respect to the strain invariants for a compressible material.
Wineman and McKenn&l996 suggest that one way to proceed would be to assume a
form for the strain energy functiofsuch as a polynomial in the strain invarignénd
determine the parameters in the function by a minimization of the difference between
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measured and calculated quantities. For the analysis in this paper, we have adopted the
truncated series expansion for the torsion of an isotropic, homogeneous, elastic, com-
pressible cylinder developed by Murnaghd®51). This choice leads to a polynomial
expansion of the strain energy function in terms of the strain invariants, similar to the
suggestion of Wineman and McKenifg996. Murnaghan’s formulation of the torsion
problem leads to a solution in terms of the Laowmstants. andu, and two higher-order
moduli denotedn andn. The three measurements of torque, normal force, and volume
change are sufficient to determipeandn uniquely, butx and m cannot be uniquely
determined. The problem is additionally complicated by the time-dependent nature of the
response to the twist. We follow Rivlifl956 in assuming that, for isochronal data
obtained from single-step stress relaxation experiments, the results of the elastic analysis
can be extended to the viscoelastic case by replacing the elastic modgu)im, andn

with functions of timet and temperaturd, indicated by (t,T), w(t,T), m(t,T) and

n(t,T). We assume that these modulus functions are monotonically decaying functions of
time, and that the shifts in the relaxation times have a common dependence on tempera-
ture. The adaptation of an elastic analysis to isochronal viscoelastic behavior using the
assumption of Rivlin(1956 was originally employed by McKenna and Zaga985 in
analyzing the torsion problem. In other work, Pesce and McKeili887) used the
incompressible solution to estimate the strain energy function for a compressible polymer
glass in order to go from torsional measurements to extension and compression deforma-
tion geometries.

In the experiments described in this paper and in other experiments with this epoxy
[Duran and McKenna1990; Santoreet al. (1991); McKenna et al. (1994, 1995
Schultheiszt al. (1995], the application of the torsional deformation has always led to
an increase in the sample volume, which then relaxes. A result from the aging experi-
ments indicates that the volume increase caused by the twist eventually relaxes to zero,
although the torque and normal force relax to nonzero rubbery modulus values. One
might anticipate this behavior, arguing that since the shear modulus decreases much more
than the bulk modulus, then at long times the polymer appears more like an incompress-
ible material. Within the context of the model based on the analysis of Murnaghan
(1951, however, the situation is slightly more complex, in that this behavior implies that
the long-term values of the modulus functions are related and combine to make the
volume change relax to zero.

While the experiments with epoxy in the NIST torsional dilatomgfeuran and
McKenna(1990; Santoreet al. (1991), McKennaet al. (1994, 199%, Schultheiszt al.

(1995] have consistently shown an increase in the sample volume in response to a twist,
other researchers have obtained different results on other materials tested in torsion using
slightly different boundary conditions. Waref al. (1982 report data for polgmethyl
methacrylatg polycarbonate, polyetrafluoroethylene and an acetal copolymer, tested

at room temperature under torsion at a constant angular rate. However, unlike our ex-
periments, the specimen length in those experiments was not constrained. All four poly-
mers tested by Wanet al. (1982, showed an increase in length and a decrease in radius
(as measured by dial gauge and an extensometer, respectitiyincreasing angle of

twist per unit length. The net volume increased for the acetal copolymer, but decreased
for the other three materials. Pied al. (1988 studied unplasticized palyinyl chloride)
apparently at room temperature using an apparatus similar to the one used for our ex-
periments, except that again the specimen was free to extend along its length. They also
found that the volume decreased upon imposition of a small torsional deformation, but as
the level of deformation increased, the volume began to increase back toward its initial
value. No significant stress relaxation or volume change was found for small deforma-
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tions, but at a strain of 14.8%, they indicate modest stress relaxation, and a volume shift
downward.{Such densification under an applied deformation well belyvhas also

been reported for polycarbondi®mithet al. (1988; Colucciet al. (1997].} Murnaghan

(1951 noted that his solution for the torsion of a cylinder would allow for either a
volume increase or a volume decrease, depending on the relative magnitude and sign of
the various moduli, and the response might depend on the boundary condition regarding
the freedom of the cylinder length to change. The range of behavior would also be
constrained by restrictions on the strain energy function, which would bound the moduli
[Wineman and McKenn&l996; Baker and Ericksei1954].

In this paper, we investigate the torque, normal force, and volume change using data
from experiments in which the material has been aged into equilibrium at three different
temperatures. We model the behavior using a viscoelastic extension of the elastic analysis
of Murnaghan(1951) within a framework that imposes the same time-temperature super-
position for all four modulus functions. This constraint is intended to ensure that the
strain energy function has a unique temperature dependence. The shear mddulys
can be calculated directly from the measured torque, and it is modeled very well using a
single stretched exponential function and time-temperature superposition. The higher-
order modulus functiom(t,T) can also be calculated directly from the measurements.
We assume a form fox(t,T) that is related tqu(t,T), and then investigate the calcu-
lated m(t,T). Each modulus function is modeled with a single stretched exponential
function incorporating time-temperature superposition using the same shift factors as
w(t,T). Much of the observed behavior can be captured with this restricted model, but
the results suggest that the higher-order modulus functions may not follow the same
time-temperature shift behavior agt,T), or that a secondary relaxation behavior is
present in the higher-order modulus functions, but does not appear in the shear modulus.
Without a separate measurement to decodyfteT) from m(t,T), however, this issue is
unresolved.

IIl. EXPERIMENT

The NIST torsional dilatometer is described in detail in the paper by Duran and
McKenna(1990. The material is a diglycidal ether of bisphenol-A epoxy, cured with a
flexible poly(propylene oxidg diamine with a molecular mass of 400 g/mol, giving a
nominal glass transition temperature of 42.4[i®e and McKenng1988]. Use of a
thermoset is intended to allow repeated experiments on the same sample. The epoxy and
curing agent were mixed, poured into a glass tube mold, and then degassed under
vacuum. The epoxy was cured at 100 °C for 24 h, and the sample was then bonded with
thin layers of a filled epoxy automotive adhesive between two stainless-steel end grips
aligned in V blocks on a machinist’s flat. We assume that the influence of the adhesive
bonding the specimen to the grips is negligible, since it is filled, has a much higher glass
transition than the sample, and occupies less than 1% of the volume of the sample. The
grips are 25.54 mm in diameter with a standard uncertainty of 0.01 mm. The test section
of the sample was turned on a lathe to a uniform diameter of 15.22 (stamdard
uncertainty 0.05 mm with a length of 115.1 mn(standard uncertainty 0.5 mnOutside
the test section was left a disk of epoxy approximately 1 mm thick at each end having the
same diameter as the grips; the radius of curvature of the fillet between the test section
and each end piece was specified to be 1.6 mm.

One specimen grip attaches to a torque and normal force transducer, and the other grip
attaches to a servo motor, which is used to apply a constant angle of twist for stress
relaxation experiments. The angle of twist per unit length applied in these experiments
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was 3.94 rad/m with a standard uncertainty of 0.05 rad/m. The shear strain varies linearly
with the radius, and this amount of twist leads to a shear strain of 0.(8@@dard
uncertainty 0.0004at the outer radius of the sample. The specimen was sealed into a
stainless-steel chamber, and the remainder of the chamber was first evacuated and then
filled with 586 g (standard uncertainty 1) gpf mercury. The dilatometer chamber is
connected to a vertical precision capillary, into which the mercury is free to flow. The
core of a linear variable differential transformer is attached to a(pwhyl methacry-

late) float that sits on top of the mercury in the capillary to measure the mercury level and
thus determine the change in the volume of the specimen in the dilatometer. The tem-
perature within the dilatometer chamber is controlled by circulating fluid from a constant-
temperature bath through copper coils wrapped around the chamber containing the
sample and the mercury. The temperature within the dilatometer chamber is monitored
using a platinum resistance thermometer. Over the course of an entire aging experiment
(several days to two weekghe standard uncertainty in the dilatometer temperature after
thermal equilibration is 0.01 °C. For the experiments investigated in this paper, which
occupy a much shorter time of a single twist stepveral hours to less than 2 daythe
standard uncertainty in the dilatometer temperature can be as small as 0.003°C. The
entire instrument, including the motor, the dilatometer chamber and the torque/normal
force cell, are also isolated from the room environment within an enclosure where the
temperature is controlled at 29.2 °@ith standard uncertainty 0.2 JCThe standard
uncertainty in the torque measurement is 0.05 N m; the standard uncertainty in the normal
force measurement is 1 N; and the standard uncertainty in the volume measurement is
2Xx10°° cn.

The experiments described here are single torsional stress relaxation experiments for
samples that were aged into equilibrium. For consistency, the three experiments analyzed
were all for samples equilibrated after up-jumps of approximately 2 °C, with final tem-
peratures of 37.93, 35.51, and 32.80 °C.

Following Kovacs(1963 and Kovacset al. (1979, the volume measurements in the
aging experiments were put into a normalized form given the symtiol), which is
the relative deviation of the volume from a reference value, with

VT Ve T)

(%t’T) - erf(T) , (1)

where V(t,T) is the current volume at timeé and temperaturd, and V,g(T) is the
reference volume at temperatufe This normalized form is retained for describing the
volume change caused by the torsional deformation, in which\¢ag@) is the volume

in the initial, undeformed reference configuration. Thé@,T) is effectively a volumet-

ric strain measure. Because the measurements of the response to the torsion in the present
paper were made after the sample had reached thermodynamic equilibrium, the reference
volumeV,g(T) is equal to the volume at thermodynamic equilibrivy,(T), which is

the quantity of interest in the aging experiments. With the cylinder ends constrained so
that it cannot change length(t, T) is directly related to the change in the cylinder radius
from its undeformed, reference value, afd,T) can therefore be used as a normalized
measure of the change in the outer radius of the cylinder for the deformed configuration
compared to the initial undeformed reference configuration. Radial constraints at the
grips are neglected in this initial analysis. The standard uncertainiftii) is governed

mainly by the standard uncertainty in the temperature. Based on the parameters of the
measurement system alone, the standard uncertainty in each measuren&nir pf
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FIG. 1. Normalized relaxation responses for torque, normal force, and volume change in response to a twist at
37.93 °C. Responses were normalized to vary from 0 to 1 by their maximum and minimum values.

would be on the order of ItP. Taking the standard uncertainty in the temperature during

a single twist as 0.003°C, a calculation of the propagation of uncertainties using the
density of mercury as a function of temperat{@RC Handbook1997] and the liquid
coefficient of thermal expansion of the epowy, = 5.9x 104 cm3/(cm® K) [Duran and
McKenna (1990], we obtain an estimate of the standard uncertainty(nhT) of 3

% 10~ . Over the course of an entire aging experiment, with the standard uncertainty in
the temperature equal to 0.01°C, the standard uncertain@/im10’5. This result is
somewhat better than the uncertainty estimated for the classical dilatometer measure-
ments of Kovacs and coworkefovacs (1963; Kovacset al. (1979; Struik (1997a,
1997h; McKennaet al. (1999].

Figures 1, 2, and 3 show torque, normal force, and volume responses to a twist at three
different temperatures. The data were normalized to lie between 0 and 1 using the maxi-
mum and minimum values, in order to show the different time dependence of each
response. The normal force is compressive, and taken as negative in the convention used
in this paper, so those data have actually been inverted. The volume has always been
observed to increase under torsion with this material. The choice of positive or negative
for the torque is arbitrary. The data in Fig. 1 are for a jump from 36.01 to 37.93 °C. The
data in Fig. 2 are for a jump from 33.52 to 35.51 °C. The data in Fig. 3 are for a jump
from 30.80 to 32.80°C. The origin for the time in Figs. 1-3 was taken to be halfway
between the last data point before the twist was applied and the data point at which the
torque reached its maximufZapas and Craff1965; Santoreet al. (1991)]. The rise
time for the torque averaged 0.28(standard uncertainty 0.05.sln magnitude, the
maximum torque is on the order of 15 N m, the maximum normal force is on the order of
80 N, and the maximura(t,T) is on the order of X 10™*. At 37.93 °C, the torque and
normal force relaxations are almost identical, but at the lower temperatures, the normal
force relaxation trails the torque relaxation somewhat. The volume response is consider-
ably
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different from the torque or normal force in all three sets of data, but the nonmonotonic
behavior of the volume response at 32.80 °C is the most striking. In chronological order,
the up-jump experiment to 35.51 °Eig. 2) was first, followed by the up-jump experi-
ment to 32.80 °Q(Fig. 3) and then the up-jump experiment to 37.93(g. 1). This
sequence indicates that the nonmonotonic behavior of the volume is only a function of
temperature, and is not an indication of a problem with the dilatometer. In subsequent
experiments moving to lower temperatures, the nonmonotonic volume response again
appeared. A model to describe this behavior is presented in the following section.

IIl. ANALYSIS OF THE TORSIONAL DEFORMATION: MURNAGHAN’S
SERIES SOLUTION

The nonlinear material behaviofaxial nhormal force and volume changeom the
three experiments shown in Figs. 1, 2, and 3 were investigated using an adaptation of the
truncated series expansion developed by Murnagdh@82) for the torsion of an isotro-
pic, homogeneous, elastic, compressible material. Murnaghan actually provides the solu-
tion for the case where the ends of the cylinder are free to move, but incorporating the
boundary condition fixing the length of the cylinder is straightforward. Murnaghan’s
notation for the problem is slightly different from that of Rivli{1948, which has
commonly been adopted by subsequent researchers for investigations of the torsion of
both incompressible and compressible matefi@een(1959; Levinson(1972; Penn
and Kearsley(1976; Wineman and McKennd1996; Pesce and McKenn&l997)].
Given the deformation gradient tendey the traditional formulation develops the analy-
sis in terms of the right Cauchy—Green strain terBos F'F [Spencer1980]. For an
isotropic, homogeneous material, the stress is a function only of the three invari&hts of
1, 12, andlg, with

I, =trC = \2+\3+)\5,
I, = 3[(trC)2—tr(C%] = NN+ NSNS +A2NS, ©
I3 = detC = AIA3\S,

where\ 1, N\, and\ g are the principal stretches associated with the deformation gradi-
ent tensoi. The Cauchy stress is denoted Byand can be calculated as

p [ow aw AW ]t
T=2—F—Il+—(11-C)+ —(I,1—-1,C+C? |F, )
PO (9'1 alz (9'3

whereW(l1,l5,13) is the strain energy potentidl,is the identity tensorp is the density

of the deformed body, angdg is the density of the undeformed bofi$pencer(1980].

Note thatp/pg = |g1’2. Also note that carrying out the tensor multiplications witand

FT recasts the stress tensor in terms of the left Cauchy—Green strain RansimceB

= FF' (also,B? = FCF' andB® = FC?F') [Spence(1980]; the invariants oB and

C are the same. The comparison with Murnaghan’s analysis is more straightforward using
Eq. (3). Murnaghan(1951) formulates the problem using a strain tengpe (C—1)/2.

The principal axes ofp andC are the same. If we denote the invariantsgodsJy, Jy,

and J3, we get very similar equations for the invariants and the Cauchy stress as a
function of #:
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Jp=1try,
3, = 3l p)® =t ()], @
J; = detn.
The Cauchy stress is then
T=2"F ﬂH—ﬂ(Jll—n)-i- ﬂ(le—Jlrﬁ— 7) |[FT. (5)
po |93y 4, 9d3

Murnaghan thus develops his solution in termgfl, J», andJsz, but the solution can
be transformed into the other notation very easily, because the two strain tensors have a
simple relation and the invariants are also related

J; = 3(1,-3),
Jp = 3(1,=21+3) = 3[(1,-3)-2(1,—3)],

J3 = 5(l3=lp+11—1) = 3[(I3-1)—(1,—3)+(1;—3)],

(6)
|1 = 2J1+3,

|2 = 4J2+4J1+3,
|3 = 8J3+4J2+2J1+1.

Rivlin (1953 used similar notation in a brief paper suggesting a formalism for solving
boundary value problems using Murnaghan’s second order elasticity theory. Murnaghan
expands the strain energy poteniié{J; ,J»,J3)as an infinite series in the argumedis

Jo, andJz. In the undeformed state = 0, and the series expansion can be understood
as an expansion in the componentsypfwhich are assumed to be small quantitidhe
strain invariants are such thd¢ contains only linear combinations of the components of
1, J, contains only second order combinations of the componenig ahdJs contains
only third order combinations of the componentsipfAfter expanding the strain energy
potential W(J1,J»,J3) in powers ofJq, Jp, andJz, terms are grouped which have
combinations of the components gfof the same order. For a deformation arising from
an initially stress-free state, Murnaghan gives the solutinmcated beyond third order
combinations of the components gj as

AM2u [+2m
W= 2 ‘]1_2/'LJ2+ 3

B-2myd,+nls, @)

where\ andu are the Lameonstants from linearized elasticity theory, dnan, andn

are additional elastic constants governing the nonlinear behavior. The first two terms in
Eq. (7) include components ofy to second order, and truncating the series at that point
corresponds to linearized elasticity theory. The next three terms include all combinations
of the invariants that include the componentsspfo third order, and Murnaghan trun-
cates his expansion at that point. For comparison, rewritihig Eq. (7) in terms of the
invariants ofC gives
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n Mon n AN+2u m , m
W=t 2l(l1=3)= | 5+ 2lle=3)F g (lg= D)+ —e =+ 2 1(11=3)"= 2 (11=3)(12=3)
[+2m 33 .
= (11—3) 8

using a form similar to that suggested by Wineman and McKe&d886. In the unde-
formed stateC = |, andl{ = 3,1, = 3, andl3 = 1, so this expansion is also in terms
of small quantities. Note that E¢B) is similar to Eq.(7) in that it includes all combina-
tions of components of up to the third order. However, E@8) also includes a term
with 1 alone, whereas in Murnaghan’s expansion, the term includjrglone describes
an initial hydrostatic stress that could be present, but is neglected here in assuming an
initially stress-free condition. More importantly, if one were to truncate the expansion in
Eq. (8) after terms including components 6f up to second order, one would obtain a
constitutive relation that is different from linearized elasticity theory, which includes
terms containing the moduli, «, m, andn. This result emphasizes the well-known fact
that a different choice of a strain measure and a subsequent expansion of the strain energy
in the invariants of that strain measure, along with a specific choice for truncation, can
lead to a different higher-order constitutive theory. This point was also demonstrated
recently by Hogef1999, who developed a similar expansion based on the Biot sEain
which can be related to the other strain measupeand C through the equatiory
= (C—1)/2 = E?/2+E. When the deformation is small enough, bejfandE (as well
as a number of other commonly used strain meag@aesequivalent, and the linearized
theory of elasticity is recovered in the different analyses.

Assuming an elastic response, the kinematic description for the problem of torsion of
a circular cylinder with no change of length allowed is specified by a mapping from the
reference configuration characterized IR;©,2) to the deformed configuration charac-
terized by ¢, 6,2), with

r =r(R),
6= 0+yzZ 9
z=17,

where ¢ is the angle of twist per unit lengtfWineman and McKenn#1996]. The
cylinder length is constant, and the angular displacement is a linear function of position
along the length of the cylinder. The outer surface of the cylinder is deriRged the
undeformed configuration, angy = r(Rg) in the deformed configuration. Solution of
the problem involves determining the functio(R) and the corresponding stress field
from the strain energy potential using the equations of equilibrium, with the boundary
conditions that the external surface of the cylinder is traction-free and the stress at the
center of the cylinder is bounded. Constraints on the radial expansion near the ends of the
cylinder imposed by the connection to the grips are neglected in the current analysis.
For this specific problem, Murnaghan’s analysis leads to solutions for the moment,
normal force and volume as functions of the Lagenstants\ and « and two of the
higher-order elastic constants,andn. The torsion problem is independent of the elastic
constantl. Also, it should be noted that, whereas the shear strain and associated torque
are linear iny, the volume change and normal force are at least second order effects with
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respect toy. In calculating the strain tensor, some of these components are multiplied
together, and Murnaghan truncates the strain tensor to include components only up to the
level of .

In the case of a viscoelastic material, the radial mapping now depends on time and
temperature, withr = r(R,t,T). For a single-step, isothermal stress relaxation experi-
ment, Rivlin (1956 has suggested that viscoelastic functions that depend on time and
temperature can be substituted for the elastic constants in the solution, Hiitifig,
w(t,T), m(t,T), andn(t,T). This approach was earlier used by McKenna and Zapas
(1985 to adapt an elastic analysis of the torsion problem to isochronal viscoelastic data.
This approach is equivalent to assuming that the deformation can be described by a
function that is separable in the time and space variables. Since we have only three
measurements, but four unknown functions, we must make an assumption about one of
the functions in order to proceed. We approximefé, T) using literature values for the
bulk modulus and Poisson’s ratio to relatét,T) to the measureg(t,T).

Murnaghan’s analysis leads to a specific form for the deformation i@ given by

r = R+ PR T),
0= 0O+yz, (10)
z=12,

where ¢ is the angle of twist per unit length, and the unknown functie(R,t, T) is
determined by solving the equations of equilibrium with the boundary condition that the
radial surface of the cylinder is stress free. In this case, the torsion problem is a mixed
boundary value problem, in that the deformation is specified at the ends of the cylinder,
but the stress is specified on the radial surface of the cylinder. A typical uniaxial stress
relaxation experiment with stress-free lateral surfaces is also a mixed boundary value
problem. The relation between the applied mom@mttorque M (t,T) and the shear
modulus is the same as that calculated using linear viscoelastic theory, and since we
assume that the torsional deformation is applied as a step change, the convolution integral
relating the moment and the shear modulus reduces to an algebraic relation, with

dy(d)
M(t,T) = =Rg A E = e = TROWtT)Y. (12)

Similarly, the higher-order modulus functioms(t,T) and n(t,T) are only convolved
with terms arising from the shear strdiat this level of approximationsom(t,T) and
n(t,T) also only appear in algebraic combinations. Two of the equations of equilibrium
are satisfied identically; the remaining equation is

J
€

FPo(RET) 100(RET) w(RET) J

J; [Mt=ET)+2u(t—£T)] e TR 2

R (12

3
2u(t,T)—Nt,T) —m(t,T)+ 2 n(t,T)

Assuming thatw(R,t,T) can be written in a form that is separable into a functiorRof
multiplying a function of time and temperature leads to the result
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4

where the first two terms represent the homogeneous solution to the differential equation
for (R,t,T) in Eq. (12). Since the stress must be bounde®at 0, po(t,T) = 0. The
problem involving torsion of a hollow tube would require all three terms, but also have an
additional stress-free boundary condition on the inner surface of the tube. EqUion
therefore reduces to an equation fay(t,T), which is used to simplify the equation for

the stress-free boundary condition on the outer surface of the cylinder. Let us define a
functionD(t,T) asD(t,T) = 2[r(Rg,t,T) —Rg]/Rg, which is twice the relative change

in the outer cylinder radius from its initial value &g, soD(t,T) = 2¢2R3[p1(t,T)
+p3(t,T)]. Since the cylinder length is constraindal(t, T)is also related to the mea-
sured volumetric strains(t,T), with D(t,T) = 2{[1+ 8(t,T)]¥2~1}. To first order,
D(t,T) = 4(t,T), and this approximation is very good sinéét,T) is on the order of
1074, Rewriting the condition that the radial boundary is stress free in ternyfT)

then gives

DET) PR
pr dé = 16 {—4[)\(t,T)+2,u,(t,T)+m(t,T)]

fot D\(t_ g,T) +M(t_ ng)]

+n(t,T)}. (14)

The resulting axial normal force averaged over the area of the ends of the cylinder is
denotedN(t,T) and is calculated as

DET) mPR
NET) = — 7R J; wt—ET) e dé+ 16R0n(t,T). (15)

Equations(11), (14), and(15) can be arranged to give equations for the modulus func-
tions in terms of the measured quantities, the momenttorqueg M(t,T), the axial
normal forceN(t,T), and the volumetric straid(t,T), which is related toD(t,T)

= 2{[(1+8(t, T)]¥?—1}:

2M(t,T)
ptT) = —-, (16
TRy
16 | N(t,T) [t dD(&,T)
nT) = wZ—RS 7-;—R>(2)+foﬂ(t_§’T)(9—§d§]’ 17)
mt,T) = 4 |NeD At gT)&D(g'T)df INET)+2u(t,T)] (18)
BN A T e

The relation in Eq(16) is the same as that found for linear theory, because the series
expansion has been truncated so that there are no additional terms that are odd functions
of . Equations(16) and (17) show thatu(t,T) andn(t,T) can be evaluated directly

from measured quantitigsvith some approximate method of evaluating the convolution
integra), but Eq.(18) shows that\ (t,T) andm(t,T) can only be expressed in terms of

one another. Equatiori44) and(15) suggest that the normal force and volumetric strain

are functions of more than one modulus function, which provides a mechanism for added
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complexity in the relaxation behavior of those quantities. Note that the moment in Egs.
(112) or (16) scales ang and the normal force in Eq15) scales asbzRg [sinceD(t,T)
scales asszg from Egs.(10) and(13)], which is the same scaling found by Penn and
Kearsley(1976 for incompressible materials.

We now choose a mathematical form for the modulus functions, and attempt to repro-
duce the measured behavior of the moment, axial normal force and volume change. The
momentM (t,T) [and thus the shear modulugt,T)] can be modeled very well by a
single stretched exponential function. Based on that result, all four of the modulus func-
tions were modeled using a single stretched exponential function. We also enforce a
condition that the relaxation time for each of the four modulus functions is modified by
a single temperature shift factafT) determined from the fit to the shear modulus data.
We also allow a small vertical shift factor for each modulus function, which is con-
strained to follow a similar behavior with temperatureadd). Specifically, the shear
modulus is written as

B
]"’Mm

where g, u, B, and r govern the relaxation at the reference temperature where
a(T) = 1 andb(T) = 1. We use 35.51 °C as the reference temperature. The temperature
range across the three experiments is small, so it is expected that bpaliT)dgand
log[b(T)] would be approximated well by linear functions of temperature. Therefore, in
fitting this function to the data for the shear modulus from the three experiments, we
further constrained the shift factors to have a similar temperature dependence, with
log[b(T)] = Clogla(T)], whereC is a constant.

We now assume a functional representation\f@r, T) based onu(t,T) and data from
the literature, and then examine the resulting behavior calculatesh(fioil). First, we
assume thai (t,T) follows a stretched exponential behavior that has the same time
dependence gs(t, T); in effect, we choos&(t,T) = kyu(t,T)+kob(T), wherek; and
ko, are constants to be determined &1d) is the vertical shift factor used in the model
for u(t,T) in Eq. (19). The functional form fo\ (t,T) is therefore given by:

t

m(t,T) = b(T) amr

: (19

[Mo_Moo]eXP{ -

t

K(I,T) = b(T) m

: (20

B
kl[Mo_,U«oc]eXP[ - } koo ko
whereug, ww, B, andr are the same parameters in Ef9). The constant&; andks,
are determined by matching the behavior\t,T) and w(t,T) to data for the bulk
modulus and Poisson’s ratio found in the literature. In the linearized theory of elasticity,
the Lameconstants\ and u are combined to calculate the bulk modulkis= (3\
+2u)/3 and Poisson’s rati@ = N/[2(A+ w)]. For time-dependent and temperature-
dependent viscoelastic behavior, the bulk modulus relation is only altered to include the
dependence on time and temperature, Wi, T) = [3\(t,T)+2u(t,T)]/3, but Pois-
son’s ratiov(t,T) is not simply equal ton(t,T)/{2[\(t,T)+ u(t,T)]}, as shown by
Tschoegl(1989. Using the viscoelastic correspondence principleder isothermal con-
ditions), Tschoegl demonstrates thatt, T)is the inverse Laplace transform of a ratio of
functions involving the Laplace transforms v{t,T) and w(t,T), so that it is not a
function that can be calculated in closed form, in general. However, Tschoegl also shows
that the simple algebraic relation holds in the limit of very short times, w{®,T)

= MO0, T)/{2[N(0,T)+u(0,T)]}, and also holds in the limit of very long times, with
v(0,T) = N(o0, T)/{2[A(°,T)+ u(,T)]}. We choose a value fop(0,T) to relate
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N(O,T) to u(0,T). We also choose a value for the ratio of the bulk modulus at infinite
times to the bulk modulus at zero tim(«,T)/K(0,T), to determinex(e,T). Data

from the literature indicate that(t,T) remains nearly constant with a value of 0.30
[Ferry (1961)], so we first assume tha{0,T) = 0.30. The literature also indicates that

the relative decrease in the bulk modulig, T) is much less than the relative decrease

in the shear modulug.(t,T) [Ferry (1961,198Q; McKinney and Belcher(1963]. We
assume that the relative change in the magnitude of the bulk modulus is the same as that
reported by McKinney and Belchdd963 for dynamic measurements on polinyl
acetatg at the midpoint of the temperature range they investigés@tC) and at atmo-
spheric pressure; the relevant data are shown in a figure that is also reproduced in the
later edition of the book by Ferry1980. For those dataK(«,50°C)/K(0,50°C)

= 0.59; McKinney and Belchef1963 suggest a linear dependence on temperature for
both K(e,T) andK(0,T), so thatK(e,T)/K(0,T) at atmospheric pressure varies from
0.64 to 0.56 as the temperature changes from 0 to 100 °C. With the choiag8,0j

= 0.30 andK (e, T)/K(0,T) = 0.59, the constants; andk, are calculated as

0.665u0+ 2 ko0

3(po— pa)
(21)

ko = (3 —kppmo,

where g and wo, are the parameters fit to the shear modulus data i(EY. Note that
by choosing\ (t,T) = kqu(t,T)+kyb(T), both v(0,T) andK(%,T)/K(0,T) are actu-
ally independent of temperature.

The calculated modulus functioms(t,T) andn(t,T) are also fit to equations of the
same form as Eq(19), using the sama(T) determined from the shear modulus data.
The higher-order modulus functioms(t,T) andn(t,T) are given by

Bm
m(t,T) = bm(T)<[mO—mx]exp{— }erw) (22

Bn
[ng— nm]exp[ - ] + nw). (23

The exponent®,, andBnand the characteristic relaxation timggand r, are parameters

fit to the data for each higher-order modulus function, as are the parameters governing the
initial values (mg and ng) and terminal valuesm., and n.) for each function. Each
modulus function is also allowed a different vertical shift fackbp,(T) and b,(T)],

which are again constrained to have temperature dependence similar to &{at) pko

that lodbm(T)] = Cylogla(T)] and lodgbn(T)] = C,logla(T)]. The constantC, Cy,,

andC,, were all allowed to differ in the current work.

The convolution integrals in Eq§l7) and(18) are approximated as summations over
step changes iB(t,T) [calculated from the measured volumetric stréfb, T) ], with the
time-shifted moduli evaluated using the functions given in Ef@). and(20). We assume
that the step fronD; to D;; takes place at the midpoint of the interval betwé¢eand
ti+1. The first step fronDg = 0 to D4 is applied att = 0, since the time origin has
been specified to lie at the midpoint of the step during which the twist is applied, as noted
earlier. The convolution integral in EGL7) up to a timety therefore takes the form

t
ammy

t

n(th) = bn(T) a(T)T
n
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FIG. 4. Symbols are the shear modulugt, T) for experiments at 32.80, 35.51, and 37.93 °C, calculated using
Eq. (16). Solid lines indicate the model in E¢L9), with the calculated model parameters listed in Table I.

k
D(ET)
J; kM(t—éT) Py dé ~ M(tk’T)Dl(T)"'iZz M

[Di(T)—Dj4+1(T)]
(24)

t—

ti+t;
i I+1),T
2

with the convolution integral in Eq18) evaluated similarly. This process can be inverted
to calculateD(t,T) if the value of the convolution integral is known at each tialong
with the functional representation @i(t,T). Thus, if N(t,T), w«(t,T), m(t,T), and
n(t,T) are known,D(t,T) can be calculated using E(L4), and thenN(t,T) calculated
using Eq.(15).

IV. RESULTS AND DISCUSSION

Data for the shear modulug(t,T) are plotted in Fig. 4, as calculated from the
measured momemd (t,T) using Eq.(16) with ¢ = 3.94rad/m andRg = 15.22 mm. The
data come from experiments at 37.93, 35.51, and 32.80 °C. The standard uncertainty in
m(t,T) is calculated using the propagation of uncertainties to be 0.002+GPa
(0.03)u(t,T). The model from Eq(19) is also shown in the figure as the solid lines, and
it can be seen that the agreement with the data is very good. The calculated model
parameters are listed in Table I. DiMarzio and Yald§97 have recently presented a
theory suggesting that the time-temperature shift factor at equilibrium below the glass
transition should follow an Arrhenius relation. The shift facédi) can be fit very well
with an Arrhenius equation, giving an activation energyd¢rt) of 836 kJ/mol(standard
uncertainty 46 kJ/mgl O’Connell and McKennd1999 investigated the theory of Di-
Marzio and Yang(1997 using a polycarbonate aged into equilibrium below the glass
transition temperature and found the activation energyafdr) of the polycarbonate to
be 958 kJ/mol. Over this small temperature range, the log of the shift factors are equally
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TABLE I. Parameters for(t,T) in Eq. (19).

Standard
Parameter Value uncertainty

o 0.7888 GPa 0.0022 GPa
Moo 0.0768 GPa 0.0005 GPa
B 0.3067 0.0013
T 32.39s 0.36s
a(32.80 C) 23.00 0.28
a(35.51C) 1
a(37.93C) 0.1030 0.0006
b(32.80 C) 1.125 0.002
b(35.51 C) 1 .
b(37.93 C) 0.918 0.001
Root-mean-square difference 0.002 56 GPa

between data and mode&bPa

well represented as linear functions Bf with logfa(T)] = (—0.459 K~ 1)(T—Tg) with
standard uncertainty in the slope of 0.027 X and logb(T)]
= (—0.0173 K 1(T—TR) with standard uncertainty in the slope of 0.0010K Tg is
the reference temperature of 35.51 °C.

The function\ (t,T) is specified by Eqs.20) and(21), along with the parameters for
w(t,T) given in Table I. The constants; andk, are calculated to bk; = 0.318 and
ko = 0.933 GPa. The standard uncertainty Nft,T) is assumed to bé&; times the
standard uncertainty ip(t,T).

The choices made for the description »ft, T) result in a Poisson’s ratio that in-
creases steadily with time from(0,T) = 0.30 tov(,T) = 0.46, independent of the
temperature. This behavior is consistent with experimental results in the liteféfine-
man and RajagopdR000].

The negative of the higher-order modulus functidi, T) calculated using Eq17) is
plotted as symbols in Fig. 5, along with solid lines that are fit to the model in(Z3).

The parameters fit to the data foft, T) are listed in Table Il. It can be seen thHt,T)

is a monotonic, negative function that is about one order of magnitude larger than
w(t,T). Both terms in Eq(17) are important, especially at short times, where they are of
similar magnitude. The standard uncertainty ri(t,T) is calculated to be 0.1 GPa
—(0.04)n(t,T).

The function chosen fax(t,T) was input to Eq(18) along with the experimental data
to calculate the other higher-order modulus functioft,T). The negative of that func-
tion is plotted in Fig. 6, and it can be seen tmatt,T) is also a monotonic, negative
function that is about one order of magnitude larger tpdh T), similar ton(t,T). As
with n(t,T), all of the terms in Eq(19) make contributions of similar magnitude, espe-
cially at shorter times. The standard uncertaintymi(t,T) is calculated to be 0.1 GPa
—(0.02)m(t,T). These data fom(t,T)were fit twice, first fitting all the data without
weighting, and then weighting the data at 32.80 °C between 10 afsl thOhave one
tenth the influence of the other data, so as to lessen the influence of the hump in that
curve. The parameters for the unweighted fit are listed in Table Ill, and the parameters for
the weighted fit are listed in Table IV. The difference between the two curves is not very
great in this plot ofm(t,T), but the difference is greatly magnified in the subsequent
calculation of the volumetric strain, as shown later. The weighted fit captures all of the
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FIG. 5. Symbols are the negative of the higher-order modulus funct{®yT) calculated using Eq17) for the
experiments at 32.80, 35.51, and 37.93 °C. Solid lines indicate the model {@3qwith the calculated model
parameters listed in Table II.

behavior at the two higher temperatures better, and also captures the initial part of the
relaxation at all three temperatures better. The unweighted fit is strongly influenced by the
nonmonotonic volume relaxation behavior at 32.80°C, which is not apparent at the
higher temperatures. The relaxation behavior at 32.80 °C might be evidence of an addi-
tional relaxation mechanisfiRead(1992; Perezet al. (1999], but this calculation for
m(t,T) is somewhat exploratory without a direct measurement(ofT). The effects of

some different choices for(t,T) onm(t,T) were not very great, as discussed later. Also,
note that the evidence for an additional relaxation mechanism appears only in the normal
force and volume change, which are nonlinear responses to the torsion. The shear modu-
lus can be superposed quite well at all temperatures. No evidenceBomachanism
[Read(1992; Perezet al. (1999 ] was reported in earlier investigations with this material

TABLE Il. Parameters fon(t,T) in Eq. (23).

Standard
Parameter Value uncertainty

no (GPa —7.620 GPa 0.096 GPa
n.. (GPa —0.834 GPa 0.023 GPa
Bn 0.2368 0.0046
Tn 33.1s 18s
bn(32.80°C) 1.038 0.003
bn(35.51°C) 1
bn(37.93°C) 0.973 0.002
rms difference between 0.104 GPa

data and model
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FIG. 6. Symbols are the negative of the higher-order modulus functi@inT) calculated using Eq18) for the
experiments at 32.80, 35.51, and 37.93 °C. Solid lines are fit to the model i@Bquith all data having the

same weight; the calculated model parameters for this case are listed in Table Ill. Dashed lines are fit to the
model in Eq.(22) with the data at 32.80 °C between 10 and S0weighted to have one tenth the influence of

the other data; the calculated model parameters for this case are listed in Table IV.

[Duran and McKenna1990; Santoreet al. (1991); McKenna et al. (1994, 1995
Schultheiszet al. (1995, Lee and McKennd1988] using the torsional dilatometer or
other types of experiments. This is consistent with the superposability of the shear modu-
lus measured in the present series of experiments. Lee and McK&®88 performed
stress relaxation experiments with this epoxy in uniaxial tension at a strain of 0.0025 and
found no evidence of @ mechanism. However, the relaxation behavior of the uniaxial
Young's modulus should be governed largely by the relaxation behavior of the shear
modulus component, which shows no evidence of a second relaxation mechanism in this
investigation. In addition, nonlinear material behavior such as the normal force and
volume change in the torsion experiments could be imperceptible at a strain level of

TABLE Ill. Parameters for unweighted fit ai(t,T) in Eq. (22).

Standard
Parameter Value uncertainty

mo —6.382 GPa 0.037 GPa
1) —1.864 GPa 0.017 GPa
Bm 0.4106 0.0066
Tm 132.6s 3.6s
bm(32.80°C) 1.217 0.003
bm(35.51°C) 1
bm(37.93°C) 0.868 0.001
rms difference between 0.0939 GPa

data and model
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TABLE IV. Parameters for weighted fit ofi(t,T) in Eq. (22).

Standard
Parameter Value uncertainty

mp —6.876 GPa 0.035 GPa
Mo —1.814 GPa 0.011 GPa
Bm 0.3308 0.0039
m 89.6 s 22s
bm(32.80 °C) 1.170 0.002
bm(35.51°C) 1
bm(37.93°C) 0.893 0.001
Weighted rms difference 0.0544 GPa
between data and model
Unweighted rms difference 0.139 GPa

between data and model

0.0025. The previous work with the torsional dilatometer did not extend to modeling the
normal force and volume change associated with the torfuran and McKenna
(1990; Santoreet al. (1991); McKennaet al. (1994, 1995 Schultheiszet al. (1995].

Using the functional representations fo(t,T), w(t,T), m(t,T), andn(t,T) given in
Egs.(19), (20), (22), and(23), along with the parameters in Tables I-IV, predictions of
the moment, the normal force and the volumetric strain can be calculated through Egs.
(1), (14), and(15). Figure 4 represents the comparison between the experimental data
and the model for the momefor torque, and the agreement between experiment and
model is very good. The experimental data for the normal force and the volumetric strain
along with the corresponding model predictions are compared in Figs. 7 and 8. Both the
weighted and unweighted fits fon(t,T) have been used to calculate model predictions.
The normal force is governed primarily by(t,T), and so the difference between the
weighted and unweighted model predictions is small. Most of the differences between the
model and the experimental data for the normal force mirrors the differences between the
calculatedn(t,T) and the fit ton(t,T), which might be reduced by adding more terms to
improve the fit. Using a sum of exponentials instead of a single stretched exponential
would allow for more complexity in the function, but would require a much larger
number of parameters. The normalized volume changét, T) = [V(t,T)
—Vie(T) 1/ Vie(T) is governed primarily by the functiom(t,T), as can be seen by the
differences between the weighted and unweighted models in Fig. 8. The weighted model
matches the experiments well at 35.51 and 37.93 °C, but cannot fit the peak at 32.80 °C.
The unweighted model captures some aspect of the peak in the volume response at
32.80 °C, but reduces the agreement with the experiment in other areas. Again, the single
stretched exponential function is fairly restrictive, and a function with more parameters
might be more successful in modeling the data. However, the good agreement at the
higher temperatures for the weighted model again suggests that a separate mechanism
could be acting at 32.80 °C.

An alternative method for looking at the time-temperature behavior of the nonlinear
response is through direct superposition of the normal force measurements in Fig. 7
(clearly the volume responses in Fig. 8 cannot be superpoSegerposing the normal
force allows for calculation of a temperature shift facgi(T) and a vertical shift factor
bne(T). Fitting anpe(T) to an Arrhenius equation gives an activation energy of 934
kJ/mol (standard uncertainty 90 kJ/mplor as a linear function off, loglang(T)]
= (—0.512K 1(T—TR) with standard uncertainty in the slope of 0.052 K T is
the reference temperature of 35.51 °C. The multiplicative vertical shift fag{e(T) was
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FIG. 7. Symbols are the measured data for the axial normal force for the experiments at 32.80, 35.51, and
37.93°C. The lines are the corresponding model predictions calculated from(Esand (15) using the
functions for\(t,T), w(t,T), m(t,T), andn(t,T) given in Egs.(19), (20), (22), and(23). Solid lines use the
unweighted fit form(t,T) (parameters in Table N dashed lines use the weighted fit faft, T) (parameters in

Table IV).

found to be lofbne(T)] = (—0.0112 I(l)(T—TR) with standard uncertainty in the
slope of 0.0011 K 1. The time-temperature shift factor for the normal force has a some-
what greater dependence on the temperature than that for the shear mo@ul)s This
result is consistent with the shift of the normal force relaxation to later tiagscom-
pared to the torgyewith decreasing temperature, as seen in Figs. 1-3.

The key to the extended relaxation and honmonotonic behavior for volumetric strain
S(t,T) within the context of this model is the longer time scale and broader spectrum of
m(t,T)as compared ta(t,T) andu(t,T). In order to match the relaxation of the higher-
order modulus functiong—4m(t,T)+n(t,T) ] that appear on the right-hand side of Eq.
(14), the relaxation of5(t,T) [ =~ D(t,T) in the equatiohmust be slowed or reversed to
affect the convolution witHA(t,T)+ «(t,T)] on the left-hand side in the appropriate
way. Results from an experiment using only a single twist step suggest that the volume
change caused by the torsion dissipates entirely at long times, meaning( tthigt will
eventually approach zero. This behavior might be expected, since the shear modulus
decreases much more than the bulk modulus, so that at long times the polymer responds
more like an incompressible material. For the parameters used to m¢ddl) and
w(t,T), Poisson’s ratio at long times approach€s,T) = 0.46, independent of tem-
perature. Within the context of Murnaghan’s analysis, however, this result implies that the
terminal values of the modulus functions are related, so that the quéntdy\ (,T)
+2u(0, T)+m(e,T)]+n(,T)} should also approach zero. This condition was not
enforced here. The choice we have made X¢t,T) is representative of the general
behavior of polymers, but we also briefly examined the influence of different choices for
N\ (t,T) on the resulting calculation fam(t,T) [Schultheisz and McKenné999]. We
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FIG. 8. Symbols are the measured data &t,T) = [V(t,T) — V,ef(T)1/V e T) for the experiments at 32.80,
35.51, and 37.93 °C. The lines are the corresponding model predictions calculated frqd¥)Egsing the

functions for\(t,T), w(t,T), m(t,T), andn(t,T) given in Egs.(19), (20), (22), and(23). Solid lines use the
unweighted fit form(t,T) (parameters in Table ij dashed lines use the weighted fit foft, T) (parameters in
Table V).

investigated two forms forA(t,T): first, A = constant, and second\(t,T)

= Cu(t,T), with C a constant. The constant in either case was determined by specify-
ing Poisson’s ratio at time= 0, which was also used in definindt, T) in Egs.(20) and

(21). These two choices represent rough limits on the expected behawi¢t,d?). In the

first case, withh = constant, Poisson’s ratio is a slightly increasing function of time and
the relative decrease in the bulk modulus is minimized; this case is equivalent to assum-
ing that the relaxation behavior of lies outside the time of the measurements. In the
second case, with(t,T) = Cu(t,T), Poisson’s ratio is nearly constant, and the relative
change in the bulk modulus is equal to the relative change in the shear medulds,

since the bulk modulus is then also a multiplerdft, T). For either of these limit cases,
m(t, T) is still found to be a monotonic function of time, which is negative and about an
order of magnitude larger than(t, T), similar to the result in Fig. 6. The most significant
difference between these limit cases is that the magnitude of the relaxatioft,d)
during the time of the experiments changes by approximately one decade, which leads to
a change of similar magnitude in the terminal behaviom¢f, T). The choice foln (t,T)

in the present paper lies between the two limit cases. Changing the magnit(ie Of

(by choosing a different value of Poisson’s ratid at 0) would lead to a corresponding
shift in the magnitude ofm(t,T). Shifting the characteristic relaxation timeft,T) by

one or two decades either way also does not have a significant impact(tom).
Conversely, assuming a behavior foft, T) to calculatex (t,T) appears to be an unstable
process in that small changesn(t,T) can cause large, physically unreasonable results
for A (t,T).
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It does not appear to be possible to determifieT) andm(t,T) unambiguously from
the torsional deformation alone, such as by mapping out the variations in the measure-
ments as functions of strain level and/or cylinder radius. A separate test in a different
geometry could be used to evaluate the different modulus functions and validate the
model. A simple shear test would lead to equations that involve the same four modulus
functionsn (t,T), w(t,T), m(t,T), andn(t,T), but in different combinations. A uniaxial
stress relaxation test of the cylinder in which the axial strain was imposed and the axial
stress and the transverse strains were meadiimedonjunction with the torsion test
would provide two equations in addition to Eq46), (17), and(18), giving five equa-
tions involving the five modulus functions that arise from Murnaghan’s analyéisT),

m(t,T), I(t,T), m(t,T), andn(t,T). It is not possible to perform such a test in the
torsional dilatometer, so it would be important to ensure that the materials and thermal
histories for the different tests matched closely.

For simple shear of a sample where the lateral faces are free to expand or contract, the
model predicts behavior similar to that found in the torsional deformation. The shear
stress would be the same as in the linearized theory, the normal stress would relax on a
time scale similar to the shear stress, and the volume change would demonstrate ex-
tended, nonmonotonic relaxation. Similarly, for torsion of a cylinder in which the ends
are free to move, the net volumetric strain is predicted to be nearly the same as for the
case where the ends are fixed. In this situation, the axial strain is predicted to be positive
and nearly constant with time, while the radial strain would be initially close to zero but
increasingly negative with time until it offsets the axial strain.

Our findings that botim(t,T) andn(t,T) are negative and about an order of magni-
tude larger tharu(t,T) are consistent with experimental results of Bridgnia848 as
examined by Murnaghafil9521) within the context of his theory. Bridgma(1948 in-
vestigated the hydrostatic compression of the metal sodium. For those data, Murnaghan
calculated that the parameter (On) was negative and approximately 190 times larger in
magnitude than (8+2u), wherel is the third of the higher-order elastic constants in the
theory, which does not play a role in the case of torsional deformation. One might expect
that these higher-order parameters must be larger than thé tamséants because they
multiply the strains raised to the second power to give stresses, with the strains being
small quantities within the range of applicability of Murnaghan’s formulation.

In the torsion problem, the magnitude of the strain is governedgt,lihe angle of twist
per unit length of the cylinder, and from Ed41), (14), and(15), it can be seen that the
moment only includes a term linear i and the normal force and radial expansion
include only terms iny?. The behavior that can be described by the theory is thus limited
by truncating the series solutions to terms of order lower ménThe series could be
extended to include additional terms to capture nonlinearity in the moment with increas-
ing . Earlier work by Duran and McKenn@990 suggests that the strain level used for
the testing in this report is still in the regime where the torque is a nearly linear function
of the strain, so the single term in the shear modulus is sufficient to describe the torque
response. The momeM is an odd function ofy, soM would include only odd powers
of ¢, while the normal force and radial expansion are even functions @ind so would
include only even powers of. Extending the series to terms of ordfcsr would allow for
nonlinearity in the moment, but would introduce four additional parameters in Mur-
naghan’s solution. Similarly, extending the series to terms of ogdewould allow for
more flexibility in describing the normal force and radial expansion, but would introduce
another five parameters. This procedure might be feasible, given sufficient data on the
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torque, normal force and volume change as a functlorbut evaluating all the new
parameters separately would be impossible without other experiments in addition to the
torsion tests.

For the experiments reported in the present paper, the analysis of the nonlinear re-
sponse to the torsional deformation may be complicated by the effects of the temperature
jumps, which were used to investigate the relation between volume recovery and physical
aging. More accurate measurements of the material response to the torsion could be made
by first allowing the sample to reach thermal equilibrigamd possibly thermodynamic
equilibrium) before making the connection between the sample grip and the motor, as
was done in an earlier investigation with the torsional dilatomjgdeiran and McKenna
(1990]. The scaling of the calculated material properties for the present model could also
be more thoroughly investigated by varying the angle of twist per unit legigtivhich
has also been done in previous experim¢bBigran and McKenn#1990; Santoreet al.
(1991)]. The previous studies used different methods of analyzing the[Bat@n and
McKenna(1990; Santoreet al. (1991); Waldronet al. (1995].

V. CONCLUSIONS

The NIST torsional dilatometer has been used to make simultaneous measurements of
the torque, axial normal force, and volume change in response to a torsional deformation
of an epoxy cylinder that was aged into equilibrium at temperatures approximately
5-10°C below the nominal glass transition temperature. The range of observed relax-
ation behaviors is quite rich. In response to the torsional deformation, the torque and axial
normal force behaved as expected, decaying monotonically over time, but the volume
change displayed an extended relaxation that varies with temperature and shows a sig-
nificant nonmonotonic decay at the lowest temperature investigated. This nonmonotonic
volume change has not been reported previously.

We modified Murnaghan’$1951) series expansion solution for torsion of compress-
ible materials in two ways. First, we extended the solution to torsion of a cylinder with
fixed ends. More importantly, we followed the suggestion of Ri{i856 that isochronal
data from stress relaxation experiments can be treated as elastic data. We constructed
viscoelastic forms for the Murnaghan nonlinear modulus terms.

Our results demonstrate that, upon using classical concepts such as time-temperature
superposition, and assuming that the modulus functions in the Murnaghan model are
monotonic functions in time, we can reproduce qualitatively the nonmonotonic nature of
the volume response in torsion observed in the epoxy at the lowest measurement tem-
perature. While this result does not “explain” the mechanism of the nonmonotonic vol-
ume relaxation, it moves the observation to a level of the nature of the continuum
relaxation functions.

Finally, we suggest that further investigation is required to provide a quantitative
description of the observed results. This implies the need for more complete models for
compressible material viscoelasticity than are currently available as well as more experi-
mentation in the NIST torsional dilatometer that is combined with experiments in other
geometries of deformation such as uniaxial extension with direct measurement of the
lateral strains.
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