
is
se.

lume
oxy
ay
tion
he
erial
at

as
or-

b-
me,

a-
es or
Nonlinear viscoelastic analysis of the torque, axial
normal force, and volume change measured

simultaneously in the National Institute of Standards
and Technology torsional dilatometer

Carl R. Schultheisza)

Polymers Division, National Institute of Standards and Technology, 100 Bureau
Drive, Stop 8544, Gaithersburg, Maryland 20899-8544

Gregory B. McKennab)

Department of Chemical Engineering, Texas Tech University, P.O. Box 43121,
Lubbock, Texas 79409-3121

(Received 18 September 2001; final revision received 1 March 2002)

Synopsis

For compressible materials, the mechanical response to a torsional deformation~at sufficiently large
levels of deformation! includes the nonlinear effects of a compressive normal force along the ax
of the cylinder and a radial expansion of the cylinder, in addition to the expected torque respon
The National Institute of Standards and Technology torsional dilatometer@Duran and McKenna,
~1990!# has been used to measure simultaneously the torque, the axial normal force, and the vo
change in response to a torsional deformation. In stress-relaxation experiments with an ep
cylinder just below its glass transition temperature, the torque and normal force dec
monotonically, but the volume change associated with the torsion shows an extended relaxa
behavior with significant nonmonotonic decay at the lowest temperature investigated. T
measurements are modeled with a series solution for torsion of an elastic, compressible mat
@Murnaghan~1951!#. The elastic solution is adapted for viscoelastic behavior by assuming th
isochronal data can be treated as equilibrium elastic data, following a suggestion of Rivlin~1956!.
© 2002 The Society of Rheology.@DOI: 10.1122/1.1475980#

I. INTRODUCTION

The nonlinear mechanical behavior of polymeric glasses is a field of study that h
eluded complete understanding for a variety of reasons. For example, cooling an am
phous material below its glass transition temperature~Tg! places it in a state that is not in
thermodynamic equilibrium. If the glass is then held at a temperature belowTg , the
structure of the material evolves slowly toward equilibrium. This evolution can be o
served in measurements of different properties of the material, such as the volu
enthalpy, optical behavior, or the mechanical response of the material@Kovacs ~1963!;
Struik ~1978!; Kovacset al. ~1979!; Scherer~1986!; McKenna ~1989!; Hodge ~1994!;
Mijovic et al. ~1994!#. In such aging experiments, the ability to make simultaneous me
surements on a single sample eliminates any questions of differences between sampl
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b!Author to whom correspondence should be addressed; electronic mail: greg.mckenna@coe.ttu.edu
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902 C. R. SCHULTHEISZ AND G. B. MCKENNA
differences in thermal histories. The National Institute of Standards and Technolo
~NIST! torsional dilatometer@Duran and McKenna~1990!; Santoreet al. ~1991!; McK-
ennaet al. ~1994; 1995!; Schultheiszet al. ~1995!# can be used to make such simulta-
neous measurements of the torque, the axial normal force, and the change in volume
cylindrical sample in response to an applied twist and/or a change in temperature. Th
capabilities have been very useful in comparing the evolution of the sample volume a
the mechanical response of glassy polymers in physical aging experiments. The cur
work focuses, however, on a series of experiments using the NIST torsional dilatome
that were performed on an epoxy glass that was aged into thermodynamic equilibri
prior to performing the mechanical measurements.

In the present paper, we are interested in the nonlinear viscoelastic response o
cylinder held at constant length and twisted to a fixed angle of twist. In particular, w
have observed an apparently anomalous nonmonotonic relaxation of the cylinder’s v
ume change, and we examine the possibility that this nonmonotonic behavior can
described within a viscoelastic extension of the Murnaghan~1951! series solution for the
torsion of a compressible elastic cylinder. The nonmonotonic volume change has not b
reported previously. The approach we take to model the deformation is to adapt
finite-deformation analysis of Murnaghan~1951! to isochronal viscoelastic behavior. This
is also new. The main question we address is whether the model can capture the dif
ences in the observed behaviors using reasonable physical assumptions. The mod
successful to the extent that it suggests that the differences in the relaxation of the torq
normal force, and volume change resulting from a torsional deformation are allowab
within the context of the theory, while the viscoelastic modulus functions involved ar
well-behaved and relax monotonically. The nonmonotonic volume change results fro
differences in the rate of relaxation of different modulus functions. Within the context o
finite deformation elasticity theory, the problem of torsion of a circular cylinder~or tube!
has been investigated for both incompressible materials@Rivlin ~1948!; Penn and Kears-
ley ~1976!# and compressible materials@Rivlin ~1948!; Murnaghan~1951!; Green~1955!;
Levinson ~1972!; Wack ~1981, 1989!; Wu and van der Giessen~1993!; Wineman and
McKenna~1996!#. Penn and Kearsley~1976! showed that, for an incompressible mate-
rial, measurements of the torque and normal force as a function of angle of twist we
sufficient to determine the derivatives of the strain energy function with respect to t
first two strain invariants~the third invariant being a constant for incompressible mate
rials!. Their approach relied upon the fact that a cylinder made of an incompressib
material occupies the same space in both the undeformed and deformed configurat
when only torsion is involved. It was originally thought that the three measurements
the torque, normal force, and volume change~radial expansion! in the NIST torsional
dilatometer would be sufficient to determine the derivatives of the strain energy functi
with respect to all three of the strain invariants for the case of elastic compressib
materials. However, Wineman and McKenna~1996! recently concluded that such a de-
termination was not possible. While the measurement of the volume change would id
tify the radial position of the outside surface of the cylinder, the radial displacement
the interior of the cylinder would follow an unknown function that depends on th
material properties, so that the approach used by Penn and Kearsley~1976! for the
incompressible material would not work. The measurements of the torque, normal for
and volume change are therefore insufficient to determine directly the derivatives of t
strain energy function with respect to the strain invariants for a compressible mater
Wineman and McKenna~1996! suggest that one way to proceed would be to assume
form for the strain energy function~such as a polynomial in the strain invariants! and
determine the parameters in the function by a minimization of the difference betwe
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903NONLINEAR VISCOELASTIC ANALYSIS
measured and calculated quantities. For the analysis in this paper, we have adopte
truncated series expansion for the torsion of an isotropic, homogeneous, elastic,
pressible cylinder developed by Murnaghan~1951!. This choice leads to a polynomial
expansion of the strain energy function in terms of the strain invariants, similar to
suggestion of Wineman and McKenna~1996!. Murnaghan’s formulation of the torsion
problem leads to a solution in terms of the Lame´ constantsl andm, and two higher-order
moduli denotedm andn. The three measurements of torque, normal force, and volum
change are sufficient to determinem and n uniquely, butl and m cannot be uniquely
determined. The problem is additionally complicated by the time-dependent nature o
response to the twist. We follow Rivlin~1956! in assuming that, for isochronal data
obtained from single-step stress relaxation experiments, the results of the elastic ana
can be extended to the viscoelastic case by replacing the elastic modulil, m, m, andn
with functions of timet and temperatureT, indicated byl(t,T), m(t,T), m(t,T) and
n(t,T). We assume that these modulus functions are monotonically decaying function
time, and that the shifts in the relaxation times have a common dependence on tem
ture. The adaptation of an elastic analysis to isochronal viscoelastic behavior using
assumption of Rivlin~1956! was originally employed by McKenna and Zapas~1985! in
analyzing the torsion problem. In other work, Pesce and McKenna~1997! used the
incompressible solution to estimate the strain energy function for a compressible poly
glass in order to go from torsional measurements to extension and compression defo
tion geometries.

In the experiments described in this paper and in other experiments with this ep
@Duran and McKenna~1990!; Santoreet al. ~1991!; McKenna et al. ~1994, 1995!;
Schultheiszet al. ~1995!#, the application of the torsional deformation has always led
an increase in the sample volume, which then relaxes. A result from the aging exp
ments indicates that the volume increase caused by the twist eventually relaxes to
although the torque and normal force relax to nonzero rubbery modulus values.
might anticipate this behavior, arguing that since the shear modulus decreases much
than the bulk modulus, then at long times the polymer appears more like an incompr
ible material. Within the context of the model based on the analysis of Murnagh
~1951!, however, the situation is slightly more complex, in that this behavior implies th
the long-term values of the modulus functions are related and combine to make
volume change relax to zero.

While the experiments with epoxy in the NIST torsional dilatometer@Duran and
McKenna~1990!; Santoreet al. ~1991!, McKennaet al. ~1994, 1995!; Schultheiszet al.
~1995!# have consistently shown an increase in the sample volume in response to a t
other researchers have obtained different results on other materials tested in torsion
slightly different boundary conditions. Wanget al. ~1982! report data for poly~methyl
methacrylate!, polycarbonate, poly~tetrafluoroethylene!, and an acetal copolymer, tested
at room temperature under torsion at a constant angular rate. However, unlike our
periments, the specimen length in those experiments was not constrained. All four p
mers tested by Wanget al. ~1982!, showed an increase in length and a decrease in rad
~as measured by dial gauge and an extensometer, respectively! with increasing angle of
twist per unit length. The net volume increased for the acetal copolymer, but decrea
for the other three materials. Pixaet al. ~1988! studied unplasticized poly~vinyl chloride!
apparently at room temperature using an apparatus similar to the one used for ou
periments, except that again the specimen was free to extend along its length. They
found that the volume decreased upon imposition of a small torsional deformation, bu
the level of deformation increased, the volume began to increase back toward its in
value. No significant stress relaxation or volume change was found for small defor
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904 C. R. SCHULTHEISZ AND G. B. MCKENNA
tions, but at a strain of 14.8%, they indicate modest stress relaxation, and a volume shi
downward.$Such densification under an applied deformation well belowTg has also
been reported for polycarbonate@Smithet al. ~1988!; Colucciet al. ~1997!#.% Murnaghan
~1951! noted that his solution for the torsion of a cylinder would allow for either a
volume increase or a volume decrease, depending on the relative magnitude and sign
the various moduli, and the response might depend on the boundary condition regardin
the freedom of the cylinder length to change. The range of behavior would also be
constrained by restrictions on the strain energy function, which would bound the modul
@Wineman and McKenna~1996!; Baker and Ericksen~1954!#.

In this paper, we investigate the torque, normal force, and volume change using dat
from experiments in which the material has been aged into equilibrium at three differen
temperatures. We model the behavior using a viscoelastic extension of the elastic analys
of Murnaghan~1951! within a framework that imposes the same time-temperature super-
position for all four modulus functions. This constraint is intended to ensure that the
strain energy function has a unique temperature dependence. The shear modulusm(t,T)
can be calculated directly from the measured torque, and it is modeled very well using
single stretched exponential function and time-temperature superposition. The highe
order modulus functionn(t,T) can also be calculated directly from the measurements.
We assume a form forl(t,T) that is related tom(t,T), and then investigate the calcu-
lated m(t,T). Each modulus function is modeled with a single stretched exponential
function incorporating time-temperature superposition using the same shift factors a
m(t,T). Much of the observed behavior can be captured with this restricted model, bu
the results suggest that the higher-order modulus functions may not follow the sam
time-temperature shift behavior asm(t,T), or that a secondary relaxation behavior is
present in the higher-order modulus functions, but does not appear in the shear modulu
Without a separate measurement to decouplel(t,T) from m(t,T), however, this issue is
unresolved.

II. EXPERIMENT

The NIST torsional dilatometer is described in detail in the paper by Duran and
McKenna~1990!. The material is a diglycidal ether of bisphenol-A epoxy, cured with a
flexible poly~propylene oxide! diamine with a molecular mass of 400 g/mol, giving a
nominal glass transition temperature of 42.4 °C@Lee and McKenna~1988!#. Use of a
thermoset is intended to allow repeated experiments on the same sample. The epoxy a
curing agent were mixed, poured into a glass tube mold, and then degassed und
vacuum. The epoxy was cured at 100 °C for 24 h, and the sample was then bonded wi
thin layers of a filled epoxy automotive adhesive between two stainless-steel end grip
aligned in V blocks on a machinist’s flat. We assume that the influence of the adhesiv
bonding the specimen to the grips is negligible, since it is filled, has a much higher glas
transition than the sample, and occupies less than 1% of the volume of the sample. Th
grips are 25.54 mm in diameter with a standard uncertainty of 0.01 mm. The test sectio
of the sample was turned on a lathe to a uniform diameter of 15.22 mm~standard
uncertainty 0.05 mm!, with a length of 115.1 mm~standard uncertainty 0.5 mm!. Outside
the test section was left a disk of epoxy approximately 1 mm thick at each end having th
same diameter as the grips; the radius of curvature of the fillet between the test sectio
and each end piece was specified to be 1.6 mm.

One specimen grip attaches to a torque and normal force transducer, and the other g
attaches to a servo motor, which is used to apply a constant angle of twist for stres
relaxation experiments. The angle of twist per unit length applied in these experiment
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905NONLINEAR VISCOELASTIC ANALYSIS
was 3.94 rad/m with a standard uncertainty of 0.05 rad/m. The shear strain varies linear
with the radius, and this amount of twist leads to a shear strain of 0.0300~standard
uncertainty 0.0004! at the outer radius of the sample. The specimen was sealed into a
stainless-steel chamber, and the remainder of the chamber was first evacuated and t
filled with 586 g ~standard uncertainty 1 g! of mercury. The dilatometer chamber is
connected to a vertical precision capillary, into which the mercury is free to flow. The
core of a linear variable differential transformer is attached to a poly~methyl methacry-
late! float that sits on top of the mercury in the capillary to measure the mercury level and
thus determine the change in the volume of the specimen in the dilatometer. The tem
perature within the dilatometer chamber is controlled by circulating fluid from a constant-
temperature bath through copper coils wrapped around the chamber containing th
sample and the mercury. The temperature within the dilatometer chamber is monitore
using a platinum resistance thermometer. Over the course of an entire aging experime
~several days to two weeks!, the standard uncertainty in the dilatometer temperature after
thermal equilibration is 0.01 °C. For the experiments investigated in this paper, which
occupy a much shorter time of a single twist step~several hours to less than 2 days!, the
standard uncertainty in the dilatometer temperature can be as small as 0.003 °C. T
entire instrument, including the motor, the dilatometer chamber and the torque/norma
force cell, are also isolated from the room environment within an enclosure where th
temperature is controlled at 29.2 °C~with standard uncertainty 0.2 °C!. The standard
uncertainty in the torque measurement is 0.05 N m; the standard uncertainty in the norm
force measurement is 1 N; and the standard uncertainty in the volume measurement
231025 cm3.

The experiments described here are single torsional stress relaxation experiments
samples that were aged into equilibrium. For consistency, the three experiments analyz
were all for samples equilibrated after up-jumps of approximately 2 °C, with final tem-
peratures of 37.93, 35.51, and 32.80 °C.

Following Kovacs~1963! and Kovacset al. ~1979!, the volume measurements in the
aging experiments were put into a normalized form given the symbold(t,T), which is
the relative deviation of the volume from a reference value, with

d~t,T! 5
V~t,T!2Vref~T!

Vref~T!
, ~1!

where V(t,T) is the current volume at timet and temperatureT, and Vref(T) is the
reference volume at temperatureT. This normalized form is retained for describing the
volume change caused by the torsional deformation, in which caseVref(T) is the volume
in the initial, undeformed reference configuration. Thus,d(t,T) is effectively a volumet-
ric strain measure. Because the measurements of the response to the torsion in the pre
paper were made after the sample had reached thermodynamic equilibrium, the referen
volumeVref(T) is equal to the volume at thermodynamic equilibrium,V`(T), which is
the quantity of interest in the aging experiments. With the cylinder ends constrained s
that it cannot change length,d(t,T) is directly related to the change in the cylinder radius
from its undeformed, reference value, andd(t,T) can therefore be used as a normalized
measure of the change in the outer radius of the cylinder for the deformed configuratio
compared to the initial undeformed reference configuration. Radial constraints at th
grips are neglected in this initial analysis. The standard uncertainty ind(t,T) is governed
mainly by the standard uncertainty in the temperature. Based on the parameters of t
measurement system alone, the standard uncertainty in each measurement ofd(t,T)
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906 C. R. SCHULTHEISZ AND G. B. MCKENNA
would be on the order of 1026. Taking the standard uncertainty in the temperature during
a single twist as 0.003 °C, a calculation of the propagation of uncertainties using the
density of mercury as a function of temperature@CRC Handbook~1997!# and the liquid
coefficient of thermal expansion of the epoxy,aL 5 5.931024 cm3/~cm3 K! @Duran and
McKenna ~1990!#, we obtain an estimate of the standard uncertainty ind(t,T) of 3
31026. Over the course of an entire aging experiment, with the standard uncertainty in
the temperature equal to 0.01 °C, the standard uncertainty ind is 1025. This result is
somewhat better than the uncertainty estimated for the classical dilatometer measure
ments of Kovacs and coworkers@Kovacs ~1963!; Kovacset al. ~1979!; Struik ~1997a,
1997b!; McKennaet al. ~1999!#.

Figures 1, 2, and 3 show torque, normal force, and volume responses to a twist at thre
different temperatures. The data were normalized to lie between 0 and 1 using the max
mum and minimum values, in order to show the different time dependence of each
response. The normal force is compressive, and taken as negative in the convention us
in this paper, so those data have actually been inverted. The volume has always bee
observed to increase under torsion with this material. The choice of positive or negative
for the torque is arbitrary. The data in Fig. 1 are for a jump from 36.01 to 37.93 °C. The
data in Fig. 2 are for a jump from 33.52 to 35.51 °C. The data in Fig. 3 are for a jump
from 30.80 to 32.80 °C. The origin for the time in Figs. 1–3 was taken to be halfway
between the last data point before the twist was applied and the data point at which th
torque reached its maximum@Zapas and Craft~1965!; Santoreet al. ~1991!#. The rise
time for the torque averaged 0.28 s~standard uncertainty 0.05 s!. In magnitude, the
maximum torque is on the order of 15 N m, the maximum normal force is on the order of
80 N, and the maximumd(t,T) is on the order of 231024. At 37.93 °C, the torque and
normal force relaxations are almost identical, but at the lower temperatures, the norma
force relaxation trails the torque relaxation somewhat. The volume response is conside
ably

FIG. 1. Normalized relaxation responses for torque, normal force, and volume change in response to a twist a
37.93 °C. Responses were normalized to vary from 0 to 1 by their maximum and minimum values.
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FIG. 2. Normalized relaxation responses for torque, normal force and volume change in response to a twist
35.51 °C. Responses were normalized to vary from 0 to 1 by their maximum and minimum values.

FIG. 3. Normalized relaxation responses for torque, normal force, and volume change in response to a twist
32.80 °C. Responses were normalized to vary from 0 to 1 by their maximum and minimum values.
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different from the torque or normal force in all three sets of data, but the nonmonotonic
behavior of the volume response at 32.80 °C is the most striking. In chronological order,
the up-jump experiment to 35.51 °C~Fig. 2! was first, followed by the up-jump experi-
ment to 32.80 °C~Fig. 3! and then the up-jump experiment to 37.93 °C~Fig. 1!. This
sequence indicates that the nonmonotonic behavior of the volume is only a function of
temperature, and is not an indication of a problem with the dilatometer. In subsequent
experiments moving to lower temperatures, the nonmonotonic volume response again
appeared. A model to describe this behavior is presented in the following section.

III. ANALYSIS OF THE TORSIONAL DEFORMATION: MURNAGHAN’S
SERIES SOLUTION

The nonlinear material behaviors~axial normal force and volume change! from the
three experiments shown in Figs. 1, 2, and 3 were investigated using an adaptation of the
truncated series expansion developed by Murnaghan~1951! for the torsion of an isotro-
pic, homogeneous, elastic, compressible material. Murnaghan actually provides the solu-
tion for the case where the ends of the cylinder are free to move, but incorporating the
boundary condition fixing the length of the cylinder is straightforward. Murnaghan’s
notation for the problem is slightly different from that of Rivlin~1948!, which has
commonly been adopted by subsequent researchers for investigations of the torsion of
both incompressible and compressible materials@Green~1955!; Levinson~1972!; Penn
and Kearsley~1976!; Wineman and McKenna~1996!; Pesce and McKenna~1997!#.
Given the deformation gradient tensorF, the traditional formulation develops the analy-
sis in terms of the right Cauchy–Green strain tensorC 5 FTF @Spencer~1980!#. For an
isotropic, homogeneous material, the stress is a function only of the three invariants ofC:
I 1 , I 2, andI 3 , with

I1 5 tr C 5 l1
21l2

21l3
2,

I2 5 1
2 @~tr C!22tr~C2!# 5 l1

2l2
21l2

2l3
21l1

2l3
2, ~2!

I3 5 detC 5 l1
2l2

2l3
2,

wherel1 , l2 , andl3 are the principal stretches associated with the deformation gradi-
ent tensorF. The Cauchy stress is denoted byT and can be calculated as

T 5 2
r

r0
FF ]W

]I 1
I1

]W

]I 2
~ I 1I2C!1

]W

]I 3
~ I 2I2I 1C1C2!GFT, ~3!

whereW(I 1 ,I 2 ,I 3) is the strain energy potential,I is the identity tensor,r is the density
of the deformed body, andr0 is the density of the undeformed body@Spencer~1980!#.
Note thatr/r0 5 I 3

21/2. Also note that carrying out the tensor multiplications withF and
FT recasts the stress tensor in terms of the left Cauchy–Green strain tensorB, sinceB
5 FFT ~also,B2 5 FCFT andB3 5 FC2FT! @Spencer~1980!#; the invariants ofB and

C are the same. The comparison with Murnaghan’s analysis is more straightforward using
Eq. ~3!. Murnaghan~1951! formulates the problem using a strain tensorh 5 (C2I )/2.
The principal axes ofh andC are the same. If we denote the invariants ofh asJ1 , J2 ,
and J3 , we get very similar equations for the invariants and the Cauchy stress as a
function of h:
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J1 5 tr h,

J2 5 1
2 @~tr h!22tr~h2!#, ~4!

J3 5 deth.

The Cauchy stress is then

T 5 2
r

r0
FF ]W

]J1
I1

]W

]J2
~J1I2h!1

]W

]J3
~J2I2J1h1h2!GFT. ~5!

Murnaghan thus develops his solution in terms ofh, J1 , J2 , andJ3 , but the solution can
be transformed into the other notation very easily, because the two strain tensors have
simple relation and the invariants are also related

J1 5 1
2 ~I123!,

J2 5 1
4 ~I222I113! 5 1

4 @~I223!22~I123!#,

J3 5 1
8 ~I32I21I121! 5 1

8 @~I321!2~I223!1~I123!#,

~6!
I1 5 2J113,

I2 5 4J214J113,

I3 5 8J314J212J111.

Rivlin ~1953! used similar notation in a brief paper suggesting a formalism for solving
boundary value problems using Murnaghan’s second order elasticity theory. Murnagha
expands the strain energy potentialW(J1 ,J2 ,J3)as an infinite series in the argumentsJ1 ,
J2 , andJ3 . In the undeformed state,h 5 0, and the series expansion can be understood
as an expansion in the components ofh ~which are assumed to be small quantities!. The
strain invariants are such thatJ1 contains only linear combinations of the components of
h, J2 contains only second order combinations of the components ofh, andJ3 contains
only third order combinations of the components ofh. After expanding the strain energy
potential W(J1 ,J2 ,J3) in powers ofJ1 , J2 , and J3 , terms are grouped which have
combinations of the components ofh of the same order. For a deformation arising from
an initially stress-free state, Murnaghan gives the solution~truncated beyond third order
combinations of the components ofh! as

W 5
l12m

2
J1
222mJ21

l12m

3
J1
322mJ1J21nJ3, ~7!

wherel andm are the Lame´ constants from linearized elasticity theory, andl , m, andn
are additional elastic constants governing the nonlinear behavior. The first two terms i
Eq. ~7! include components ofh to second order, and truncating the series at that point
corresponds to linearized elasticity theory. The next three terms include all combination
of the invariants that include the components ofh to third order, and Murnaghan trun-
cates his expansion at that point. For comparison, rewritingW in Eq. ~7! in terms of the
invariants ofC gives
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W 5 Fm1
n

8G~I123!2Fm2 1
n

8G~I223!1
n

8
~I321!1Fl12m

8
1

m

2G~I123!22
m

8
~I123!~I223!

1Fl12m

24 G ~ I 123!3 ~8!

using a form similar to that suggested by Wineman and McKenna~1996!. In the unde-
formed state,C 5 I , andI 1 5 3, I 2 5 3, andI 3 5 1, so this expansion is also in terms
of small quantities. Note that Eq.~8! is similar to Eq.~7! in that it includes all combina-
tions of components ofC up to the third order. However, Eq.~8! also includes a term
with I 1 alone, whereas in Murnaghan’s expansion, the term includingJ1 alone describes
an initial hydrostatic stress that could be present, but is neglected here in assuming a
initially stress-free condition. More importantly, if one were to truncate the expansion in
Eq. ~8! after terms including components ofC up to second order, one would obtain a
constitutive relation that is different from linearized elasticity theory, which includes
terms containing the modulil, m, m, andn. This result emphasizes the well-known fact
that a different choice of a strain measure and a subsequent expansion of the strain energ
in the invariants of that strain measure, along with a specific choice for truncation, can
lead to a different higher-order constitutive theory. This point was also demonstrated
recently by Hoger~1999!, who developed a similar expansion based on the Biot strainE,
which can be related to the other strain measuresh and C through the equationh
5 (C2I )/2 5 E2/21E. When the deformation is small enough, bothh andE ~as well

as a number of other commonly used strain measures! are equivalent, and the linearized
theory of elasticity is recovered in the different analyses.

Assuming an elastic response, the kinematic description for the problem of torsion of
a circular cylinder with no change of length allowed is specified by a mapping from the
reference configuration characterized by (R,Q,Z) to the deformed configuration charac-
terized by (r ,u,z), with

r 5 r~R!,

u 5 Q1cZ, ~9!

z 5 Z,

where c is the angle of twist per unit length@Wineman and McKenna~1996!#. The
cylinder length is constant, and the angular displacement is a linear function of position
along the length of the cylinder. The outer surface of the cylinder is denotedR0 in the
undeformed configuration, andr 0 5 r (R0) in the deformed configuration. Solution of
the problem involves determining the functionr (R) and the corresponding stress field
from the strain energy potential using the equations of equilibrium, with the boundary
conditions that the external surface of the cylinder is traction-free and the stress at the
center of the cylinder is bounded. Constraints on the radial expansion near the ends of th
cylinder imposed by the connection to the grips are neglected in the current analysis.

For this specific problem, Murnaghan’s analysis leads to solutions for the moment,
normal force and volume as functions of the Lame´ constantsl and m and two of the
higher-order elastic constants,m andn. The torsion problem is independent of the elastic
constantl . Also, it should be noted that, whereas the shear strain and associated torqu
are linear inc, the volume change and normal force are at least second order effects with
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respect toc. In calculating the strain tensor, some of these components are multiplied
together, and Murnaghan truncates the strain tensor to include components only up to th
level of c2.

In the case of a viscoelastic material, the radial mapping now depends on time and
temperature, withr 5 r (R,t,T). For a single-step, isothermal stress relaxation experi-
ment, Rivlin ~1956! has suggested that viscoelastic functions that depend on time and
temperature can be substituted for the elastic constants in the solution, givingl(t,T),
m(t,T), m(t,T), and n(t,T). This approach was earlier used by McKenna and Zapas
~1985! to adapt an elastic analysis of the torsion problem to isochronal viscoelastic data.
This approach is equivalent to assuming that the deformation can be described by a
function that is separable in the time and space variables. Since we have only three
measurements, but four unknown functions, we must make an assumption about one o
the functions in order to proceed. We approximatel(t,T) using literature values for the
bulk modulus and Poisson’s ratio to relatel(t,T) to the measuredm(t,T).

Murnaghan’s analysis leads to a specific form for the deformation in Eq.~9! given by

r 5 R1c2v~R,t,T!,

u 5 Q1cZ, ~10!

z 5 Z,

wherec is the angle of twist per unit length, and the unknown functionv(R,t,T) is
determined by solving the equations of equilibrium with the boundary condition that the
radial surface of the cylinder is stress free. In this case, the torsion problem is a mixed
boundary value problem, in that the deformation is specified at the ends of the cylinder,
but the stress is specified on the radial surface of the cylinder. A typical uniaxial stress
relaxation experiment with stress-free lateral surfaces is also a mixed boundary value
problem. The relation between the applied moment~or torque! M (t,T) and the shear
modulus is the same as that calculated using linear viscoelastic theory, and since we
assume that the torsional deformation is applied as a step change, the convolution integra
relating the moment and the shear modulus reduces to an algebraic relation, with

M~t,T! 5 pR0
4E

0

t
m~t2j,T!

dc~j!

dj
dj 5 pR0

4m~t,T!c. ~11!

Similarly, the higher-order modulus functionsm(t,T) and n(t,T) are only convolved
with terms arising from the shear strain~at this level of approximation!, so m(t,T) and
n(t,T) also only appear in algebraic combinations. Two of the equations of equilibrium
are satisfied identically; the remaining equation is

E
0

t
@l~t2j,T!12m~t2j,T!#

]

]j F]2v~R,j,T!

]R2
1

1

R

]v~R,j,T!

]R
2

v~R,j,T!

R2 Gdj

5 F2m~t,T!2l~t,T!2m~t,T!1
3

4
n~t,T!GR. ~12!

Assuming thatv(R,t,T) can be written in a form that is separable into a function ofR
multiplying a function of time and temperature leads to the result
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v~R,t,T! 5 p1~t,T!R0
2R1p2~t,T!

R0
4

R
1p3~t,T!R3, ~13!

where the first two terms represent the homogeneous solution to the differential equati
for v(R,t,T) in Eq. ~12!. Since the stress must be bounded atR 5 0, p2(t,T) [ 0. The
problem involving torsion of a hollow tube would require all three terms, but also have a
additional stress-free boundary condition on the inner surface of the tube. Equation~12!
therefore reduces to an equation forp3(t,T), which is used to simplify the equation for
the stress-free boundary condition on the outer surface of the cylinder. Let us define
functionD(t,T) asD(t,T) 5 2@r (R0 ,t,T)2R0#/R0 , which is twice the relative change
in the outer cylinder radius from its initial value ofR0 , so D(t,T) 5 2c2R0

2@p1(t,T)
1p3(t,T)#. Since the cylinder length is constrained,D(t,T)is also related to the mea-
sured volumetric straind(t,T), with D(t,T) 5 2$@11d(t,T)#1/221%. To first order,
D(t,T) ' d(t,T), and this approximation is very good sinced(t,T) is on the order of
1024. Rewriting the condition that the radial boundary is stress free in terms ofD(t,T)
then gives

E
0
t @l~t2j,T!1m~t2j,T!#

]D~j,T!

]j
dj 5

c2R0
2

16
$24@l~ t,T!12m~ t,T!1m~ t,T!#

1n~ t,T!%. ~14!

The resulting axial normal force averaged over the area of the ends of the cylinder
denotedN(t,T) and is calculated as

N~t,T! 5 2pR0
2E

0

t
m~t2j,T!

]D~j,T!

]j
dj1

pc2R0
4

16
n~ t,T!. ~15!

Equations~11!, ~14!, and ~15! can be arranged to give equations for the modulus func-
tions in terms of the measured quantities, the moment~or torque! M (t,T), the axial
normal forceN(t,T), and the volumetric straind(t,T), which is related toD(t,T)
5 2$@(11d(t,T)#1/221%:

m~t,T! 5
2M~t,T!

pcR0
4

, ~16!

n~t,T! 5
16

c2R0
2 FN~ t,T!

pR0
2

1E
0

t
m~ t2j,T!

]D~j,T!

]j
djG , ~17!

m~t,T! 5
4

c2R0
2FN~t,T!

pR0
2

2E
0

t
l~t2j,T!

]D~j,T!

]j
djG2@l~t,T!12m~t,T!#. ~18!

The relation in Eq.~16! is the same as that found for linear theory, because the serie
expansion has been truncated so that there are no additional terms that are odd funct
of c. Equations~16! and ~17! show thatm(t,T) and n(t,T) can be evaluated directly
from measured quantities~with some approximate method of evaluating the convolution
integral!, but Eq.~18! shows thatl(t,T) andm(t,T) can only be expressed in terms of
one another. Equations~14! and~15! suggest that the normal force and volumetric strain
are functions of more than one modulus function, which provides a mechanism for add



.

-
he

-
a

re

e
th

,

e

s

913NONLINEAR VISCOELASTIC ANALYSIS
complexity in the relaxation behavior of those quantities. Note that the moment in Eqs
~11! or ~16! scales ascR0

4 and the normal force in Eq.~15! scales asc2R0
4 @sinceD(t,T)

scales asc2R0
2 from Eqs.~10! and ~13!#, which is the same scaling found by Penn and

Kearsley~1976! for incompressible materials.
We now choose a mathematical form for the modulus functions, and attempt to repro

duce the measured behavior of the moment, axial normal force and volume change. T
momentM (t,T) @and thus the shear modulusm(t,T)# can be modeled very well by a
single stretched exponential function. Based on that result, all four of the modulus func
tions were modeled using a single stretched exponential function. We also enforce
condition that the relaxation time for each of the four modulus functions is modified by
a single temperature shift factora(T) determined from the fit to the shear modulus data.
We also allow a small vertical shift factor for each modulus function, which is con-
strained to follow a similar behavior with temperature asa(T). Specifically, the shear
modulus is written as

m~t,T! 5 b~T!S@m02m`#expH2F t

a~T!t
GbJ1m`D, ~19!

where m0 , m` , b, and t govern the relaxation at the reference temperature where
a(T) 5 1 andb(T) 5 1. We use 35.51 °C as the reference temperature. The temperatu
range across the three experiments is small, so it is expected that both log@a(T)# and
log@b(T)# would be approximated well by linear functions of temperature. Therefore, in
fitting this function to the data for the shear modulus from the three experiments, w
further constrained the shift factors to have a similar temperature dependence, wi
log@b(T)# 5 C log@a(T)#, whereC is a constant.

We now assume a functional representation forl(t,T) based onm(t,T) and data from
the literature, and then examine the resulting behavior calculated form(t,T). First, we
assume thatl(t,T) follows a stretched exponential behavior that has the same time
dependence asm(t,T); in effect, we choosel(t,T) 5 k1m(t,T)1k2b(T), wherek1 and
k2 are constants to be determined andb(T) is the vertical shift factor used in the model
for m(t,T) in Eq. ~19!. The functional form forl(t,T) is therefore given by:

l~t,T! 5 b~T!Sk1@m02m`#expH2F t

a~T!t
GbJ1k1m`1k2D, ~20!

wherem0 , m` , b, andt are the same parameters in Eq.~19!. The constantsk1 andk2
are determined by matching the behavior ofl(t,T) and m(t,T) to data for the bulk
modulus and Poisson’s ratio found in the literature. In the linearized theory of elasticity
the Laméconstantsl and m are combined to calculate the bulk modulusK 5 (3l
12m)/3 and Poisson’s ratioy 5 l/@2(l1m)#. For time-dependent and temperature-
dependent viscoelastic behavior, the bulk modulus relation is only altered to include th
dependence on time and temperature, withK(t,T) 5 @3l(t,T)12m(t,T)#/3, but Pois-
son’s ratioy(t,T) is not simply equal tol(t,T)/$2@l(t,T)1m(t,T)#%, as shown by
Tschoegl~1989!. Using the viscoelastic correspondence principle~under isothermal con-
ditions!, Tschoegl demonstrates thaty(t,T)is the inverse Laplace transform of a ratio of
functions involving the Laplace transforms ofl(t,T) and m(t,T), so that it is not a
function that can be calculated in closed form, in general. However, Tschoegl also show
that the simple algebraic relation holds in the limit of very short times, withy(0,T)
5 l(0,T)/$2@l(0,T)1m(0,T)#%, and also holds in the limit of very long times, with

y(`,T) 5 l(`,T)/$2@l(`,T)1m(`,T)#%. We choose a value fory(0,T) to relate
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l(0,T) to m(0,T). We also choose a value for the ratio of the bulk modulus at infinite
times to the bulk modulus at zero time,K(`,T)/K(0,T), to determinel(`,T). Data
from the literature indicate thaty(t,T) remains nearly constant with a value of 0.30
@Ferry ~1961!#, so we first assume thaty(0,T) 5 0.30. The literature also indicates that
the relative decrease in the bulk modulusK(t,T) is much less than the relative decrease
in the shear modulusm(t,T) @Ferry ~1961,1980!; McKinney and Belcher~1963!#. We
assume that the relative change in the magnitude of the bulk modulus is the same as th
reported by McKinney and Belcher~1963! for dynamic measurements on poly~vinyl
acetate! at the midpoint of the temperature range they investigated~50 °C! and at atmo-
spheric pressure; the relevant data are shown in a figure that is also reproduced in th
later edition of the book by Ferry~1980!. For those data,K(`,50 °C)/K(0,50 °C)
5 0.59; McKinney and Belcher~1963! suggest a linear dependence on temperature for

both K(`,T) andK(0,T), so thatK(`,T)/K(0,T) at atmospheric pressure varies from
0.64 to 0.56 as the temperature changes from 0 to 100 °C. With the choices ofy(0,T)
5 0.30 andK(`,T)/K(0,T) 5 0.59, the constantsk1 andk2 are calculated as

k1 5
0.665m012m`

3~m02m`!
,

~21!

k2 5 ~ 3
2 2k1!m0,

wherem0 andm` are the parameters fit to the shear modulus data in Eq.~19!. Note that
by choosingl(t,T) 5 k1m(t,T)1k2b(T), both y(0,T) and K(`,T)/K(0,T) are actu-
ally independent of temperature.

The calculated modulus functionsm(t,T) andn(t,T) are also fit to equations of the
same form as Eq.~19!, using the samea(T) determined from the shear modulus data.
The higher-order modulus functionsm(t,T) andn(t,T) are given by

m~t,T! 5 bm~T!S@m02m`#expH2F t

a~T!tm
GbmJ1m`D, ~22!

n~t,T! 5 bn~T!S@n02n`#expH2F t

a~T!tn
GbnJ1n`D. ~23!

The exponentsbm andbnand the characteristic relaxation timestmandtn are parameters
fit to the data for each higher-order modulus function, as are the parameters governing th
initial values ~m0 and n0! and terminal values~m` and n`! for each function. Each
modulus function is also allowed a different vertical shift factor@bm(T) and bn(T)#,
which are again constrained to have temperature dependence similar to that ofa(T), so
that log@bm(T)# 5 Cm log@a(T)# and log@bn(T)# 5 Cn log@a(T)#. The constantsC, Cm ,
andCn were all allowed to differ in the current work.

The convolution integrals in Eqs.~17! and~18! are approximated as summations over
step changes inD(t,T) @calculated from the measured volumetric straind(t,T)#, with the
time-shifted moduli evaluated using the functions given in Eqs.~19! and~20!. We assume
that the step fromDi to Di 11 takes place at the midpoint of the interval betweent i and
t i 11 . The first step fromD0 5 0 to D1 is applied att 5 0, since the time origin has
been specified to lie at the midpoint of the step during which the twist is applied, as noted
earlier. The convolution integral in Eq.~17! up to a timetk therefore takes the form
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E
0

tk
m~t2j,T!

]D~j,T!

]j
dj ' m~tk ,T!D1~T!1 (

i 5 2

k

mFtk2Sti1ti11

2 D,TG@Di~T!2Di11~T!#

~24!

with the convolution integral in Eq.~18! evaluated similarly. This process can be inverted
to calculateD(t,T) if the value of the convolution integral is known at each timet i along
with the functional representation ofm(t,T). Thus, if l(t,T), m(t,T), m(t,T), and
n(t,T) are known,D(t,T) can be calculated using Eq.~14!, and thenN(t,T) calculated
using Eq.~15!.

IV. RESULTS AND DISCUSSION

Data for the shear modulusm(t,T) are plotted in Fig. 4, as calculated from the
measured momentM (t,T) using Eq.~16! with c 5 3.94rad/m andR0 5 15.22 mm. The
data come from experiments at 37.93, 35.51, and 32.80 °C. The standard uncertain
m(t,T) is calculated using the propagation of uncertainties to be 0.002 GPa10
(0.03)m(t,T). The model from Eq.~19! is also shown in the figure as the solid lines, and
it can be seen that the agreement with the data is very good. The calculated m
parameters are listed in Table I. DiMarzio and Yang~1997! have recently presented a
theory suggesting that the time-temperature shift factor at equilibrium below the gl
transition should follow an Arrhenius relation. The shift factora(T) can be fit very well
with an Arrhenius equation, giving an activation energy fora(T) of 836 kJ/mol~standard
uncertainty 46 kJ/mol!. O’Connell and McKenna~1999! investigated the theory of Di-
Marzio and Yang~1997! using a polycarbonate aged into equilibrium below the glas
transition temperature and found the activation energy fora(T) of the polycarbonate to
be 958 kJ/mol. Over this small temperature range, the log of the shift factors are equ

FIG. 4. Symbols are the shear modulusm(t,T) for experiments at 32.80, 35.51, and 37.93 °C, calculated usin
Eq. ~16!. Solid lines indicate the model in Eq.~19!, with the calculated model parameters listed in Table I.
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well represented as linear functions ofT, with log@a(T)# 5 (20.459 K21)(T2TR) with

standard uncertainty in the slope of 0.027 K21, and log@b(T)#
5 (20.0173 K21)(T2TR) with standard uncertainty in the slope of 0.0010 K21. TR is

the reference temperature of 35.51 °C.
The functionl(t,T) is specified by Eqs.~20! and~21!, along with the parameters for

m(t,T) given in Table I. The constantsk1 and k2 are calculated to bek1 5 0.318 and
k2 5 0.933 GPa. The standard uncertainty inl(t,T) is assumed to bek1 times the
standard uncertainty inm(t,T).

The choices made for the description ofl(t,T) result in a Poisson’s ratio that in-
creases steadily with time fromy(0,T) 5 0.30 to y(`,T) 5 0.46, independent of the
temperature. This behavior is consistent with experimental results in the literature@Wine-
man and Rajagopal~2000!#.

The negative of the higher-order modulus functionn(t,T) calculated using Eq.~17! is
plotted as symbols in Fig. 5, along with solid lines that are fit to the model in Eq.~23!.
The parameters fit to the data forn(t,T) are listed in Table II. It can be seen thatn(t,T)
is a monotonic, negative function that is about one order of magnitude larger tha
m(t,T). Both terms in Eq.~17! are important, especially at short times, where they are o
similar magnitude. The standard uncertainty inn(t,T) is calculated to be 0.1 GPa
2(0.04)n(t,T).

The function chosen forl(t,T) was input to Eq.~18! along with the experimental data
to calculate the other higher-order modulus functionm(t,T). The negative of that func-
tion is plotted in Fig. 6, and it can be seen thatm(t,T) is also a monotonic, negative
function that is about one order of magnitude larger thanm(t,T), similar to n(t,T). As
with n(t,T), all of the terms in Eq.~19! make contributions of similar magnitude, espe-
cially at shorter times. The standard uncertainty inm(t,T) is calculated to be 0.1 GPa
2(0.02)m(t,T). These data form(t,T)were fit twice, first fitting all the data without
weighting, and then weighting the data at 32.80 °C between 10 and 104s to have one
tenth the influence of the other data, so as to lessen the influence of the hump in t
curve. The parameters for the unweighted fit are listed in Table III, and the parameters
the weighted fit are listed in Table IV. The difference between the two curves is not ve
great in this plot ofm(t,T), but the difference is greatly magnified in the subsequen
calculation of the volumetric strain, as shown later. The weighted fit captures all of th

TABLE I. Parameters form(t,T) in Eq. ~19!.

Parameter Value
Standard

uncertainty

m0 0.7888 GPa 0.0022 GPa
m` 0.0768 GPa 0.0005 GPa
b 0.3067 0.0013
t 32.39 s 0.36 s
a(32.80 °C) 23.00 0.28
a(35.51 °C) 1 ¯

a(37.93 °C) 0.1030 0.0006
b(32.80 °C) 1.125 0.002
b(35.51 °C) 1 ¯

b(37.93 °C) 0.918 0.001
Root-mean-square difference
between data and model~GPa!

0.002 56 GPa ¯
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behavior at the two higher temperatures better, and also captures the initial part of th
relaxation at all three temperatures better. The unweighted fit is strongly influenced by th
nonmonotonic volume relaxation behavior at 32.80 °C, which is not apparent at the
higher temperatures. The relaxation behavior at 32.80 °C might be evidence of an add
tional relaxation mechanism@Read~1992!; Perezet al. ~1999!#, but this calculation for
m(t,T) is somewhat exploratory without a direct measurement ofl(t,T). The effects of
some different choices forl(t,T) on m(t,T) were not very great, as discussed later. Also,
note that the evidence for an additional relaxation mechanism appears only in the norm
force and volume change, which are nonlinear responses to the torsion. The shear mod
lus can be superposed quite well at all temperatures. No evidence of ab mechanism
@Read~1992!; Perezet al. ~1999!# was reported in earlier investigations with this material

FIG. 5. Symbols are the negative of the higher-order modulus functionn(t,T) calculated using Eq.~17! for the
experiments at 32.80, 35.51, and 37.93 °C. Solid lines indicate the model in Eq.~23!, with the calculated model
parameters listed in Table II.

TABLE II. Parameters forn(t,T) in Eq. ~23!.

Parameter Value
Standard

uncertainty

n0 ~GPa! 27.620 GPa 0.096 GPa
n` ~GPa! 20.834 GPa 0.023 GPa
bn 0.2368 0.0046
tn 33.1 s 1.8 s
bn(32.80 °C) 1.038 0.003
bn(35.51 °C) 1 ¯

bn(37.93 °C) 0.973 0.002
rms difference between
data and model

0.104 GPa ¯
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@Duran and McKenna~1990!; Santoreet al. ~1991!; McKenna et al. ~1994, 1995!;
Schultheiszet al. ~1995!, Lee and McKenna~1988!# using the torsional dilatometer or
other types of experiments. This is consistent with the superposability of the shear m
lus measured in the present series of experiments. Lee and McKenna~1988! performed
stress relaxation experiments with this epoxy in uniaxial tension at a strain of 0.0025
found no evidence of ab mechanism. However, the relaxation behavior of the uniaxi
Young’s modulus should be governed largely by the relaxation behavior of the sh
modulus component, which shows no evidence of a second relaxation mechanism in
investigation. In addition, nonlinear material behavior such as the normal force
volume change in the torsion experiments could be imperceptible at a strain leve

FIG. 6. Symbols are the negative of the higher-order modulus functionm(t,T) calculated using Eq.~18! for the
experiments at 32.80, 35.51, and 37.93 °C. Solid lines are fit to the model in Eq.~22! with all data having the
same weight; the calculated model parameters for this case are listed in Table III. Dashed lines are fit t
model in Eq.~22! with the data at 32.80 °C between 10 and 104 s weighted to have one tenth the influence of
the other data; the calculated model parameters for this case are listed in Table IV.

TABLE III. Parameters for unweighted fit ofm(t,T) in Eq. ~22!.

Parameter Value
Standard

uncertainty

m0 26.382 GPa 0.037 GPa
m` 21.864 GPa 0.017 GPa
bm 0.4106 0.0066
tm 132.6 s 3.6 s
bm(32.80 °C) 1.217 0.003
bm(35.51 °C) 1 ¯

bm(37.93 °C) 0.868 0.001
rms difference between
data and model

0.0939 GPa ¯
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919NONLINEAR VISCOELASTIC ANALYSIS
0.0025. The previous work with the torsional dilatometer did not extend to modeling the
normal force and volume change associated with the torsion@Duran and McKenna
~1990!; Santoreet al. ~1991!; McKennaet al. ~1994, 1995!; Schultheiszet al. ~1995!#.
Using the functional representations forl(t,T), m(t,T), m(t,T), and n(t,T) given in
Eqs.~19!, ~20!, ~22!, and~23!, along with the parameters in Tables I–IV, predictions of
the moment, the normal force and the volumetric strain can be calculated through Eq
~11!, ~14!, and ~15!. Figure 4 represents the comparison between the experimental da
and the model for the moment~or torque!, and the agreement between experiment and
model is very good. The experimental data for the normal force and the volumetric stra
along with the corresponding model predictions are compared in Figs. 7 and 8. Both th
weighted and unweighted fits form(t,T) have been used to calculate model predictions.
The normal force is governed primarily byn(t,T), and so the difference between the
weighted and unweighted model predictions is small. Most of the differences between th
model and the experimental data for the normal force mirrors the differences between t
calculatedn(t,T) and the fit ton(t,T), which might be reduced by adding more terms to
improve the fit. Using a sum of exponentials instead of a single stretched exponenti
would allow for more complexity in the function, but would require a much larger
number of parameters. The normalized volume changed(t,T) 5 @V(t,T)
2Vref(T)#/Vref(T) is governed primarily by the functionm(t,T), as can be seen by the
differences between the weighted and unweighted models in Fig. 8. The weighted mod
matches the experiments well at 35.51 and 37.93 °C, but cannot fit the peak at 32.80 °
The unweighted model captures some aspect of the peak in the volume response
32.80 °C, but reduces the agreement with the experiment in other areas. Again, the sin
stretched exponential function is fairly restrictive, and a function with more parameter
might be more successful in modeling the data. However, the good agreement at t
higher temperatures for the weighted model again suggests that a separate mechan
could be acting at 32.80 °C.

An alternative method for looking at the time-temperature behavior of the nonlinea
response is through direct superposition of the normal force measurements in Fig.
~clearly the volume responses in Fig. 8 cannot be superposed!. Superposing the normal
force allows for calculation of a temperature shift factoraNF(T) and a vertical shift factor
bNF(T). Fitting aNF(T) to an Arrhenius equation gives an activation energy of 934
kJ/mol ~standard uncertainty 90 kJ/mol!, or as a linear function ofT, log@aNF(T)#
5 (20.512K21)(T2TR) with standard uncertainty in the slope of 0.052 K21. TR is

the reference temperature of 35.51 °C. The multiplicative vertical shift factorbNF(T) was

TABLE IV. Parameters for weighted fit ofm(t,T) in Eq. ~22!.

Parameter Value
Standard

uncertainty

m0 26.876 GPa 0.035 GPa
m` 21.814 GPa 0.011 GPa
bm 0.3308 0.0039
tm 89.6 s 2.2 s
bm(32.80 °C) 1.170 0.002
bm(35.51 °C) 1 ¯

bm(37.93 °C) 0.893 0.001
Weighted rms difference
between data and model

0.0544 GPa ¯

Unweighted rms difference
between data and model

0.139 GPa ¯
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920 C. R. SCHULTHEISZ AND G. B. MCKENNA
found to be log@bNF(T)# 5 (20.0112 K21)(T2TR) with standard uncertainty in the
slope of 0.0011 K21. The time-temperature shift factor for the normal force has a som
what greater dependence on the temperature than that for the shear modulusm(t,T). This
result is consistent with the shift of the normal force relaxation to later times~as com-
pared to the torque! with decreasing temperature, as seen in Figs. 1–3.

The key to the extended relaxation and nonmonotonic behavior for volumetric stra
d(t,T) within the context of this model is the longer time scale and broader spectrum
m(t,T)as compared tol(t,T) andm(t,T). In order to match the relaxation of the higher-
order modulus functions@24m(t,T)1n(t,T) # that appear on the right-hand side of Eq.
~14!, the relaxation ofd(t,T) @ ' D(t,T) in the equation# must be slowed or reversed to
affect the convolution with@l(t,T)1m(t,T)# on the left-hand side in the appropriate
way. Results from an experiment using only a single twist step suggest that the volu
change caused by the torsion dissipates entirely at long times, meaning thatd(t,T) will
eventually approach zero. This behavior might be expected, since the shear mod
decreases much more than the bulk modulus, so that at long times the polymer resp
more like an incompressible material. For the parameters used to modell(t,T) and
m(t,T), Poisson’s ratio at long times approachesy(`,T) 5 0.46, independent of tem-
perature. Within the context of Murnaghan’s analysis, however, this result implies that
terminal values of the modulus functions are related, so that the quantity$24@l(`,T)
12m(`,T)1m(`,T)#1n(`,T)% should also approach zero. This condition was no
enforced here. The choice we have made forl(t,T) is representative of the general
behavior of polymers, but we also briefly examined the influence of different choices
l(t,T) on the resulting calculation form(t,T) @Schultheisz and McKenna~1999!#. We

FIG. 7. Symbols are the measured data for the axial normal force for the experiments at 32.80, 35.51,
37.93 °C. The lines are the corresponding model predictions calculated from Eqs.~14! and ~15! using the
functions forl(t,T), m(t,T), m(t,T), andn(t,T) given in Eqs.~19!, ~20!, ~22!, and~23!. Solid lines use the
unweighted fit form(t,T) ~parameters in Table III!; dashed lines use the weighted fit form(t,T) ~parameters in
Table IV!.
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investigated two forms for l(t,T): first, l 5 constant, and second,l(t,T)
5 Cm(t,T), with C a constant. The constant in either case was determined by specify-

ing Poisson’s ratio at timet 5 0, which was also used in definingl(t,T) in Eqs.~20! and
~21!. These two choices represent rough limits on the expected behavior ofl(t,T). In the
first case, withl 5 constant, Poisson’s ratio is a slightly increasing function of time and
the relative decrease in the bulk modulus is minimized; this case is equivalent to assum
ing that the relaxation behavior ofl lies outside the time of the measurements. In the
second case, withl(t,T) 5 Cm(t,T), Poisson’s ratio is nearly constant, and the relative
change in the bulk modulus is equal to the relative change in the shear modulusm(t,T),
since the bulk modulus is then also a multiple ofm(t,T). For either of these limit cases,
m(t,T) is still found to be a monotonic function of time, which is negative and about an
order of magnitude larger thanm(t,T), similar to the result in Fig. 6. The most significant
difference between these limit cases is that the magnitude of the relaxation ofl(t,T)
during the time of the experiments changes by approximately one decade, which leads t
a change of similar magnitude in the terminal behavior ofm(t,T). The choice forl(t,T)
in the present paper lies between the two limit cases. Changing the magnitude ofl(t,T)
~by choosing a different value of Poisson’s ratio att 5 0! would lead to a corresponding
shift in the magnitude ofm(t,T). Shifting the characteristic relaxation time ofl(t,T) by
one or two decades either way also does not have a significant impact onm(t,T).
Conversely, assuming a behavior form(t,T) to calculatel(t,T) appears to be an unstable
process in that small changes inm(t,T) can cause large, physically unreasonable results
for l(t,T).

FIG. 8. Symbols are the measured data ford(t,T) 5 @V(t,T)2Vref(T)#/Vref(T) for the experiments at 32.80,
35.51, and 37.93 °C. The lines are the corresponding model predictions calculated from Eq.~14! using the
functions forl(t,T), m(t,T), m(t,T), andn(t,T) given in Eqs.~19!, ~20!, ~22!, and~23!. Solid lines use the
unweighted fit form(t,T) ~parameters in Table III!; dashed lines use the weighted fit form(t,T) ~parameters in
Table IV!.
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922 C. R. SCHULTHEISZ AND G. B. MCKENNA
It does not appear to be possible to determinel(t,T) andm(t,T) unambiguously from
the torsional deformation alone, such as by mapping out the variations in the meas
ments as functions of strain level and/or cylinder radius. A separate test in a diffe
geometry could be used to evaluate the different modulus functions and validate
model. A simple shear test would lead to equations that involve the same four mod
functionsl(t,T), m(t,T), m(t,T), andn(t,T), but in different combinations. A uniaxial
stress relaxation test of the cylinder in which the axial strain was imposed and the a
stress and the transverse strains were measured~in conjunction with the torsion test!
would provide two equations in addition to Eqs.~16!, ~17!, and ~18!, giving five equa-
tions involving the five modulus functions that arise from Murnaghan’s analysis:l(t,T),
m(t,T), l (t,T), m(t,T), and n(t,T). It is not possible to perform such a test in the
torsional dilatometer, so it would be important to ensure that the materials and ther
histories for the different tests matched closely.

For simple shear of a sample where the lateral faces are free to expand or contrac
model predicts behavior similar to that found in the torsional deformation. The sh
stress would be the same as in the linearized theory, the normal stress would relax
time scale similar to the shear stress, and the volume change would demonstrat
tended, nonmonotonic relaxation. Similarly, for torsion of a cylinder in which the en
are free to move, the net volumetric strain is predicted to be nearly the same as fo
case where the ends are fixed. In this situation, the axial strain is predicted to be pos
and nearly constant with time, while the radial strain would be initially close to zero b
increasingly negative with time until it offsets the axial strain.

Our findings that bothm(t,T) andn(t,T) are negative and about an order of magni
tude larger thanm(t,T) are consistent with experimental results of Bridgman~1948! as
examined by Murnaghan~1951! within the context of his theory. Bridgman~1948! in-
vestigated the hydrostatic compression of the metal sodium. For those data, Murna
calculated that the parameter (9l 1n) was negative and approximately 190 times larger i
magnitude than (3l12m), wherel is the third of the higher-order elastic constants in th
theory, which does not play a role in the case of torsional deformation. One might exp
that these higher-order parameters must be larger than the Lame´ constants because they
multiply the strains raised to the second power to give stresses, with the strains b
small quantities within the range of applicability of Murnaghan’s formulation.

In the torsion problem, the magnitude of the strain is governed byc, the angle of twist
per unit length of the cylinder, and from Eqs.~11!, ~14!, and~15!, it can be seen that the
moment only includes a term linear inc and the normal force and radial expansion
include only terms inc2. The behavior that can be described by the theory is thus limit
by truncating the series solutions to terms of order lower thanc3. The series could be
extended to include additional terms to capture nonlinearity in the moment with incre
ing c. Earlier work by Duran and McKenna~1990! suggests that the strain level used fo
the testing in this report is still in the regime where the torque is a nearly linear funct
of the strain, so the single term in the shear modulus is sufficient to describe the to
response. The momentM is an odd function ofc, soM would include only odd powers
of c, while the normal force and radial expansion are even functions ofc, and so would
include only even powers ofc. Extending the series to terms of orderc3 would allow for
nonlinearity in the moment, but would introduce four additional parameters in Mu
naghan’s solution. Similarly, extending the series to terms of orderc4 would allow for
more flexibility in describing the normal force and radial expansion, but would introdu
another five parameters. This procedure might be feasible, given sufficient data on
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923NONLINEAR VISCOELASTIC ANALYSIS
torque, normal force and volume change as a functionc, but evaluating all the new
parameters separately would be impossible without other experiments in addition to t
torsion tests.

For the experiments reported in the present paper, the analysis of the nonlinear
sponse to the torsional deformation may be complicated by the effects of the temperat
jumps, which were used to investigate the relation between volume recovery and physi
aging. More accurate measurements of the material response to the torsion could be m
by first allowing the sample to reach thermal equilibrium~and possibly thermodynamic
equilibrium! before making the connection between the sample grip and the motor,
was done in an earlier investigation with the torsional dilatometer@Duran and McKenna
~1990!#. The scaling of the calculated material properties for the present model could al
be more thoroughly investigated by varying the angle of twist per unit lengthc, which
has also been done in previous experiments@Duran and McKenna~1990!; Santoreet al.
~1991!#. The previous studies used different methods of analyzing the data@Duran and
McKenna~1990!; Santoreet al. ~1991!; Waldronet al. ~1995!#.

V. CONCLUSIONS

The NIST torsional dilatometer has been used to make simultaneous measurement
the torque, axial normal force, and volume change in response to a torsional deformat
of an epoxy cylinder that was aged into equilibrium at temperatures approximate
5–10 °C below the nominal glass transition temperature. The range of observed rel
ation behaviors is quite rich. In response to the torsional deformation, the torque and ax
normal force behaved as expected, decaying monotonically over time, but the volum
change displayed an extended relaxation that varies with temperature and shows a
nificant nonmonotonic decay at the lowest temperature investigated. This nonmonoto
volume change has not been reported previously.

We modified Murnaghan’s~1951! series expansion solution for torsion of compress-
ible materials in two ways. First, we extended the solution to torsion of a cylinder wit
fixed ends. More importantly, we followed the suggestion of Rivlin~1956! that isochronal
data from stress relaxation experiments can be treated as elastic data. We constru
viscoelastic forms for the Murnaghan nonlinear modulus terms.

Our results demonstrate that, upon using classical concepts such as time-tempera
superposition, and assuming that the modulus functions in the Murnaghan model
monotonic functions in time, we can reproduce qualitatively the nonmonotonic nature
the volume response in torsion observed in the epoxy at the lowest measurement te
perature. While this result does not ‘‘explain’’ the mechanism of the nonmonotonic vo
ume relaxation, it moves the observation to a level of the nature of the continuu
relaxation functions.

Finally, we suggest that further investigation is required to provide a quantitativ
description of the observed results. This implies the need for more complete models
compressible material viscoelasticity than are currently available as well as more expe
mentation in the NIST torsional dilatometer that is combined with experiments in othe
geometries of deformation such as uniaxial extension with direct measurement of t
lateral strains.
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