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Spatially correlated dynamics in a simulated glass-forming polymer melt:
Analysis of clustering phenomena
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In recent years, experimental and computational studies have demonstrated that the dynamics of glass-
forming liquids are spatially heterogeneous, exhibiting regions of temporarily enhanced or diminished mobil-
ity. Here we present a detailed analysis of dynamical heterogeneity in a simulated ‘‘bead-spring’’ model of a
low-molecular-weight polymer melt. We investigate the transient nature and size distribution of clusters of
‘‘mobile’’ chain segments~monomers! as the polymer melt is cooled toward its glass transition. We also
explore the dependence of this clustering on the way in which the mobile subset is defined. We show that the
mean cluster size is time dependent with a peak at intermediate time, and that the mean cluster size at the peak
time grows with decreasing temperatureT. We show that for eachT a particular fraction of particles maximizes
the mean cluster size at some characteristic time, and this fraction depends onT. The growing size of the
clusters demonstrates the growing range of correlated motion, previously reported for this same system@C.
Benemanet al. Nature~London! 399, 246 ~1999!#. The distribution of cluster sizes approaches a power law
near the mode-coupling temperature, similar to behavior reported for a simulated binary mixture and a dense
colloidal suspension, but with a different exponent. We calculate the correlation length of the clusters, and
show that it exhibits similar temperature- and time-dependent behavior as the mean cluster size, with a
maximum at intermediate time. We show that the characteristic time of the maximum cluster size follows the
scaling predicted by mode-coupling theory~MCT! for the b time scale, revealing a possible connection
between spatially heterogeneous dynamics and MCT.

DOI: 10.1103/PhysRevE.64.051503 PACS number~s!: 64.70.Pf
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I. INTRODUCTION

The cooperative nature of molecular motion is conside
one of the canonical features of liquids approaching th
glass transition@1,2#. However, relatively few details ar
known concerning how and under what conditions coope
ivity arises in these liquids, and in particular how coope
tive motion is related to other canonical features of de
liquids and the glass transition. Numerous computatio
@3–18# and experimental@19–32# studies have demonstrate
that dense liquids above their glass transition exhibit s
tially heterogeneous dynamics~‘‘dynamical heterogeneity’’!;
that is, regions within the liquid exhibit enhanced or dimi
ished mobility relative to the average on some time sc
@32–36#, which, depending on the system, type of expe
ment, and temperatureT relative to the glass transition tem
peratureTg , can be less than, comparable to, or larger th
the characteristic time for the decay of density fluctuatio
~the so-calleda relaxation timeta). In some studies~e.g.,
NMR studies@19,20,27,28#!, direct spatial information on
the location of temporarily enhanced or reduced mobi
molecules is lacking, but spatial correlation between dyna
cally similar molecules, and thus the existence of dyna
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cally heterogeneous regions, can be inferred. In other stu
~e.g., fluorescent probe studies@37,38#!, more direct informa-
tion about the existence and size of dynamically hetero
neous regions can be extracted.

In computer simulations@3–18# and microscopy studies
of colloidal suspensions@30,31#, where detailed information
on the trajectories of individual model particles is direc
accessible, the existence of dynamically heterogeneous
gions has been directly observed and quantified. In th
studies, the connection between dynamical heterogeneity
cooperativity, in which particles move together in the sa
direction in a correlated fashion, has been further elucida
@4,24,31,39#. For example, in Refs.@3–6#, it was shown in a
binary Lennard-Jones~LJ! mixture that at any given momen
most particles can be found trapped in ‘‘cages’’ formed
their neighbors, while roughly 5–6 % constitute a highly m
bile subset that is breaking out of these cages. It was fur
shown that these mobile, ‘‘escaping’’ particles move coo
eratively in stringlike paths, forming clusters of string
which grow in size with decreasing temperature on a
proaching the mode-coupling temperatureTMCT , where
TMCT is the crossover temperature predicted by mo
coupling theory~MCT! @40# below which the dynamics are
dominated by activated processes@41,42#. Typically, TMCT is
roughly 1.1Tg–1.5Tg @43#. The distribution of string lengths
was found to be exponential, while the cluster size distrib
tion P(n) was found to follow a power lawP(n);n2t with
t'2. Recent experiments on suspensions of hard sphere
loids confirmed the clustering of a highly mobile subset
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GEBREMICHAEL, SCHRO”DER, STARR, AND GLOTZER PHYSICAL REVIEW E64 051503
particles above the colloidal glass transition;P(n) was found
to obey a power law with roughly the same exponent@31#.
They also confirmed the tendency for the cluster size to
crease as the glass transition is approached.

In a recent study of the dynamics of a binary LJ mixtu
in terms of the potential energy surface@41#, a preliminary
attempt was made to connect cooperativity and dynam
heterogeneity to the potential energy landscape~PEL! de-
scription of glass-forming liquids@44#. In the PEL paradigm,
the motion is partitioned into vibrations around stable pot
tial energy minima and infrequent basin transitions that g
rise to structural rearrangement. Reference@41# reported that,
at sufficiently lowT, transitions between basins of attractio
on the potential energy surface are facilitated by partic
moving in stringlike clusters, suggesting that cooperativ
becomes a critical channel for relaxation at sufficien
low T.

In this paper we investigate the spatially heterogene
motion of monomers in a bead-spring model of a cold, de
polymer melt. Our results are obtained by analyzing mole
lar dynamics simulations of a polymer melt@8,45#. Refer-
ence @8# showed via calculation of a ‘‘displacemen
displacement’’ pair-correlation function that the dynamics
monomers is spatially correlated, that this correlation is ti
dependent, and that the amount of correlation increases
idly as the melt is cooled. Here we take a different approa
similar to that taken in Refs.@5,6#, and investigate the clus
tering of the most highly mobile monomers in any giv
time window. In this way we obtain additional insight int
the spatially heterogeneous dynamics of the melt.

We show the transient nature and temperature depend
of the clusters formed by the mobile monomers, which i
result of the cooperative rearrangement of the monom
We show that the mean cluster size, a measure of the ex
of cooperativity, grows and shrinks during the time windo
when the mean square displacement of the monom
changes from the ballistic regime to the subdiffusive regim
Moreover, the maximum average cluster size grows with
creasingT. We show that the distribution of cluster size
approaches a power law upon cooling toward the mo
coupling temperature. We also show that the correlat
length of clusters exhibits a similar time and temperat
behavior as the mean cluster size, demonstrating the e
tence of a growing length scale on cooling.

The paper is organized as follows. In Sec. II we brie
describe the model and simulation details. In Sec. III
investigate correlated motion by analyzing clusters of ‘‘m
bile’’ monomers—i.e., those that undergo large displa
ments in a variable time intervalDt. We calculate the size o
the clusters and compare different methods of choosing
bile monomers. In Secs. IV and V we analyze the behav
and distribution of clusters as a function of time and te
perature. In Sec. VI we calculate a correlation length for
clusters, and demonstrate its time-dependent nature. A
cussion and summary follow in Secs. VII and VIII.

II. MODEL AND SIMULATION

We study a system of 120 polymer chains modeled b
coarse-grained, bead-spring description. Each chain is c
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posed of ten monomers~beads! with massm set to unity.
Monomers are modeled as Lennard-Jones particles„with po-
tentialVLJ54e@(s/r )122(s/r )6#… with a finitely extensible,
nonlinear elastic~FENE! potential „VFENE52(k/2)R0

2ln@1
2(r/R0)

2#… connecting nearest neighbors along a ch
@48,49#. The parameterse ands in the LJ potentials are se
to unity. The parameters of the FENE potential are chose
k530 andR051.5, producing relatively stiff bonds, and pre
venting crystallization at lower temperatures due to the pr
ence of incompatible preferred length scales~which corre-
spond to the positions of the minima of the pure LJ poten
for nonbonded monomers and the combined LJ1 FENE
potential for bonded monomers!. We analyze the simulation
of Refs.@8,45#, consisting of eight state points with averag
pressurep51, and temperatureT ranging from 0.46 to 0.7.
~Here, and in the remainder of the paper, all units are quo
in reduced units; length in units ofs, temperatureT in units
of e/kB , time in units ofsAm/e!. The densityr is adjusted
between 0.98<r<1.04 in order to follow an isobaric path
All quantities presented here are calculated by averaging
tween 150 and 200 independent configurations, except
the lowest temperature where we used 60 independent
figurations for averaging.

As described in Refs.@8,45#, the system is equilibrated a
all thermodynamic state points by allowing each chain
propagate several times the distance of the radius of gyra
before any trajectories were stored. Additionally, we ca
fully checked that the time correlation functions calculat
from these trajectories are independent of the time ori
chosen, and decay to zero within the time scale of the sim
lations. In this way, we confirm that there is no aging
other nonequilibrium behavior that might skew our resu
References@8,45# found that the mode-coupling temperatu
for this system isTMCT50.4560.01, andT050.3460.02
@45#, the so-called ideal glass transition temperature e
mated from the Vogel-Tammann-Fulcher~VTF! equation,
which is typically close to the Kauzmann temperatureTK ,
the temperature where the extrapolated liquid and crystal
tropy are equal@1,43#. More details of the simulation may b
found in Refs.@8,45#.

III. CALCULATION OF MEAN CLUSTER SIZE

In the cooled liquid we study, it is known from, e.g
calculations of the mean square displacement^r 2(Dt)&, that
at intermediate times monomers on average are trappe
localized in cages formed by their neighbors~Fig. 1!. In a
similar model glass-forming binary LJ mixture, it was dem
onstrated that at any given time most of the particles can
found oscillating in these cages, with only approximate
5–6 % of the particles undergoing significant displacemen
that time. At a later time, of course, a different subset
particles can be found moving beyond their cage. In
range ofT studied in that work, however, as in the prese
study, the distribution of particle~or monomer! displace-
ments as measured by the self van Hove distribution func
is continuous and unimodal, exhibiting at most a long tail
large displacements~in some liquids, this tail becomes a se
ondary peak at sufficiently lowT @46#!. This makes the iden-
3-2
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SPATIALLY CORRELATED DYNAMICS IN A . . . PHYSICAL REVIEW E64 051503
tification of mobile particles substantially more difficult tha
if the distribution of particle displacements were, say, bim
dal, in which case there would be a clearly motivated cr
rion for identifying mobile particles.

Our goal in this section is to determine an appropri
method of choosing the most mobile monomers in a ti
intervalDt in order to best establish the nature of dynami
heterogeneity in our model liquid. To do this, we will as
whether there is a subset of mobile monomers that fo
clusters as in the LJ liquid studied in Refs.@3,5,6# and the
colloidal liquids studied in Refs.@30,31#, and, if so, how
should this subset be chosen? To answer these question
will compare two methods of identifying the appropria
subset of monomers. We first apply a method that utilizes
crossing point of the self van Hove distribution function a
Gaussian distribution function as a reference displacem
for identifying the most mobile monomers in a given interv
of time, as used in Refs.@3–6#. In the second method, w
again consider the most mobile monomers in a given t
interval, but we vary the fraction of monomers included
the subset, choosing the fraction that shows the stron
tendency for clustering. For both methods, we investigate
time and temperature dependence of clusters formed by t
monomers, focusing on the time window where^r 2(Dt)&
exhibits ballistic, plateau, and subdiffusive regimes~Fig. 1!
@47#. We also investigate the distribution of cluster sizes
mobile monomers, and the time and temperature depend
of this distribution.

A. Fixed fraction

Previous studies@3,5,6# identified the mobile subset a
those particles that, in an intervalDt* , move further than
some distancer * . Specifically,Dt* is defined as the time
interval when the non-Gaussian parametera2(Dt), which
measures the degree to which the distribution of particle
placements differs from Gaussian, is maximum@50#. The
quantityr * is defined as the crossing point of the self part
the van Hove correlation function@51#

FIG. 1. Monomer mean square displacement^r 2(Dt)& for sev-
eral temperatures showing ballistic, plateau, and subdiffusive
gimes. The subdiffusive regime is followed at late time by a dif
sive regime~not shown!.
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1

N K (
i 51

N

d„r i~Dt !2r i~0!2r …L , ~1!

which measures the probability density of particle displa
ments, and the Gaussian distribution

G0~r ,Dt !5S 3

2p^r 2~Dt !&
D 3/2

expS 23r 2

2^r 2~Dt !&
D , ~2!

calculated with the measured value of^r 2(Dt)& at Dt
5Dt* .

In Fig. 2, we plotGs(r ,Dt* ) andG0(r ,Dt* ) to identify
r * . The fractionf of the monomers that are mobile is d
fined by integratingGs(r ,Dt* ) for r>r * , i.e.,

f[E
r*

`

4pr 2Gs~r ,Dt* !dr. ~3!

Using this method on a binary LJ mixture,f was found to
constitute approximately 5.5% of the total number of p
ticles, independent ofT and r @3–6#. Following the same
procedure, we find 6.2%<f<6.8% ~Table I!. Thus for con-
venience we will use an intermediate value off56.5% for
studies with a fixed fraction of mobile monomers.

Oncef is selected, the subset of monomers that is c
sidered mobile in each time intervalDt is identified by rank-
ing the scalar displacement of all monomers inDt, and
choosing the 6.5% with the largest value. In any givenDt,
the number of mobile monomers defined in this way is n
essarily the same, but the membership will generally be
ferent since a monomer that is mobile in one time inter
may be caged in the next, and vice versa.

We define clusters@5,6# as groups of highly mobile mono
mers that are within the first neighbor shell of each oth
@52#, where the first neighbor shell is defined by the distan
of the first minimum (r 51.5) of the pair correlation function
g(r ) @51,53#. An example of the clusters formed by the 6.5
most mobile monomers is shown forT50.46 at earlyDt

e- FIG. 2. The radially averaged van Hove correlation functi
Gs(r ,Dt) at Dt5Dt* for T50.46, plotted with the Gaussian dis
tribution G0(r ,Dt* ). Mobile monomers are defined as those mon
mers that, duringDt, moved a distance greater thanr * .
3-3
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TABLE I. f I refers to the fractionf of highly mobile monomers at a timeDt* whena2 is maximum~Sec. III A!, andf II refers to the
fraction that maximizes the normalized weight-averaged cluster size for eachT ~Sec. III B!. At eachT, f,fc , wherefc is the value off
at the percolation threshold~see Appendix A!. The normalization factorS0 is the initial ~or, correspondingly, the random! value of the
weight-averaged cluster size of the fraction considered.S0

I refers to the value ofS0 at eachT for f56.5%, used to evaluateS(Dt) using the
procedure outlined in Sec. III A.S0

II refers to the value ofS0 at eachT for a fraction corresponding tof II . Note thatS0
I is nearly constant,

S0
I 52.6560.1 for all T, while S0

II varies considerably becausef is different for each state point. The error bars in calculatingf I reflect the
uncertainty in estimatingr * for the evaluation off from Eq. ~3!. The error bars in estimatingf II reflect the range off over which the
fraction that maximizesS could be identified with confidence.

T 0.46 0.47 0.48 0.5 0.52 0.55 0.6 0.7

f I 6.460.5% 6.260.4% 6.860.5% 6.560.3% 6.760.6% 6.760.6% 6.560.7% 6.360.7%
f II 561% 5.560.5 5.560.5% 661% 6.560.5% 761% 7.560.5% 861%
S0

I 2.6660.05 2.5860.02 2.760.03 2.5560.02 2.6460.01 2.6160.01 2.7660.03 2.6260.02
S0

II 2.0660.06 2.2260.16 2.2660.2 2.3660.04 2.6460.24 2.8160.53 3.2760.26 3.3160.03
fc 7.160.4% 860.2% 7.460.1% 8.260.1% 8.860.2% 960.3% 9.860.1% 10.660.1%
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@Fig. 3~a!#, and at intermediateDt @Fig. 3~b!#. We see that
the typical cluster size depends upon the time window
observationDt; smaller clusters appear at earlyDt, and
larger clusters appear at intermediateDt, when ^r 2(Dt)&
crosses over from the plateau regime to the subdiffusive
gime. Such transient clustering of mobile particles has a
been observed experimentally in dense colloidal suspens
using a confocal microscope@31#, by looking at the
~roughly! 5% most mobile particles as in Refs.@5,6#.

To quantify the clustering of mobile monomers, we c
culate the weight-averaged mean cluster size@54#,

Sw~Dt !5
^n2~Dt !&

^n~Dt !&
5

( n2~Dt !P„n~Dt !…

( n~Dt !P„n~Dt !…

. ~4!

Here P(n) is the probability of finding a cluster of sizen,
andnP(n) is the probability that a randomly chosen mob
monomer belongs to a cluster of sizen. Sw(Dt) defined in
this way is the average size of a cluster to which a rando
chosen mobile monomer belongs.

We normalizeSw by the average sizeS0 of clusters
formed by mobile monomers at the initialDt ~i.e., one mo-
lecular dynamics time step!, and find that, at eachT, S0
~reported in Table I! coincides with the average cluster si
found by selecting monomers randomly@55#. This demon-
strates that short-time monomer motion is uncorrelated
found previously for this system using an alternative~non-
cluster-based! analysis approach@8#, and as found in both the
LJ liquid referred to previously@7# and a colloidal suspen
sion @30,31#. Following convention@5,54#, any spanning
clusters present in a given snapshot are omitted from
calculation to minimize finite size effects. In Fig. 4, we sho
the normalized mean cluster sizeS[Sw /S0 for severalT.
We find that the clusters formed by the most mobile mo
mers ‘‘grow’’ and ‘‘shrink’’ as the window of observation
increases. Furthermore, the maximum amplitude ofS(Dt)
shown in the inset of Fig. 4 increases with decreasingT,
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FIG. 3. Clusters formed by the 6.5% most mobile monomers~a!
at early time (Dt50.002) and~b! at intermediate time (Dt545.4),
for T50.46. Each monomer is represented as a sphere, and con
tivity information has been suppressed. Monomers belonging to
same cluster are colored the same shade of gray. Note that onl
most mobile monomers out of the 1200 total monomers are sh
in the figure.
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SPATIALLY CORRELATED DYNAMICS IN A . . . PHYSICAL REVIEW E64 051503
indicating that the monomer motion becomes increasin
spatially correlated as the melt becomes colder and m
dense.

The behavior ofS(Dt) can be interpreted by comparin
with ^r 2(Dt)& ~Fig. 1!. Consider, for example, the behavio
of S at T50.46. For smallDt (Dt&231021), the mono-
mers’ motion is ballistic, and so the probability of findin
large clusters is negligibly small, since we are simply cho
ing the most highly mobile monomers from the tail of th
Maxwell-Boltzmann velocity distribution, and these mon
mers are randomly distributed in space; at these short ti
Gs(r ,t) is well approximated by a Gaussian. At slight
longer Dt (231021&Dt&10, the plateau regime! the mo-
tion of monomers is restricted to ‘‘rattling’’ within the cag
formed by neighboring monomers. Thus, big clusters are
likely to be formed since the particles do not move lar
distances, and are consequently less likely to affect the
tion of others. Between the plateau and subdiffusive regim
(10&Dt&103), when the monomers begin to escape fro
their cages@11#, the motion of one monomer becomes high
influenced by the motion of others around it; a monom
cannot move unless its neighbors also move, causing l
clusters to be formed.

At the longest time scale we probe (Dt*103), the mono-
mers’ displacement is subdiffusive„characterized by
^r 2(t)&;t0.6260.03

… @45,56#. At this time scale, the probabil
ity of finding large clusters again decreases, indicating
increased tendency toward uncorrelated motion. Never
less,Sw(Dt) is still greater than the random valueS0. This
may be due to the presence of some persistent correla
since the monomers are not yet completely diffusive, or p
sibly to polymer specific effects, or both; we postpone f
ther discussion of this long-time behavior to future inves
gation. We note that during this time scale, while the mot
of monomers becomes uncorrelated and their displaceme
subdiffusive, the fraction of mobile monomers comprised
end monomers significantly increases from its mean fi
value f end'0.2 in the ballistic or the plateau regime~see
Appendix B for detailed discussion of the contribution of e

FIG. 4. Normalized mean cluster sizeS(Dt) for f56.5% for all
T. The inset showsSmax[S(Dtmax) versusT, whereDtmax is the time
at which S is maximal. Actual~unnormalized! cluster sizes are
nearly three times larger than those shown.
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monomers to the mobile subset!.
The behavior ofS(Dt) is qualitatively similar to that of a

generalized susceptibilitykU(Dt) calculated for this same
system in Ref.@8#. kU is related to the volume integral of th
displacement-displacement correlation function~essentially a
density-density correlation function, but with every particle
contribution weighted by its scalar displacement inDt) in
the same way as the isothermal compressibilitykT in a fluid
is related to the volume integral of the density-density c
relation function. Accordingly,kU(Dt) is proportional to the
fluctuations in the total system displacement at timeDt, in
the same way askT is proportional to the fluctuations in th
number of particles in the fluid.

The similarity betweenS and kU is not surprising, since
the scalar displacements of the most highly mobile mo
mers inDt are included inkU . However, the peak time o
S(Dt), which coincides with the crossover between the p
teau and subdiffusive regimes, precedes that ofkU(Dt) ~by
less than a factor of 10 atT50.46). This suggests that th
cooperative motion of monomers, which requires cluster
and allows the monomers to escape from their cages,
precursor to the more global dynamical heterogeneity m
sured bykU .

B. Variable fraction

The method outlined in the last section for selecting
fraction of mobile monomers ensures a clearly defined
reproducible subset of the most mobile monomers in a gi
time window, and can be easily applied to any system. Ho
ever, there is noa priori reason why this should be the defi
nition of choice, and in particular whether this fraction
more spatially correlated than some other fraction. T
‘‘ideal’’ fraction is the one that most clearly and natural
captures dynamical correlation. To search for this ‘‘natura
fraction, and to check if it is substantially different from th
fraction used in the previous section, we select a subse
highly mobile monomers by varyingf, and then choosing
that fraction that maximizesS(Dt) for all Dt.

We find that S(Dt) is maximum for f in the range
5%–8% for all T considered, e.g.,S is maximum atf
55% for T50.46 and at 8% forT50.7. Table I shows a
complete list of fractionsf II that maximizeS at eachT. In
Fig. 5 we showS(Dt) for T50.46 andT50.7 for four val-
ues off. We have checkedS at 1% intervals off to deter-
mine the fractionf that maximizesS(Dt). However, for the
sake of clarity, we show only a few representativef, includ-
ing thef that yields a maximal value ofS.

Using those fractionsf II reported in Table I that maxi-
mize the cluster size for eachT, we calculateS(Dt) for each
T, as shown in Fig. 6. We find that this second method d
not alter the qualitative features of the time and tempera
dependence ofS found by the first method. However, ther
are slight quantitative differences in the values ofS. The
peak values ofS obtained from the variable fraction metho
are slightly larger~at most by'13%) than the method tha
at eachT uses fixedf56.5%. Since this difference inSfrom
the two methods is not dramatic, we perform all subsequ
analysis using a fixed fractionf56.5% for allT.
3-5
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IV. TEMPERATURE DEPENDENCE OF PEAK AVERAGE
CLUSTER SIZE

We next focus on the temperature dependence of
maximum valueSmax of S(Dt), and the timeDtmax at which
S(Dt) is maximum. Examination of Fig. 1 shows thatDtmax
is in the time window when monomers escape from th
cages, as indicated by the increase of^r 2(Dt)& from the pla-
teau toward the subdiffusive regime; this time also cor
sponds roughly to theb relaxation regime@40#. The shift in
Dtmax to longerDt asT decreases reflects the increase in
time scale necessary for a monomer to break free from

FIG. 5. Normalized weight-averaged cluster sizeS(Dt) as a
function of time window for selectedf for ~a! T50.7, and~b! T
50.46. For these two state points,S(Dt) is maximized byf
58% andf55%, respectively. Only a few selected fractions a
shown for the clarity of the graph.

FIG. 6. Normalized weight-averaged cluster size as a func
of time for different temperatures using the fractionf of mobile
monomers that provides the largest average cluster for the g
temperature. The inset showsSmax[S(Dtmax) versusT, whereDtmax

is the time at whichS is maximal. Actual~unnormalized! cluster
sizes are nearly three times larger than those shown.
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cage, which requires the participation of larger groups
monomers on increased cooling towardTg . At eachT, this
peak time is close to, but slightly earlier than, the time sc
wherea2(Dt) is maximum.

The T dependence ofDtmax can be studied by fitting the
data by various functional forms. One choice is to fit the d
by a power law. In the temperature regime we study, ot
characteristic times, such asta , follow power law behavior,
as predicted by the mode-coupling theory@40#. Additionally,
the time t* when the non-Gaussian parameter is maxim
has been found to follow a power law in (T2TMCT) @57#.
Also, Ref. @8# found that the time when the correlations
measured by a displacement-displacement correlation fu
tion are maximum, can be fitted by a power law in (T
2TMCT). Motivated by these findings, we fitted the data b

Dtmax;~T2TMCT!2x. ~5!

Figure 7~a! shows the best fit obtained by fixingTMCT
50.45. Dtmax shows a reasonable power law behavior w
x51.4760.16 in the temperature regime where MCT hold
The deviation from power law at the lowestT, which is
commonly observed for dynamical quantities, is expec
due to the breakdown of MCT nearTMCT @58,59#.

MCT predicts theb time scalete satisfies the relationte
;(T2TMCT)21/2a wherea is uniquely determined by fixing
any other exponent used by MCT. However, unambigu
identification of a time scale that has the predicted scaling
te has been notoriously difficult in simulations of supe
cooled liquids @60#. Within a MCT analysis of the same
simulation data examined here, Ref.@45# found that g
51.95, and so MCT predictsa50.352, and thus 1/2a
51.42, which is within numerical uncertainty of the exp
nentx determined fromDtmax. Thus,Dtmax follows the pre-
dicted scaling law for theb time scale, and exposes an u

n

en

FIG. 7. Temperature dependence ofDtmax, using the top 6.5%
mobile monomers, fitted to~a! a power law@Eq. ~5!#, with TMCT

50.45, yieldingg51.4760.16, and~b! a VTF expression@Eq. ~6!#,
yielding E50.5460.07 and T050.3560.02 plotted on linear-
logarithmic axes.
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expected, although perhaps not surprising, connec
between dynamical heterogeneity and MCT. The corresp
dence ofDtmax with te , and the fact thatDtmax andta would
appear to diverge at the same temperature if the functio
forms continued to hold to lowerT, suggests that the two
time scales represent a hierarchy of events in the relaxa
process, consistent with the MCT prediction of two tim
scale relaxation process.

Another functional form for theT dependence of dynami
cal quantities that often holds in supercooled liquids is giv
by the well known Vogel-Tammann-Fulcher equation@1#

Dtmax;expS E

T2T0
D . ~6!

The fit of this expression to the data is shown in Fig. 7~b!.
We find a reasonable agreement with the VTF form w
T050.3560.02; this value agrees with the valueT050.34
60.02 found by fittingta , defined as the time at which th
incoherent~self! part of the intermediate scattering functio
Fq

inc(ta)50.3 @45#. Note thatta occurs at a later time tha
Dtmax. The numerical results for these quantities are sum
rized in Table II.

The observation of a growing cluster size shown in
insets of Figs. 4 and 6 is consistent with the results of R
@5#, and with earlier hypotheses that dynamics in supercoo
fluids involves the motion of molecules within ‘‘coopera
tively rearranging regions’’@61–66#, whose size grows a
the glass transition is approached on cooling. In the Ada
Gibbs theory@61#, the smallest possible sizez* that can give
rise to a cooperative rearrangement is inversely proportio
to the configurational entropy of the system@1#, which is a
measure of the number of mechanically stable states sam
by the system. The direct connection betweenz* and the
mean cluster size of mobile monomers in our analysis is
immediately evident. However, we can discuss the impli
tions of growing cluster sizes in the spirit of the Adam-Gib
theory, which has proved to be useful for the interpretat
of transport and relaxation in supercooled liquids@67–71#.

The Adam-Gibbs theory predicts that a thermodynam
glass transition occurs at a finiteT as the configurationa
entropy vanishes. As a consequence, the theory also pre
thatz* diverges at nonzero temperature. However, our re
for Smax[S(Dtmax) showing ArrheniusT ~i.e., VTF with T0
50, Fig. 8! dependence over the~admittedly narrow! range
of temperatures we have simulated implies that the m

TABLE II. Fitting parameters forDtmax and ta obtained from
the power law and VTF fits. The exponents are results from a
using the power law of Eq.~5! with TMCT50.45 fixed, as estimated
from previous work@8,45#. The parametersT0 andE are results of
fitting using the VTF form in Eq.~6!. Our results forT0 are con-
sistent with the valueT050.3460.02 reported in@45#.

Exponent T0 E

Dtmax 1.4760.16 0.3560.02 0.5460.07

ta 1.9560.15 0.3460.02 0.9360.1
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cluster size does not diverge at nonzero temperature@72#.
This may indicate that theT range studied is too far fromTg
to reliably estimate theT at whichS might diverge. Alterna-
tively, Smax may not be an appropriate measure ofz* , since
Smax measures theaveragesize of clusters formed by the
mobile monomers that move in a cooperative manner~the
‘‘max’’ refers to the fact that there is a time scale on whi
S is maximal!, while z* is theminimumsize of cooperatively
rearranging regions of the entire system. Additionally,
find thatSdepends on the time window of observation wh
the time dependence ofz* is not defined.

V. CLUSTER SIZE DISTRIBUTION P„n…

In the previous section, we examined the average clu
size S. Here we examine the cluster size distributionP(n),
and study both the time and temperature dependence of
quantity. We first considerP(n) at the lowest temperatur
(T50.46) for severalDt @Figs. 9~a! and 9~b!#. At early

t

FIG. 8. Temperature dependence ofSmax fitted to the Arrhenius
form Smax;exp(E/T), with E50.9860.02, plotted on semilogarith
mic axes~logarithm ofSmax).

FIG. 9. Probability distributionP(n) of cluster sizes atT
50.46 for different times as time progresses~a! from early time
(Dt50.02) to the peak time (Dt565.9), and~b! from the peak time
(t565.9) to the subdiffusive regime (Dt511 939.5).
3-7
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times, we find thatP(n) is dominated by smaller clusters, a
expected from the fact thatS(Dt) is small at earlyDt. As Dt
increases through the plateau regime of^r 2(Dt)& ~Fig. 1!,
larger clusters contribute significantly toP(n). As Dt con-
tinues to increase into the subdiffusive regime,P(n) again
becomes dominated by small clusters.

We now compareP(n) for differentT at the characteristic
time Dtmax. Figure 10 shows that asT decreasesP(n,Dtmax)
becomes dominated by larger clusters. This is a consequ
of correlated motion of monomers asT approachesTMCT ,
which is expected from the behavior ofS(Dt) presented ear
lier. We find thatP(n,Dtmax) can be fitted by a power law
with exponential cutoff@54#,

P~n!;n2texp@2n/n0~T!# ~7!

wheren0(T) is a characteristic cluster size for the givenT.
The corresponding data collapse is shown in the inset of
10. The collapse is not nearly as good as for the larger

FIG. 10. P(n,Dtmax) for the 6.5% most mobile monomers as
function of cluster sizen for differentT. The dashed line is a simpl
power law fitP(n);nt with t51.62 forT50.46. The inset shows
the same data scaled as indicated to show data collapse.

FIG. 11. A cutoff cluster sizen0(T) obtained from fitting Eq.
~7! to the data, plotted as a function ofT. The error bar is estimated
by fixing t51.62, and then determining the range ofn0 values in
Eq. ~7! that reasonably fit theP(n) data. Inset: a power law fit to
n0(T) data, i.e., n0(T);(T2TMCT)2g, using TMCT50.45. The
value ofg obtained from the fit isg50.4560.08.
05150
ce
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tem studied in Ref.@5#, which may be due to finite size
effects. Figure 11 shows thatn0(T) increases asT decreases,
causing the probability distribution to approach a simp
power law with decreasingT. We findt51.6260.12 for all
T. This value is smaller than the value obtained for a bin
mixture of LJ particles (t'1.9) @5#, and for colloids (t
52.260.2) @31#, suggesting that the exponent value may
nonuniversal.

VI. DYNAMIC CORRELATION LENGTH

It is straightforward to calculate the correlation~or con-
nectivity! length j of the clusters analyzed in the previou
section. In lattice percolation theory, the correlation or co
nectivity lengthj, given by

j25
( r 2g~r !

( g~r !

, ~8!

is defined as the root-mean-square distance between two
belonging to the same cluster@54#, wherer is the distance
between two sites andg(r ) is the pair correlation or pair
connectivity function, defined as the probability that a site
distancer from an occupied site belongs to the same clus
To map this definition onto the off-lattice system we co
sider, we definej as the root-mean-square distance betwe
two monomers in a cluster, whereg(r ) is the probability that
a monomer a distancer from another monomer belongs t
the same cluster. The sum in Eq.~8! runs over all monomers
in the cluster.

Equation~8! may be rewritten in terms of the cluster siz
n and the radius of gyrationRn as @54#

j25

2( Rn
2n2P~n!

( n2P~n!

. ~9!

Rn is defined by

Rn5

(
i

(
j

ur i2r j u2

2n2
, ~10!

wherer i and r j refer to the positions of monomersi and j,
wherei and j are within the same cluster.

Figure 12~a! shows the dynamic correlation lengthj(Dt)
for severalT. We find thatj(Dt) exhibits a time and tem-
perature dependence similar to that ofS(Dt) @Fig. 12~b!#,
i.e., it grows and shrinks withDt, and indicates a dynamic
correlation length that increases on cooling. This similarity
not surprising sincej is related to the average radius of th
clusters that contribute significantly toS @54#. At the largest
Dt accessible to our simulations,j(Dt) does not decay to the
initial value, also observed forS. The maximum value of
j(Dt) appears to saturate to the same value of approxima
3-8
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SPATIALLY CORRELATED DYNAMICS IN A . . . PHYSICAL REVIEW E64 051503
jmax'3.1 for T&0.5. This saturation is likely due to th
small system size of the simulation, since the maxim
value ofj for these temperatures approaches half the sys
length (L/2'5.25) in our simulation. Indeed, finite size e
fects have been reported for simulation studies of dynam
heterogeneity, and in many of the configurations examine
the present work clusters were found that spanned the
tirety of the simulation box. In Fig. 13 we plotj(Dtmax) as a
function of T. The correlation length may also be limited b
the radius of gyration of the chains. It is clear from Fig.
that we do not detect a tendency toward divergence ofj in
the temperature range studied. Larger systems and loweT,
which are outside the scope of the present study, are ne
to explore additional growth ofj.

VII. DISCUSSION

In Sec. V, we fitted the cluster size distribution functio
P(n) by a power law with an exponential cutoff, and w
found a value oft,2, whereas classical percolation theo
impliest.2 @54#. This discrepancy could be due to the fini

FIG. 12. ~a! Dynamic correlation lengthj(Dt) for different T.
~b! Sw(Dt) plotted together withj(Dt) for T50.46 to emphasize
that both quantities increase and decrease on the same time
Note that here the mean cluster size is not normalized byS0.

FIG. 13. Dynamic correlation lengthj(Dtmax) as a function
of T.
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system size, which restrictsn to only relatively small clus-
ters, and hence skews the estimated exponent in an un
trolled way. Alternatively, or possibly in addition, the valu
of t may simply be different from that expected from perc
lation theory forstatic clusters, since the clusters we stud
are intrinsicallydynamic~i.e., a dynamic criterion is used t
define the monomers that make up the clusters, althoug
static ‘‘snapshot’’ is used to analyze the clusters!. However,
even for static clusters there is experimental evidence fot
51.460.15 @73#. As an independent test oft, percolation
theory also predicts a power law relation between
z-average radius of gyration~proportional to j) and the
weight-average molecular weight~proportional toS) with
exponentt @74–76#. However, for our system, as is shown
Fig. 14, we do not observe a power law relation betweej
andS; rather, we find a roughly exponential relation. Rec
that we also find an exponentialT dependence forS(Dtmax),
rather than a power law. This complicates the attempt
determinet independently.

A number of other works@16,10,77,78# that study differ-
ent binary liquids have also calculated a dynamic correlat
length, and it is instructive to compare our result with tho
Reference@16# calculates the static structure factor for pa
ticle pairs whose ‘‘bond’’ has been broken, with a dynam
bond criterion based on particle separation. Using
Ornstein-Zernike formalism@79#, they extract a static corre
lation length for particle pairs with broken bonds. This co
relation length is not unlike ours, since for particles to ha
broken a ‘‘bond’’ they must have moved apart from ea
other. The main difference is the absence of a well-defin
time scale on which this motion occurs. Reference@16# finds
that the correlation length defined in that way grows w
decreasingT, but saturates at lowT because the correlatio
length approaches the system size, very similar observat
to ours.

References@7,10,77# calculate pair correlation function
based on the deviation of the displacement of each par
from the average value as a function ofDt. Reference@77#
finds that the tail of the spatial correlation function can
fitted by an exponential, and from this a correlation length
extracted. Unlike the length calculated in the present wo

ale.

FIG. 14. The weight-averaged mean cluster sizeS as a function
of the characteristic lengthj plotted on a semilogarithmic scale fo
different T.
3-9



.
t
r
e
n
ct
en
th

g
fi-

th
de
il

-

on
e

a
de
os
in
fo

ca

ax
er
tio
-

ic
x

th

.

th
re

hi
of
ts

.
ee

ed
.
he
cag-
ss-
ost
gly

pro-

on
op-

ven-
he

py
heir
er-
e

the
are

el
ge
o-

hat

GEBREMICHAEL, SCHRO”DER, STARR, AND GLOTZER PHYSICAL REVIEW E64 051503
and that calculated in Ref.@10#, the correlation length of Ref
@77# was found to saturate at a~roughly! constant value a
times much longer than thea relaxation time. The behavio
observed in Ref.@77# is surprising, since it implies that ther
exist persistentspatial correlations in the particle motion o
time scales that exceed all other relaxation times, unexpe
for an ergodic liquid. We note that, although in the pres
work we do find some ‘‘saturation’’ of the correlation leng
around the peak time at lowT ~possibly due to finite- size
effects as discussed above!, the length decreases at lon
times ~and must decrease to its ‘‘random’’ value at suf
ciently long times when the liquid is diffusive!.

Lastly, Ref.@78# calculates a dynamical correlation leng
associated with a four-point space- and time-dependent
sity correlation function, which emphasizes the least mob
particles in a time windowDt. The correlation length mea
sured shows qualitatively similar behavior to thej we mea-
sure; in particular, it grows and decreases withDt, but dis-
plays no tendency for saturation at the largest value at l
time, possibly due to the larger system size studied ther
the absence of polymer-specific effects.

VIII. CONCLUSION

In this paper, we studied the cooperative molecular re
rangement of polymer chains approaching the mo
coupling transition temperature. By focusing on the m
highly mobile segments of the chains in a given time w
dow, we observed that these segments, or monomers,
clusters that ‘‘grow’’ and ‘‘shrink’’ in time. A previous
study of this system found that the spatial correlation of s
lar monomer displacements is time dependent@8#; this is
consistent with the present results. We found that the m
mum size of the clusters, as measured by both the numb
monomers contained in the cluster and the cluster correla
length, increases with decreasingT. Our results are consis
tent with those found for a binary LJ liquid@5#, and for a
colloidal suspension@31#.

Our results are also consistent with the premise on wh
the Adam-Gibbs-DiMarzio theory is based—that the rela
ation of a liquid above its glass transition occurs through
cooperative rearrangement of groups of particles~or in the
present case chain segments!, which grow in size on cooling
We find that the time intervalDtmax when the clusters are
largest increases on cooling, consistent with the idea
molecular rearrangements become increasingly difficult,
quiring the participation of more and more molecules. T
time scale is found to follow a scaling law similar to that
the b time scalete predicted by MCT, i.e., the exponen
obtained fromDtmax and te by fitting them to a power law
are found to be the same within numerical uncertainty
would be valuable to check if this correspondence betw
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Dtmax and te is valid across the spectrum of supercool
liquids, or if it is special to the polymer melt we consider

We find thatDtmax corresponds to the time scale when t
mean square displacement shows a crossover from the ‘‘
ing’’ regime to the subdiffusive regime. Because this cro
over marks the time scale when the monomers are m
likely to escape their cages, this correspondence stron
suggests that clustering is required for the cage-breaking
cess. SinceDtmax is much smaller than thea relaxation time
ta , which marks the time scale for the structural relaxati
of the system, our studies suggest that a collection of co
erative molecular rearrangements must give rise to the e
tual primary relaxation of the system, consistent with t
prediction of MCT.

Our results are also consistent with confocal microsco
experiments on dense colloidal suspensions near t
density-driven glass transition, which confirmed the clust
ing of the most highly mobile particles in the fluid in som
time window, as predicted by simulation, and showed
dynamic nature of this clustering. Indeed, such systems
ideal for further exploring cooperative motion in mod
glass-forming liquids, since it is possible to directly ima
individual particle trajectories, unlike in experiments on m
lecular or polymeric liquids@80,81#.
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APPENDIX A: PERCOLATION OF MOBILE MONOMERS

In order to demonstrate that the fractionf we use in
calculatingS is below the percolation thresholdfc , we cal-

FIG. 15. Percolation probabilityp(f) for different T at Dt
5Dtmax. The inset shows the percolation thresholdfc plotted as a
function ofT. The error bars are obtained from the uncertainties t
result due to errors in estimatingDtmax.
TABLE III. Percentage of end monomers that belong to the subset of mobile monomers at the timeDtmax

whenS is maximum.

T 0.46 0.47 0.48 0.5 0.52 0.55 0.6 0.7

% 20.660.1 21.360.6 21.460.1 21.360.3 21.460.4 22.160.2 2260.2 22.560.1
3-10
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SPATIALLY CORRELATED DYNAMICS IN A . . . PHYSICAL REVIEW E64 051503
culate the probabilityp(f) that a cluster of mobile mono
mers percolates~spans the system! at a fractionf, and from
that estimatefc . We define a cluster as percolating if
connects any two opposite faces of the box. We define
percolation probabilityp as the fraction of configuration
containing at least one spanning cluster. The percola
thresholdfc can be estimated by the maximum slope
p(f), or by p(fc)[

1
2 @82#. A plot of p(f) for eachT is

shown in Fig. 15. Since the formation of clusters is tim
dependent, we calculatep(f) at the timeDtmax when the
cluster size is largest and hence the greatest number of s
ning clusters exist. For the sake of comparison, we sh
p(f) for a randomly chosen subset of monomers to indic
the value ofp one would expect in the absence of dynami
correlations. The random percolation threshold estima
from this calculation isfc,rand514.4%.

For the lowestT, we estimatefc5(7.160.4)%. The per-
colation threshold in this system isT dependent, and in
creases with increasingT ~see inset of Fig. 15!, giving a
larger upper limit forfc at higherT. At eachT, fc is greater
than thef we use to evaluateS(Dt).

FIG. 16. ~a! Fraction of end monomersf end within the subset
containing the 6.5% most mobile monomers, as a function of t
for T50.46. ~b! Mean square displacements of end monomers
non end monomers atT50.46.
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APPENDIX B: CONTRIBUTION DUE TO MOTION OF
END MONOMERS

For sufficiently long time scales, it is known that mon
mers at the end of a chain are more mobile than those in
middle of the chain@83#. Hence we check whether the mo
bile monomers are dominated by end monomers on the t
scale where the clustering is most pronounced; that is, ou
the top 6.5% most highly mobile monomers inDtmax, how
many of them are end monomers? If the mobility is dom
nated by the end monomers, we would expect the percen
of end monomers to be much larger than 20%, the perc
age one finds by randomly choosing monomers for the t
mer chains studied here.

For eachT, at Dt5Dtmax, the fraction of end monomer
within the mobile monomer subset is found to be in the ran
from 20.6% to 22.5%~Table III!, demonstrating systemati
but not substantial deviation from the random value. Ho
ever, as the system reaches the subdiffusive regime as sh
by the mean square displacement of monomers, the
monomers should comprise a larger fraction of the mob
monomer subset than their mean field value.

Figure 16~a! shows the percentage of end monome
within the mobile monomer subset as a function of time
T50.46. As can be seen from the figure, during the per
when the mean square displacement is in the ballistic or
teau regime, the contribution of end monomers to the fr
tion of mobile monomers is roughly the same as the m
field value. During these time scales, the monomers ‘‘ratt
within their local environment, and so the bonds do not ha
much effect on their mobility, and the end monomers are
constrained as central monomers. But as the monomers b
out of their cages and move to larger distances, the contr
tion of end monomers to the mobile monomers greatly
creases. This is also reflected in the mean square disp
ments calculated using only end monomers and only cen
monomers@Fig. 16~b!#. For Dt corresponding to a transition
between the ballistic regime and the plateau regime, we
a sudden jump in the fraction of end monomers. T
indicates the tendency of enhanced mobility of the e
monomers just before they become trapped in the cag
their neighbors.
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