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In recent years, experimental and computational studies have demonstrated that the dynamics of glass-
forming liquids are spatially heterogeneous, exhibiting regions of temporarily enhanced or diminished mobil-
ity. Here we present a detailed analysis of dynamical heterogeneity in a simulated “bead-spring” model of a
low-molecular-weight polymer melt. We investigate the transient nature and size distribution of clusters of
“mobile” chain segments(monomer$ as the polymer melt is cooled toward its glass transition. We also
explore the dependence of this clustering on the way in which the mobile subset is defined. We show that the
mean cluster size is time dependent with a peak at intermediate time, and that the mean cluster size at the peak
time grows with decreasing temperatdré/Ne show that for eacl a particular fraction of particles maximizes
the mean cluster size at some characteristic time, and this fraction depedsThe growing size of the
clusters demonstrates the growing range of correlated motion, previously reported for this same Gystem
Benemaret al. Nature (London 399, 246 (1999]. The distribution of cluster sizes approaches a power law
near the mode-coupling temperature, similar to behavior reported for a simulated binary mixture and a dense
colloidal suspension, but with a different exponent. We calculate the correlation length of the clusters, and
show that it exhibits similar temperature- and time-dependent behavior as the mean cluster size, with a
maximum at intermediate time. We show that the characteristic time of the maximum cluster size follows the
scaling predicted by mode-coupling theofyICT) for the B8 time scale, revealing a possible connection
between spatially heterogeneous dynamics and MCT.
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[. INTRODUCTION cally heterogeneous regions, can be inferred. In other studies
(e.g., fluorescent probe studieg¥,3g), more direct informa-
The cooperative nature of molecular motion is consideredion about the existence and size of dynamically heteroge-
one of the canonical features of liquids approaching theif'€ous regions can be extracted. _ .
glass transition[1,2]. However, relatively few details are N computer simulation$3—18) and microscopy studies
known concerning how and under what conditions cooperath COHO'da! Su3p_ensm$30_,:_3]], where detallgd |nfqrma}t|on
ivity arises in these liquids, and in particular how coopera-o" the_tra]ectorles_of individual model particles is directly
tive motion is related to other canonical features of densé‘?cess'ble’ the existence of dynamically heterogeneous re-

liquids and the glass transition. Numerous computationag'on.S has been d'f?Ct'y observed and. quantified. In.these
[3-18 and experimentdl19—33 studies have demonstrated studies, the connection between dynamical heterogeneity and

that dense liquids above their glass transition exhibit s a(_:ooperativity, In which particles move together in the same
. d €Il glass o P3Girection in a correlated fashion, has been further elucidated
tially heterogeneous dynami¢&ynamical heterogeneity);

. . o L I " . [4,24,31,39. For example, in Ref§3-6], it was shown in a
Fhat Is, regions W|th.|n the liquid exhibit enhanced or dimin- binary Lennard-Joned.J) mixture that at any given moment
ished mob|I|_ty relative tp the average on some time Sca_l‘?nost particles can be found trapped in “cages” formed by
[32-36, which, depending on the system, type of experi-theijr neighbors, while roughly 56 % constitute a highly mo-
ment, and temperaturBrelative to the glass transition tem- pjje subset that is breaking out of these cages. It was further
peratureTg, can be less than, comparable to, or larger tharshown that these mobile, “escaping” particles move coop-
the characteristic time for the decay of density fluctuationseratively in stringlike paths, forming clusters of strings
(the so-calledx relaxation timer,). In some studiege.g., which grow in size with decreasing temperature on ap-
NMR studies[19,20,27,28, direct spatial information on proaching the mode-coupling temperatufg,cr, where
the location of temporarily enhanced or reduced mobilityT,,ct is the crossover temperature predicted by mode-
molecules is lacking, but spatial correlation between dynamieoupling theory(MCT) [40] below which the dynamics are
cally similar molecules, and thus the existence of dynami-dominated by activated proces$d&,42. Typically, Tyct is

roughly 1.11,—1.5T, [43]. The distribution of string lengths
was found to be exponential, while the cluster size distribu-
*Present address: IMFUFA, Roskilde University, DK-4000 Rosk-tion P(n) was found to follow a power law(n)~n~7 with
ilde, Denmark. 7~2. Recent experiments on suspensions of hard sphere col-
Corresponding author. Electronic address: sglotzer@umich.eduloids confirmed the clustering of a highly mobile subset of
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particles above the colloidal glass transiti®{n) was found posed of ten monomerdead$ with massm set to unity.
to obey a power law with roughly the same expon31]. Monomers are modeled as Lennard-Jones part{gléh po-
They also confirmed the tendency for the cluster size to intential V| ;=4€[ (a/r)*?— (o/r)®]) with a finitely extensible,
crease as the glass transition is approached. nonlinear elasticFENE) potential (Vegne= — (k/2)R3IN[1

In a recent StUdy of the dynamics of a binary LJ mixture_(r/RO)Z]) Connecting nearest neighbors a|ong a chain
in terms of the potential energy surfapél], a preliminary  [48,49. The parameters and ¢ in the LJ potentials are set
attempt was made to connect cooperativity and dynamicap unity. The parameters of the FENE potential are chosen as
heterogeneity to the potential energy landscéPEL) de- k=30 andR,= 1.5, producing relatively stiff bonds, and pre-
scription of glass-forming liquidf44]. In the PEL paradigm, venting crystallization at lower temperatures due to the pres-
the motion is partitioned into vibrations around stable poten'ence of incompatib|e preferred |ength Sca(mﬂch corre-
tial energy minima and infrequent basin transitions that givespond to the positions of the minima of the pure LJ potential
rise to structural rearrangement. Referef#tq reported that, for nonbonded monomers and the combined +JFENE
at SUfﬁCiently |OWT, transitions between basins of attraction potentia| for bonded monomérs/\/e ana]yze the simulations
on the potential energy surface are facilitated by particlepf Refs.[8,45], consisting of eight state points with average
moving in stringlike clusters, suggesting that cooperativitypressurq):L and temperatur€ ranging from 0.46 to 0.7.
becomes a critical channel for relaxation at sufficiently(Here, and in the remainder of the paper, all units are quoted
low T. in reduced units; length in units ef, temperaturd in units

In this paper we investigate the spatially heterogeneougs e/kg, time in units ofo\m/e). The densityp is adjusted
motion of monomers in a bead-spring model of a cold, dens@eyeen 0.98 p<1.04 in order to follow an isobaric path.
polymer melt. Our results are obtained by analyzing molecun quantities presented here are calculated by averaging be-
lar dynamics simulations of a polymer m¢B45] Refer-  yveen 150 and 200 independent configurations, except for
ence [8] showed via calculation of a “displacement- o |oyest temperature where we used 60 independent con-
displacement” pair-correlation function that the dynamics Offigurations for averaging.
monomers is spatially correlated, that this correlation is time ™ r5 described in Refd8,45], the system is equilibrated at
erendent, and. that the amount of correlarion increases ragy thermodynamic state points by allowing each chain to
idly as the melt is cooled. Here we take a different approachy,nagate several times the distance of the radius of gyration
similar to that taken in Ref$5,6], and investigate the clus- phetore any trajectories were stored. Additionally, we care-
tering of the most highly mobile monomers in any given iy checked that the time correlation functions calculated
time window. In this way we obtain additional insight into oy these trajectories are independent of the time origin
the spatially heterogeneous dynamics of the melt. chosen, and decay to zero within the time scale of the simu-

We show the transient nature arrd temperature dependen%ions_ In this way, we confirm that there is no aging or
of the clusters formed by the mobile monomers, which is gher nonequilibrium behavior that might skew our results.

result of the cooperative rearrangement of the MONOMerReference$s, 45 found that the mode-coupling temperature
We show that the mean cluster size, a measure of the extepy; ihis system isTyer=0.45+0.01, andT,=0.34+0.02

of cooperativity, grows and shrinks during the time window45) " the ‘so-called ideal glass transition temperature esti-

when the mean square displacement of the moNOMelated from the Vogel-Tammann-Fulch&/TF) equation,
changes from the ballistic regime to the subdiffusive regime, hich is typically close to the Kauzmann temperatiie
Moreover, the maximum average cluster size grows with degne temperature where the extrapolated liquid and crystal en-

creasingT. We show that the distribution of cluster sizes tropy are equalll,43). More details of the simulation may be
approaches a power law upon cooling toward the modes, 4 in Refs[8,45].

coupling temperature. We also show that the correlation
length of clusters exhibits a similar time and temperature
behavior as the mean cluster size, demonstrating the exis-  !ll. CALCULATION OF MEAN CLUSTER SIZE
tence of a growing length scale on cooling.

Th . Zed oll ns " brief] In the cooled liquid we study, it is known from, e.g.,
€ paperIs organized as 101lows. In Sec. Il We BNENY q5 0 ations of the mean square displacemeftAt)), that
describe the model and simulation details. In Sec. Il we

_ tigat lated motion b ai lust £ at intermediate times monomers on average are trapped or
gw;/es Igate correlate n:rc]) lon t%’ ?na )ézmg clus ersd(_) Imo'localized in cages formed by their neighbdFg. 1. In a

lie” monomers—i.e., those that undergo large displace;myjjar model glass-forming binary LJ mixture, it was dem-
ments in a variable time intervalt. We calculate the size of

he cl d dif hods of choosi onstrated that at any given time most of the particles can be
the clusters and compare different methods of choosing My, g ggcillating in these cages, with only approximately

b'lz Z‘.O”?g“?fs- Inf Slecs. IV and \]{ We_anal);ze the bejhawors_e % of the particles undergoing significant displacement at
and distribution of clusters as a function of time and t€M-y; tine At a later time, of course, a different subset of

perature. In Sec. VI we calc_ulate a correlation length for th. articles can be found moving beyond their cage. In the
clusters, and demonstrate its time-dependent nature. A di ange of T studied in that work, however, as in the present
cussion and summary follow in Secs. VIl and VI study, the distribution of particléor monomey displace-
ments as measured by the self van Hove distribution function
is continuous and unimodal, exhibiting at most a long tail to
We study a system of 120 polymer chains modeled by darge displacemeni$n some liquids, this tail becomes a sec-
coarse-grained, bead-spring description. Each chain is conendary peak at sufficiently loW [46]). This makes the iden-

II. MODEL AND SIMULATION

051503-2



SPATIALLY CORRELATED DYNAMICS IN A . .. PHYSICAL REVIEW E 64 051503

10" ; ; ; ; ; 4
10° L 3l 0—041:r2Gs(r,At)
_ 4nr*G (r,At)
A "
= - <
g 10” o=
- ot
R
v o .
& r
107
1 L
10° - i ] ] ") 3 4
10° 10 10° 10° 10° 10° 10 0 .
At 0 0.4 0.8 1.2

r
FIG. 1. Monomer mean square displacem@r(At)) for sev-

eral temperatures showing ballistic, plateau, and subdiffusive re- FIG. 2. The radially averaged van Hove correlation function

gimes. The subdiffusive regime is followed at late time by a diffu- G4(r,At) at At=At* for T=0.46, plotted with the Gaussian dis-

sive regime(not shown. tribution Gy(r,At*). Mobile monomers are defined as those mono-
mers that, during\t, moved a distance greater theh.

1 N
Gu(rAh=g{ 2, oi(AD-ri(®-n ), @

Go(r,At)=

tification of mobile particles substantially more difficult than
if the distribution of particle displacements were, say, bimo-
dal, in which case there would be a clearly motivated crite-
rion for identifying mobile particles.
Our goal in this section is to determine an appropriatewhich measures the probability density of particle displace-
method of choosing the most mobile monomers in a timgments, and the Gaussian distribution
interval At in order to best establish the nature of dynamical a2
heterogeneity in our model liquid. To do this, we will ask 3 —3r?
whether there is a subset of mobile monomers that forms 2m(r2(At)) ex 2(r2(At)) . @
clusters as in the LJ liquid studied in Ref8,5,6] and the
colloidal liquids studied in Refs[30,31], and, if so, how cajculated with the measured value (f%(At)) at At
should this subset be chosen? To answer these questions, wey t*
will compare two methods of identifying the appropriate | Fig. 2, we plotG(r,At*) and G,(r,At*) to identify
subset of monomers. We first apply a method that utilizes thex The fraction¢ of the monomers that are mobile is de-
crossing point of the self van Hove distribution function andfineq py integratings(r,At*) for r=r*, i.e.,
Gaussian distribution function as a reference displacement
for identifying the most mobile monomers in a given interval o
of time, as used in Ref§3—6]. In the second method, we ¢EJ*4WFZGs(f,At*)df- ©)
again consider the most mobile monomers in a given time '
interval, but we vary the fraction of monomers included in sjng this method on a binary LJ mixturé,was found to
the subset, choosing the fraction that shows the strongeghnstitute approximately 5.5% of the total number of par-
tendency for clustering. For both methods, we investigate thﬁcles, independent o and p [3—6]. Following the same
time and temperature dependence of clusters formed by theﬁ?ocedure, we find 6.2% < 6.8% (Table ). Thus for con-
monomers, focusing on the time window Whﬁné(ﬁt» venience we will use an intermediate valued# 6.5% for
exhibits ballistic, plateau, and subdiffusive regini€gy. 1) studies with a fixed fraction of mobile monomers.
[47]. We also investigate the distribution of cluster sizes of Once ¢ is selected, the subset of monomers that is con-
mobile monomers, and the time and temperature dependenggjered mobile in each time intervAt is identified by rank-
of this distribution. ing the scalar displacement of all monomers A, and
choosing the 6.5% with the largest value. In any given
A Fixed fraction the number of mobile monomers defined in this way is nec-
' essarily the same, but the membership will generally be dif-
Previous studie$3,5,6] identified the mobile subset as ferent since a monomer that is mobile in one time interval
those particles that, in an intervalt*, move further than may be caged in the next, and vice versa.
some distance™*. Specifically,At* is defined as the time We define clusterfs,6] as groups of highly mobile mono-
interval when the non-Gaussian parametgfAt), which ~ mers that are within the first neighbor shell of each other
measures the degree to which the distribution of particle dist52], where the first neighbor shell is defined by the distance
placements differs from Gaussian, is maxim{ii®]. The of the first minimum ¢=1.5) of the pair correlation function
quantityr* is defined as the crossing point of the self part ofg(r) [51,53. An example of the clusters formed by the 6.5%
the van Hove correlation functigrb1] most mobile monomers is shown fdr=0.46 at earlyAt
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TABLE I. ¢' refers to the fractiorp of highly mobile monomers at a tim&t* whena, is maximum(Sec. Il A), and¢'" refers to the
fraction that maximizes the normalized weight-averaged cluster size forTeg@éc. Il B). At eachT, ¢<¢., whered, is the value ofp
at the percolation threshol@gee Appendix A The normalization facto, is the initial (or, correspondingly, the randomalue of the
weight-averaged cluster size of the fraction consideﬁédefers to the value d, at eachT for ¢=6.5%, used to evalua®(At) using the
procedure outlined in Sec. Il AS{)' refers to the value 08, at eachT for a fraction corresponding te''. Note thatS'O is nearly constant,
S'O: 2.65+0.1 for all T, while S'O' varies considerably becaugeis different for each state point. The error bars in calculatihgeflect the
uncertainty in estimating* for the evaluation of from Eq. (3). The error bars in estimating reflect the range of over which the
fraction that maximizes$ could be identified with confidence.

T 0.46 0.47 0.48 0.5 0.52 0.55 0.6 0.7
&' 6.4+ 0.5% 6.2£0.4% 6.8£0.5% 6.5-0.3% 6.7£0.6% 6.7£0.6% 6.50.7% 6.3:0.7%
Q" 5x1% 5.5-0.5 5.5:0.5% 6x1% 6.5-0.5% 7=1% 7.5£0.5% 8+1%
S'o 2.66=0.05 2.58:0.02 2.7#0.03 2.55-0.02 2.64-0.01 2.610.01 2.76:0.03 2.62:0.02
S'O' 2.06+0.06 2.22£0.16 2.26:0.2 2.36:0.04 2.64£0.24 2.8 0.53 3.270.26 3.31%0.03
be 7.1+0.4% 8+0.2% 7.4£0.1% 8.2£0.1% 8.8£0.2% 9+0.3% 9.8-0.1% 10.6:0.1%
[Fig. 3@], and at intermediatat [Fig. 3b)]. We see that

the typical cluster size depends upon the time window of \ ™ /
observationAt; smaller clusters appear at earM, and O _m

larger clusters appear at intermediat¢, when (r?(At))
crosses over from the plateau regime to the subdiffusive re-
gime. Such transient clustering of mobile particles has also
been observed experimentally in dense colloidal suspensions
using a confocal microscop¢31], by looking at the
(roughly) 5% most mobile particles as in Ref$,6].

To quantify the clustering of mobile monomers, we cal-
culate the weight-averaged mean cluster $&z4,

(n2(at) 2 MADPM(AD)

Sw(At)= =
(n(At)) S

)
(At)P(n(At))

Here P(n) is the probability of finding a cluster of size
andnP(n) is the probability that a randomly chosen mobile
monomer belongs to a cluster of sineS,(At) defined in
this way is the average size of a cluster to which a randomly
chosen mobile monomer belongs.

We normalizeS,, by the average siz&, of clusters
formed by mobile monomers at the initialt (i.e., one mo-
lecular dynamics time stgpand find that, at eacl, S,
(reported in Table)lcoincides with the average cluster size
found by selecting monomers randonji5]. This demon-
strates that short-time monomer motion is uncorrelated, as y & () P
found previously for this system using an alternatimen- ~ Y
cluster-basedanalysis approac8], and as found in both the _w—

LJ liquid referred to previously7] and a colloidal suspen- / \
sion [30,31]. Following convention[5,54], any spanning )

clusters present in a given snapshot are omitted from the 5 3 cjusters formed by the 6.5% most mobile monontars
calculation to minimize finite size effects. In Fig. 4, we show ., early time At=0.002) andb) at intermediate timeXt=45.4),

the normalized mean cluster sif=S,,/S, for severalT.  for T=0.46. Each monomer is represented as a sphere, and connec-
We find that the clusters formed by the most mobile mono+yity information has been suppressed. Monomers belonging to the
mers “grow” and “shrink” as the window of observation same cluster are colored the same shade of gray. Note that only the

increases. Furthermore, the maximum amplitudeSEkt) most mobile monomers out of the 1200 total monomers are shown
shown in the inset of Fig. 4 increases with decreasing in the figure.

J
o0
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7 7 : ' - , o T o monomers to the mobile subget
8l —+T=047 The behavior ofS(At) is qualitatively similar to that of a
61 ég ey MI=0-48‘ generalized susceptibility(At) calculated for this same
5 @3t LI9N (}“OT:g:gz_ system in Ref[8]. «y, is related to the volume integral of the
2 ¥¥T=055 displacement-displacement correlation functiessentially a
040 0.6 density-density correlation function, but with every particle’s
=45 0.7 Y Y ’ yPp
N contribution weighted by its scalar displacementAt) in
@ 3l the same way as the isothermal compressibitityin a fluid
is related to the volume integral of the density-density cor-
2l relation function. Accordinglyx(At) is proportional to the
fluctuations in the total system displacement at tifte in
1 | o the same way ag is proportional to the fluctuations in the
107 10'_2 10'_1 16° 16‘ 1(')2 163 16‘ To° number Qf .par-ticles in the fluid. . . .
At The similarity betweers and «, is not surprising, since

the scalar displacements of the most highly mobile mono-

FIG. 4. Normalized mean cluster siggAt) for $=6.5% forall  mers inAt are included ink. However, the peak time of
T. The inset showS,5,=(Atia,) versusT, whereAt,,is the time  S(At), which coincides with the crossover between the pla-
at which S is maximal. Actual(unnormalizedl cluster sizes are tegqu and subdiffusive regimes, precedes thatgfAt) (by
nearly three times larger than those shown. less than a factor of 10 &= 0.46). This suggests that the

cooperative motion of monomers, which requires clustering

indicating that the monomer motion becomes increasinghand allows the monomers to escape from their cages, is a
spatially correlated as the melt becomes colder and morprecursor to the more global dynamical heterogeneity mea-
dense. sured byky .

The behavior ofS(At) can be interpreted by comparing
with (r?(At)) (Fig. 1). Consider, for example, the behavior
of Sat T=0.46. For smallAt (At<2x10 %), the mono-
mers’ motion is ballistic, and so the probability of finding ~ The method outlined in the last section for selecting a
large clusters is negligibly small, since we are simply choosfraction of mobile monomers ensures a clearly defined and
ing the most highly mobile monomers from the tail of the reproducible subset of the most mobile monomers in a given
Maxwell-Boltzmann velocity distribution, and these mono- time window, and can be easily applied to any system. How-
mers are randomly distributed in space; at these short timegver, there is na priori reason why this should be the defi-
G4(r,t) is well approximated by a Gaussian. At slightly nition of choice, and in particular whether this fraction is
longer At (2x10 '<At=<10, the plateau regimehe mo- more spatially correlated than some other fraction. The
tion of monomers is restricted to “rattling” within the cage “ideal” fraction is the one that most clearly and naturally
formed by neighboring monomers. Thus, big clusters are lesgaptures dynamical correlation. To search for this “natural”
likely to be formed since the particles do not move |argefraCti0n, and to check if it is substantially different from the
distances, and are consequently less likely to affect the mdraction used in the previous section, we select a subset of
tion of others. Between the plateau and subdiffusive regimebighly mobile monomers by varying, and then choosing
(10=At=<10°), when the monomers begin to escape fromthat fraction that maximizeS(At) for all At.
their cage$11], the motion of one monomer becomes highly ~We find that S(At) is maximum for ¢ in the range
influenced by the motion of others around it; a monomer5%—8% for all T considered, e.g.S is maximum at¢
cannot move unless its neighbors also move, causing large 5% for T=0.46 and at 8% fof=0.7. Table | shows a
clusters to be formed. complete list of fractionsp'! that maximizeS at eachT. In

At the longest time scale we probA{(=10?), the mono-  Fig. 5 we showS(At) for T=0.46 andT =0.7 for four val-
mers’ displacement is subdiffusive(characterized by ues of¢. We have checke8 at 1% intervals oip to deter-
(r?(t))~1962:003) 45 56 At this time scale, the probabil- mine the fraction that maximizesS(At). However, for the
ity of finding large clusters again decreases, indicating arsake of clarity, we show only a few representati¥ginclud-
increased tendency toward uncorrelated motion. Neverthéng the ¢ that yields a maximal value &
less, S, (At) is still greater than the random valisg. This Using those fractiong!' reported in Table | that maxi-
may be due to the presence of some persistent correlatianize the cluster size for eadh we calculateS(At) for each
since the monomers are not yet completely diffusive, or posT, as shown in Fig. 6. We find that this second method does
sibly to polymer specific effects, or both; we postpone fur-not alter the qualitative features of the time and temperature
ther discussion of this long-time behavior to future investi-dependence of found by the first method. However, there
gation. We note that during this time scale, while the motionare slight quantitative differences in the values ©fThe
of monomers becomes uncorrelated and their displacement jeak values of obtained from the variable fraction method
subdiffusive, the fraction of mobile monomers comprised ofare slightly largerat most by~ 13%) than the method that
end monomers significantly increases from its mean fieldat eachl uses fixedp=6.5%. Since this difference i&from
value f.,+~0.2 in the ballistic or the plateau reginiesee the two methods is not dramatic, we perform all subsequent
Appendix B for detailed discussion of the contribution of endanalysis using a fixed fractiogp=6.5% for all T.

B. Variable fraction
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FIG. 5. Normalized weight-averaged cluster si@g\t) as a FIG. 7. Temperature dependencedf, ., using the top 6.5%
function of time window for selected for (a) T=0.7, and(b) T mobile monomers, fitted t¢a) a power law[Eq. (5)], with Tycr
=0.46. For these two state pointS(At) is maximized by ¢ =0.45, yieldingy=1.47+0.16, andb) a VTF expressiofEq. (6)],
=8% and¢=5%, respectively. Only a few selected fractions areyielding E=0.54+0.07 and T;=0.35+0.02 plotted on linear-
shown for the clarity of the graph. logarithmic axes.
cage, which requires the participation of larger groups of
IV. TEMPERATURE DEPENDENCE OF PEAK AVERAGE monomers on increased cooling towarg. At eachT, this
CLUSTER SIZE peak time is close to, but slightly earlier than, the time scale
We next focus on the temperature dependence of th@hereay(At) is maximum. _ o
maximum valueS,,, of S(At), and the timeAt,,,, at which The T dependence oAt can be studied by fitting the

S(At) is maximum. Examination of Fig. 1 shows thit,., data by various functional forms. One ch_oice is to fit the data
is in the time window when monomers escape from thei®y @ power law. In the temperature regime we study, other
cages, as indicated by the increaséd{At)) from the pla- ~ characteristic times, such ag, follow power law behavior,
teau toward the subdiffusive regime; this time also corre-as predicted by the mode-coupling thep#]. Additionally,
sponds roughly to th@ relaxation regimé40]. The shift in the timet* when the non-Gaussian parameter is maximum
At to longerAt asT decreases reflects the increase in thehas been found to follow a power law i ¢ Tycr) [57].

time scale necessary for a monomer to break free from ité\Is0, Ref.[8] found that the time when the correlations as
measured by a displacement-displacement correlation func-

tion are maximum, can be fitted by a power law im (
—Tuer)- Motivated by these findings, we fitted the data by

Atmaxw(T_TMCT)ix- (5

Figure da) shows the best fit obtained by fixin@yct
=0.45. At,ax Shows a reasonable power law behavior with
x=1.47+0.16 in the temperature regime where MCT holds.
The deviation from power law at the lowe$t which is
commonly observed for dynamical quantities, is expected
due to the breakdown of MCT neadjk,ct [58,59.

MCT predicts theB time scalet, satisfies the relatioh,
~(T—=Tyer) Y2 wherea is uniquely determined by fixing
any other exponent used by MCT. However, unambiguous
identification of a time scale that has the predicted scaling of
t. has been notoriously difficult in simulations of super-

FIG. 6. Normalized weight-averaged cluster size as a functiorf00led liquids[60]. Within a MCT analysis of the same
of time for different temperatures using the fractignof mobile ~ Simulation data examined here, R¢#5] found that y
monomers that provides the largest average cluster for the giverr 1.95, and so MCT predicte=0.352, and thus 1&

S(At)

temperature. The inset ShoBg,,=At,a,) VersusT, whereAt,,, = 1.42, which is within numerical uncertainty of the expo-
is the time at whichS is maximal. Actual(unnormalized cluster — nentx determined from\t,,,. Thus,At, . follows the pre-
sizes are nearly three times larger than those shown. dicted scaling law for thg8 time scale, and exposes an un-
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TABLE Il. Fitting parameters forAt,,, and 7, obtained from 7
the power law and VTF fits. The exponents are results from a fit
using the power law of Eq5) with Ty,ct=0.45 fixed, as estimated 61
from previous worl{8,45|. The parameter$, andE are results of
fitting using the VTF form in Eq(6). Our results forT, are con- 5t ¢ i?l’aﬁenius
sistent with the valud y=0.34+0.02 reported i45].
]

Exponent To E w4 |
Aty 1.47£0.16 0.35-0.02 0.54-0.07
Ty 1.95+0.15 0.34-0.02 0.930.1 3t
expected, although perhaps not surprising, connection 1.4 1.6 18 2 2.2
between dynamical heterogeneity and MCT. The correspon- T

dence ofAtyg, with t., and the fact thal ty,, and7, would FIG. 8. Temperature dependenceSyf,, fitted to the Arrhenius

appear to (_Jliverge at the same temperature if the functiong), S, €XpE/T), with E=0.98+0.02, plotted on semilogarith-
forms continued to hold to loweT, suggests that the two ¢ axes(logarithm of S,,,).

time scales represent a hierarchy of events in the relaxation
process, consistent with the MCT prediction of two time
scale relaxation process.

Another functional form for th& dependence of dynami-
cal quantities that often holds in supercooled liquids is give
by the well known Vogel-Tammann-Fulcher equat[dn

cluster size does not diverge at nonzero temperdtti?é

This may indicate that th& range studied is too far froff

to reliably estimate th& at which S might diverge. Alterna-

n[ively, Smax May not be an appropriate measurezdf since

Smax Measures thaveragesize of clusters formed by the

mobile monomers that move in a cooperative man(ties

At ex;{ E _ (6) 'max” refers to the fact that there is a time scale on which
T—To Sis maxima), while z* is theminimumsize of cooperatively

rearranging regions of the entire system. Additionally, we

The fit of this expression to the data is shown in Fi0)7 find thatS depends on the time window of observation while

We find a reasonable agreement with the VTF form withthe time dependence af is not defined.

To=0.35+0.02; this value agrees with the valig=0.34

+0.02 found by fittingr, , defined as the time at which the

incoherent(self) part of the intermediate scattering function V. CLUSTER SIZE DISTRIBUTION  P(n)

Fq (7,)=0.3[45]. Note thatr, occurs at a later time than | the previous section, we examined the average cluster

Atmax- The numerical results for these quantities are summasjze S Here we examine the cluster size distributi®m),

rized in Table II. and study both the time and temperature dependence of this
The observation of a growing cluster size shown in thequantity. We first consideP(n) at the lowest temperature

insets of Figs. 4 and 6 is consistent with the results of Ref(T=0.46) for severalAt [Figs. 9a) and 9b)]. At early
[5], and with earlier hypotheses that dynamics in supercooled

fluids involves the motion of molecules within “coopera-
tively rearranging regions’{61-66, whose size grows as

10"

—1
the glass transition is approached on cooling. In the Adam- 10
Gibbs theonf61], the smallest possible siz& that can give =107
rise to a cooperative rearrangement is inversely proportional a4

to the configurational entropy of the syst¢fd, which is a
measure of the number of mechanically stable states sampled .
by the system. The direct connection betwe#nand the 10
mean cluster size of mobile monomers in our analysis is not
immediately evident. However, we can discuss the implica-
tions of growing cluster sizes in the spirit of the Adam-Gibbs
theory, which has proved to be useful for the interpretation
of transport and relaxation in supercooled liqujég—71.

The Adam-Gibbs theory predicts that a thermodynamic 107 -
glass transition occurs at a finife as the configurational 10 10 10
entropy vanishes. As a consequence, the theory also predicts n
thatz* diverges at nonzero temperature. However, our result F|G. 9. Probability distributionP(n) of cluster sizes afl
for Spa=SAtne) showing ArrheniusT (i.e., VTF with Tg =0.46 for different times as time progress@s from early time
=0, Fig. 8 dependence over thadmittedly narrowrange  (At=0.02) to the peak timeAt=65.9), andb) from the peak time
of temperatures we have simulated implies that the mea(t=65.9) to the subdiffusive regimeA¢=11939.5).
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FIG. 10. P(n,At,,,y for the 6.5% most mobile monomers as a
function of cluster size for differentT. The dashed line is a simple
power law fitP(n)~n" with 7=1.62 forT=0.46. The inset shows
the same data scaled as indicated to show data collapse.

times, we find thaP(n) is dominated by smaller clusters, as
expected from the fact th&(At) is small at earlyAt. As At
increases through the plateau regime(of(At)) (Fig. 1),
larger clusters contribute significantly #(n). As At con-
tinues to increase into the subdiffusive regin®n) again
becomes dominated by small clusters.
We now compard(n) for differentT at the characteristic

time At,,.,. Figure 10 shows that asdecrease®(n,At,,.,)

PHYSICAL REVIEW B4 051503

tem studied in Ref[5], which may be due to finite size
effects. Figure 11 shows thag(T) increases a$ decreases,
causing the probability distribution to approach a simple
power law with decreasing. We find 7=1.62+0.12 for all

T. This value is smaller than the value obtained for a binary
mixture of LJ particles £~1.9) [5], and for colloids ¢
=2.2+0.2) [31], suggesting that the exponent value may be
nonuniversal.

VI. DYNAMIC CORRELATION LENGTH

It is straightforward to calculate the correlati¢or con-
nectivity) length ¢ of the clusters analyzed in the previous
section. In lattice percolation theory, the correlation or con-
nectivity length&, given by

> rg(r)
> g(r)

is defined as the root-mean-square distance between two sites
belonging to the same clustgs4], wherer is the distance
between two sites and(r) is the pair correlation or pair
connectivity function, defined as the probability that a site a
distancer from an occupied site belongs to the same cluster.
To map this definition onto the off-lattice system we con-

& ®

becomes dominated by larger clusters. This is a consequensier, we defing€ as the root-mean-square distance between

of correlated motion of monomers dsapproached yct,
which is expected from the behavior 8fAt) presented ear-
lier. We find thatP(n,At,,) can be fitted by a power law
with exponential cutoff54],

P(n)~n~"exd —n/nyg(T)] (7)

whereng(T) is a characteristic cluster size for the givén

The corresponding data collapse is shown in the inset of Fig.
10. The collapse is not nearly as good as for the larger sys-

2

1 :
0 10°
E
=
. L}
= 10 107 10°
'_
:., E f TMTyer =1
10’ : ‘ , : :
045 05 055 06 065 07 075
T

FIG. 11. A cutoff cluster sizeng(T) obtained from fitting Eq.
(7) to the data, plotted as a function ®f The error bar is estimated
by fixing 7=1.62, and then determining the rangengfvalues in
Eqg. (7) that reasonably fit th&(n) data. Inset: a power law fit to
nog(T) data, i.e.,ng(T)~(T—Tpcr) 7, using Tycr=0.45. The
value of y obtained from the fit isy=0.45+0.08.

two monomers in a cluster, whegér) is the probability that
a monomer a distancefrom another monomer belongs to
the same cluster. The sum in E8) runs over all monomers
in the cluster.

Equation(8) may be rewritten in terms of the cluster size
n and the radius of gyratioR,, as[54]

2>, R2n?P(n)

&= 9
> n?P(n)
R, is defined by
Z 2 |ri_rj|2
R=————, 10
o2 (10

wherer; andr; refer to the positions of monomeisandj,
wherei andj are within the same cluster.

Figure 12a) shows the dynamic correlation lengifAt)
for severalT. We find that¢(At) exhibits a time and tem-
perature dependence similar to that $(fAt) [Fig. 12b)],
i.e., it grows and shrinks witkAt, and indicates a dynamic
correlation length that increases on cooling. This similarity is
not surprising since is related to the average radius of the
clusters that contribute significantly ®[54]. At the largest
At accessible to our simulation&(At) does not decay to the
initial value, also observed fo® The maximum value of
&(At) appears to saturate to the same value of approximately
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FIG. 12. (a) Dynamic correlation lengti(At) for different T. of the characteristic length plotted on a semilogarithmic scale for
(b) S,(At) plotted together withé(At) for T=0.46 to emphasize differentT.

that both quantities increase and decrease on the same time scale. ) ) . .
Note that here the mean cluster size is not normalizeGgy system size, which restricts to only relatively small clus-
ters, and hence skews the estimated exponent in an uncon-

trolled way. Alternatively, or possibly in addition, the value
of 7 may simply be different from that expected from perco-

tion theory forstatic clusters, since the clusters we study
are intrinsicallydynamic(i.e., a dynamic criterion is used to
aqefine the monomers that make up the clusters, although a
r§tatic “snapshot” is used to analyze the clusjetéowever,
gven for static clusters there is experimental evidencerfor
=1.4+0.15[73]. As an independent test af percolation
theory also predicts a power law relation between the
z-average radius of gyratiofproportional to ¢) and the
weight-average molecular weigliproportional toS) with
exponentr [74—76. However, for our system, as is shown in
gég 14, we do not observe a power law relation betwéen
andS, rather, we find a roughly exponential relation. Recall
that we also find an exponenti@ldependence foB(At a0,
rather than a power law. This complicates the attempt to
Vil. DISCUSSION determiner independently.

In Sec. V, we fitted the cluster size distribution function A humber of other work$16,10,77,78that study differ-
P(n) by a power law with an exponential cutoff, and we ent binary liquids have also calculated a dynamic correlation

found a value ofr<2, whereas classical percolation theory length, and it is instructive to compare our result with those.
implies r> 2 [54]. This discrepancy could be due to the finite Referencd 16] calculates the static structure factor for par-

ticle pairs whose “bond” has been broken, with a dynamic
35 ‘ ‘ ‘ ‘ bond criterion based on particle separation. Using the
Ornstein-Zernike formalism79], they extract a static corre-

31} 1 lation length for particle pairs with broken bonds. This cor-
5 EE ‘ir E relation length is not unlike ours, since for particles to have

Emax=3.1 for T=<0.5. This saturation is likely due to the
small system size of the simulation, since the maximu
value of¢ for these temperatures approaches half the syste
length (L/2~5.25) in our simulation. Indeed, finite size ef-
fects have been reported for simulation studies of dynamic
heterogeneity, and in many of the configurations examined i
the present work clusters were found that spanned the e
tirety of the simulation box. In Fig. 13 we pld(At,,,) as a
function of T. The correlation length may also be limited by
the radius of gyration of the chains. It is clear from Fig. 13
that we do not detect a tendency toward divergencé of
the temperature range studied. Larger systems and ldyer
which are outside the scope of the present study, are need
to explore additional growth of.

broken a “bond” they must have moved apart from each

other. The main difference is the absence of a well-defined
time scale on which this motion occurs. Referefibg] finds

28 | 1 that the correlation length defined in that way grows with

decreasindl, but saturates at low because the correlation

2.9

EJmax

277 length approaches the system size, very similar observations
26 | ] to ours.

L] Referenceg7,10,77 calculate pair correlation functions
25 ‘ ‘ ‘ ‘ based on the deviation of the displacement of each particle

0.45 0.5 0.55 0.6 0.65 0.7

T from the average value as a function &f. Referencd 77|

finds that the tail of the spatial correlation function can be
FIG. 13. Dynamic correlation lengti(At,.0 as a function fitted by an exponential, and from this a correlation length is
of T. extracted. Unlike the length calculated in the present work,
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and that calculated in Rgf10], the correlation length of Ref.
[77] was found to saturate at (@ughly) constant value at
times much longer than the relaxation time. The behavior
observed in Refl.77] is surprising, since it implies that there
exist persistentspatial correlations in the particle motion on

PHYSICAL REVIEW B4 051503

o—eT=046
oc—OoT=05
A—AT=055
—=T=06
—wvT=07
O—-O random

time scales that exceed all other relaxation times, unexpected

for an ergodic liquid. We note that, although in the present *

work we do find some “saturation” of the correlation length + % |

around the peak time at loW (possibly due to finite- size -

effects as discussed abgyehe length decreases at long L) . ‘

times (and must decrease to its “random” value at suffi- 04 05 06 07
T

ciently long times when the liquid is diffusiye

Lastly, Ref.[78] calculates a dynamical correlation length
associated with a four-point space- and time-dependent den-
sity correlation function, which emphasizes the least mobile
particles in a time windowAt. The correlation length mea-
Suref:l_shows_ qualltz_itlvely similar behavior to j[.fwve ME3- " function of T. The error bars are obtained from the uncertainties that
sure; in particular, it grows and decreases with but dis- result due to errors in estimatingt
plays no tendency for saturation at the largest value at long max:
time, possibly due to the larger system size studied there okt andt, is valid across the spectrum of supercooled
the absence of polymer-specific effects. liquids, or if it is special to the polymer melt we consider.

We find thatAt,,,, corresponds to the time scale when the
mean square displacement shows a crossover from the “cag-
ing” regime to the subdiffusive regime. Because this cross-

In this paper, we studied the cooperative molecular rearpyer marks the time scale when the monomers are most
rangement of polymer chains approaching the modetfikely to escape their cages, this correspondence strongly
coupling transition temperature. By focusing on the mostsyggests that clustering is required for the cage-breaking pro-
highly mobile segments of the chains in a given time win-cess. Since\t,,, is much smaller than the relaxation time
dow, we observed that these segments, or monomers, form = which marks the time scale for the structural relaxation
clusters that “grow” and “shrink” in time. A previous of the system, our studies suggest that a collection of coop-
study of this system found that the spatial correlation of scagrative molecular rearrangements must give rise to the even-

lar monomer displacements is time depende8it this is  tual primary relaxation of the system, consistent with the
consistent with the present results. We found that the maxiprediction of MCT.

mum size of the clusters, as measured by both the number of Qur results are also consistent with confocal microscopy
monomers contained in the cluster and the cluster correlatiogxperiments on dense colloidal suspensions near their
length, increases with decreasifig Our results are consis- density-driven glass transition, which confirmed the cluster-
tent with those found for a binary LJ liquitb], and for a  jng of the most highly mobile particles in the fluid in some
colloidal suspensiof31]. time window, as predicted by simulation, and showed the
Our results are also consistent with the premise on whicljynamic nature of this clustering. Indeed, such systems are
the Adam-Gibbs-DiMarzio theory is based—that the relax-igeal for further exploring cooperative motion in model
ation of a |IqUId above its gIaSS transition occurs through th%'ass_forming |iquids’ since it is possib'e to direct'y image

cooperative rearrangement of groups of parti¢lesin the  individual particle trajectories, unlike in experiments on mo-
present case chain segmentghich grow in size on cooling. |ecular or polymeric liquid$80,81].

We find that the time intervaAt,,,, when the clusters are
largest increases on cooling, consistent with the idea that
molecular rearrangements become increasingly difficult, re- _ . ) .
quiring the participation of more and more molecules. This We ac_knowledge useful discussions with N. &ac, M.
time scale is found to follow a scaling law similar to that of RUPINStein, Y. Shim, and J. F. Douglas.

the B time scalet, predicted by MCT, i.e., the exponents
obtained fromAt,,,, andt, by fitting them to a power law
are found to be the same within numerical uncertainty. It In order to demonstrate that the fractiah we use in
would be valuable to check if this correspondence betweensalculatingSis below the percolation thresholgl., we cal-

FIG. 15. Percolation probability(¢) for different T at At
= At The inset shows the percolation threshgldplotted as a

VIIl. CONCLUSION
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APPENDIX A: PERCOLATION OF MOBILE MONOMERS

TABLE lll. Percentage of end monomers that belong to the subset of mobile monomers at tidd time
whenSis maximum.

T 0.46 0.47 0.48 0.5 0.52 0.55 0.6 0.7

% 20.6-0.1 21.3:r0.6 21401 21.3:0.3 21404 2202 2202 22501
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‘ ‘ ‘ " " ‘ APPENDIX B: CONTRIBUTION DUE TO MOTION OF
041 @ END MONOMERS
2 03 For sufficiently long time scales, it is known that mono-
- mers at the end of a chain are more mobile than those in the
02 middle of the chaif83]. Hence we check whether the mo-
, . bile monomers are dominated by end monomers on the time
100 ¢ () 1 scale where the clustering is most pronounced, that is, out of
A0 the top 6.5% most highly mobile monomersA,,,,, how
“?:g-a — central monomers many of them are end monomers? If the mobility is domi-
10° -- end monomers nated by the end monomers, we would expect the percentage
10 ‘ ‘ ‘ ‘ . ‘ of end monomers to be much larger than 20%, the percent-
10° 10% 107 10° 10" 10*° 10° 10 age one finds by randomly choosing monomers for the ten-
at mer chains studied here.

FIG. 16. (a) Fraction of end monomerf,,g within the subset ~_FOr €achT, at At=Aty,,, the fraction of end monomers
containing the 6.5% most mobile monomers, as a function of timé/Vithin the mobile monomer subset is found to be in the range

for T=0.46.(b) Mean square displacements of end monomers andfom 20.6% to 22.5%Table IIl), demonstrating systematic
but not substantial deviation from the random value. How-

ever, as the system reaches the subdiffusive regime as shown
by the mean square displacement of monomers, the end

culate the probabilityp(¢) that a cluster of mobile mono- monomers should comprise a Iarg.er fraction of the mobile
monomer subset than their mean field value.

e e . FOWe 1) shous the peceniage of end manarers
connects any tCV\.IO opposite faces of the box. We define thW|th|n the mobile monomer subset as a functlpn of time for
; o . e . §=0.46. As can be seen from the figure, during the period

percolation probabilityp as the fraction of configurations ,1.on the mean square displacement is in the ballistic or pla-
containing at least one spanning cluster. The percolatiogyy, regime, the contribution of end monomers to the frac-
threshold ¢ can be estimated by the maximum slope ofjon of mobile monomers is roughly the same as the mean
p(¢), or by p(¢c)=3 [82]. A plot of p(¢) for eachT is field value. During these time scales, the monomers “rattle”
shown in Fig. 15. Since the formation of clusters is timeithin their local environment, and so the bonds do not have
dependent, we calculate(¢) at the timeAt,,, when the  much effect on their mobility, and the end monomers are as
cluster size is largest and hence the greatest number of spagenstrained as central monomers. But as the monomers break
ning clusters exist. For the sake of comparison, we showeut of their cages and move to larger distances, the contribu-
p(¢) for a randomly chosen subset of monomers to indicatéion of end monomers to the mobile monomers greatly in-
the value ofp one would expect in the absence of dynamicalcreases. This is also reflected in the mean square displace-
correlations. The random percolation threshold estimate¢éhents calculated using only end monomers and only central
from this calculation isp (qng=14.4%. monomerdFig. 16b)]. For At corresponding to a transition

For the lowestT, we estimatep.= (7.1+0.4)%. The per- between the ballistic regime and the plateau regime, we find
colation threshold in this system iE dependent, and in- a sudden jump in the fraction of end monomers. This
creases with increasing (see inset of Fig. 15 giving a indicates the tendency of enhanced mobility of the end
larger upper limit forg, at higherT. At eachT, ¢ is greater monomers just before they become trapped in the cage of

non end monomers dt=0.46.

than the¢ we use to evaluat§(At). their neighbors.
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