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A technique for determining the in-plane modulus and the coefficient of thermal expansion
(CTE) of supported thin films has been developed. The modulus and CTE are calculated
by solving two coupled equations that relate the curvature of film samples deposited on
two different substrates to the thermal and mechanical properties of the constituents. In
contrast with the conventional method used to calculate modulus and CTE, which in-
volves differentiation of the thermal stress in the film, this new technique does not require
the differentiation of the thermal stress, and can also provide the temperature-dependence
of the in-plane CTE and elastic modulus of supported thin films. The data reduction
scheme used for deducing CTE and elastic modulus is direct and reliable.
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Introduction supported thin films. We also employ two substrates, similar to the

. . -~ method of Retajczyk and Sinh&], in order to generate two
The in-plane elastic modulus and coefficient of thermal expay o equations with two unknowns. As with Retajczyk and

sion(CTE)_for a thin film residi_ng on a substrate are important '%ir]ha the modulus and CTE are deduced from the temperature
many apphca_ltlons. One_quesnon arises as to \_/vhether the.physﬁ@uced curvature of two coated bimaterial circular plates; how-
and mechan_lc_:al properties of supported thin fll_ms in appllcatloré%er, in this approach, the modulus and CTE can be temperature
can be S|gn|f|cantly.d|fferent from the properties of chemlcallxi pendent. The method for obtaining the modulus and CTE is a
identical bulk materials. There have been many methods devglygiication of the classic flexural solution for a laminated plate.

oped to measure these properties of thin films for the purpose-gie fjim properties are derived from the direct relationship among
understanding the relation between the microstructure and behgys changes in curvature as a function of temperature, the mis-
ior of material in the bulk and material in thin f!lms coated ON &yaich in the thermal expansion strain, and the known properties
substrate. There are many test methods available to probe faghe supstrates. The strain approach presented here does not
elastic modulus and/or CTE of supported thin films. The basjgqyire the differentiation of thermal stress of the film. In this
concept among them is that these properties can be deduced fi{fer, the accuracy of the solution was also examined by finite
the response of a film/substrate system perturbed either mech@ment analysis. In addition, uncertainty analyses were per-
cally, thermally, acoustically, or optically through the correspongprmed to assess the sensitivity of the solution to the uncertainties

ing governing equationge.g.,[1-5]]. of experimental variables.
Retajczyk and Sinh&6] proposed the two-substrate concept

and developed a method for deducing CTE and elastic modulus of
supported thin films. Their method is to measure the curvature Bleoretical Aspects of the Technique
a function of temperature for identical films on two different sub-

. . ‘ . Figure 1 shows the cross-sectional bending of a bimaterial cir-
strate material{two coated bimaterial circular platesand the

; I ular plate built up of a thin film and a substrate, due to a change
in-plane stress of the film is calculated from the curvature throu temperature. A perfect bond is assumed between the film and

Stoney's equatiofi7]. The slope of the curve of stress as a funce,g gybstrate. If the edges of the uniformly heated bimaterial plate
tion of temperature is simply related to two unknowns, namely thge entirely freéno constraints the plate will deform to a spheri-
bimodulus and in-plane CTE of the film, through an algebraigy| shape ‘when its temperatui® differs from a reference tem-
equation. Accordingly, these two unknowns are calculated froﬁérature T,) at which the plate is stress-fré#iat). The above
two coupled algebraic equations created using the two differegigument holds if the deflections of the plate are small in com-
substrates. In this methdeeferred to as the stress appropdhe  parison with the thickness of the bimaterial plate and the materials
elastic modulus and CTE were assumed to be constant over jg homogenous and isotropic. Thus, the bending curvature,
temperature range of interest in order to solve the coupled alge/R), at temperatur@, can be inferred from a classic solution for
braic equations. This assumption that the properties are indepgmimaterial platé12,13 as follows:

dent of temperature often might not be the case, especially for

organic films. Many versions of the characterization method for E: 6(es—2¢)(hsthy) )
thin film elastic modulus and in-plane CTE have been developed R th '
based on this two-substrate concept with the stress approacnq
[e.g.,[8—11]]. wi
In this study, we developed a new approdaiferred to as the = h h\2 E [h\®
strain approachfor deducing the elastic modulus and CTE of K= =8| +4+6—+4 _f) + _f(_f) ’ )
Ef \ DNf s s Eg hs
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By solving two simultaneous equations of the form of E8),
the stress-free straire{) and bimodulus E;) of a supported film
at temperatureT can be obtained from the following two
formulas:

R Eszslssl_ Eslszss2
€= — — (8)
Eszsl_ Eslsz
Fig. 1 A schematic of the cross-sectional bending of a bima- — Eszsl_EslSZ

©

terial circular plate due to change in temperature Ei=ce e
6S:S;(es,~ &5))
2 1

whereS; are determined through E¢5). By carrying out in situ

The subscripf represents the film ansirepresents the substrate.curvature-temperature measurements on the film deposited on two
E:Eill— v; (i=s,f) is the bimodulus of materialg; is the different substrates subject to a thermal cycle, the temperature-
Young’s modulusw; is the Poisson’s ratiow; is CTE.g; andh;  dependent; andE; of a supported film can be deduced from a
are stress-free thermal expansion strain and the thickness of skeies of solutions to Eq$8) and (9). Also, Egs.(8) and(9) can
layers, respectively. R, the radius of the curvature at the tempesimply accommodate the effect of temperature dependence of the
ture T, is determined experimentally. Although we assumed theibstrate modulugf any). Once the temperature-dependepis
reference temperaturd ) as the temperature at which the bimadetermined, the CTE of filmd;) can be obtained from the tem-
terial plate is stress fredl, can be chosen at any temperatur@erature derivative of; as:
where experimental data are available, arid ity Eq. (1) should
be changed to an incremental forl1/R). d

For two different bimaterial plategising the same film material af:ﬂ
but different substrate materialwith changes in curvature under daT
an identical temperature history, in principle one can set up two
coupled equations in form of E@l) using theK expressed in Eq. Theoretically, one measurement Bf andﬁ is needed at a
(2). Thus,E; can be obtained by solving a quadratic equation, angyen temperature for each bimaterial plate in order to obtain the
e¢ could be also derived afterward. However, in practice, the CRorrespondingS;, and then the bimodulus as well as in-plane
efficient of the quadratic order term in the equation might endag-Te can be determined through E¢®—(10). However, by using
ger the stability of the solution in the case of a thin and soft filngeyeral specimens with different combinations of film and sub-
Instead, ifEs/E¢(hs/hg)>1 andh;/hs<1, thenK in Eq.(2) can strate thicknesses for each bimaterial plate, one can get additional

(10)

be approximated ak*: measurements of curvatuRewith varioush for each bimaterial
_ plate and average these resuits the same wayto reduce the

K—K* = Es(hs 4 uncertainty inS;. The uncertainty ir§; is readily related to the

T E_f h_f ) Uncertainties of the calculated quantities andE;). This uncer-

tainty issue will be addressed later.

This approximation is valid for many organic film applications, The stress approach of Retajczyk and Sif@lagives the esti-
since the film thickness is typically much smaller than that of theates of average values for the modulus and CTE over the tem-
substrate, and the film stiffness is generally less than or comgerature range studied. The assumption of temperature-
rable to that of the substrate. Then, for two different coated platégdependence of the modulus and CTE often might not be valid

one can rewrite Eq(1), substitutingk* from Eq.(4), and get ~ for polymers. One may argue that by using small temperature
increments, a series of two coupled equations can be set up, and

hg_ one can subsequently obtain the temperature-dependent elastic
' ESE (5) modulusf and CTE by solving them. However, the insensitivity of
h,i(hfi+hsi) stress differentiation to a small temperature range may affect the
stability of the solution for the two algebraic equations created by
with the stress approach. Furthermore, from a statistical point of view,
_ the uncertainty in the stress-temperature slope apprahitaren-
1 Es tiating step can significantly affect the accuracy of solutions for
S=———-— (6) the elastic modulus and CTE, since the scatter of curvature data
6(es—&1) E; with temperature usually is larger than the uncertainty of a single
measurement of the curvature.

In the strain approach proposed in this work, the film properties
h3 are derived from the direct relationship among the changes in
@) curvature as a function of temperature, the mismatch thermal ex-
hfi(hfi+hsi) pansion strain, and the known properties of the substrates. The
] ] ) technique presented here does not invoke the differentiating of
The index,i, ranges from 1 to 2, which corresponds to the tWehermal stress of a film and can provide the temperature-
different bimaterial systems5; depends only on material proper-dependent in-plane modulus and CTE of a supported thin film at
ties and is a constant at any given temperature, while only a any temperature of interest. The temperature-dependent substrate
function of the geometry used in the experiments and is referrggoperties(if any) can also be incorporated into the solution. Fi-
to as the effective thickness of a bimaterial plate. Therefore, faglly, although, Eq(10) involves the differentiation of strain with
each bimaterial plate at temperatufethere is a linear relation- respect to temperature to obtain the CTE of film, this differentia-
ship between these two physically measured variables, the curien will not affect the solution accuracy of the two algebraic
ture R and the effective thickneds. equations in the form of Eq$8) and(9). However, in the stress

1
6(£si_8f)

E.
Eq

and
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approach, the accuracy of stress differentiation can significantly 10 "
affect the solutions for both the elastic modulus and CTE of the — h/h=001
film. = 0 —.—+ hyh=0.1
If the known properties of the substrates and the expected prop- % " b/h=1.0
erties of film are not temperature dependent, then the thermal % h¢h=100
straine; in Eq. (3) can be replaced in Eq$8) and (9) by «;(T g oy “
—T,). Consequently, the CTE and bimodulus of a supported film o >~
can be obtained directly from the following two formulas: B ol
_ _ &
Eszslasl_ Eslszas2 i _
arT T = = 11) v, 0 i W
E,S1—Es,S a s
2 1
_ ESZSl - ESISZ s 0 0. 10 12
Eq (12) E,/E,

65,8y (as,— s )(T—T,)
So far, the aforementioned derivation has demonstrated that fﬂ% 2 The variation of the normalized radius of curvature as
: ction of the film deformability and film  /substrate stiffness

a; andE; of films are calculated from formulas usiSgobtained  raio. The lines represent the curvature based on Eq. (1) while
from two constituent measuremer{®, and h;). The uncertainty the symbols are the results of FEA.

in S; is a function of the uncertainties R andh; . The number of

specimens used and method of averaging the data will also affect

the uncertainty ir5; (see[14], for example. Our concern in this

study is not with the details of the experiment used to ob&in ° terch d th taint Its sl ) h d Thi

and the uncertainty i§ , but instead we are interested in how thé"t€rchanged, the uncertainty results still remain unchanged. 1his

uncertainty inS, propagates through the calculationaf andE. 'S expected since there is no preference in the sequence for select-
f T%%the substrate. Thus, once the relative uncertainti€s/S;

Also, one notices that if the indexes, 1 and 2, in E§$-(17) are

in this approach. In some cases, because of the selection of .
film/substrate systems, the calculations could produce large err: 582/3?’ are deterr_nmed from th? measurements, andnd
of the film are obtained, the relative uncertaintyagfand E¢

in the final results. For illustration purposes we consider the C ) ;
and elastic modulus are not temperature dependent, and that oft} P€ readily obtained from Eq4.3) and (14).

uncertainties are negligible compared to the uncertaintieS; in
(denotedsS)). Thus, the value for the relative uncertainty of theR : .

) — = esults and Discussion
calculated elastic modulus and CT&x;/«; and SE;/E;) can be

formulated based on Eqél1) and(12) as: The Abaqus finite element progrgrh5] was employed to vali-
date the solution presented in E(.) based on the specimen

as, Us, shown in Fig. 1. The elastic modulus and CTE of film and sub-
Sas 1-—]i1 (551)2 (532)2 5S, strate were assumed to be temperature independent. Eight-node

S

ag g

i
<

o axially-symmetric elements and thermal stress analysis were used.
of s s, Sy Sz Sz The thickness of the substrate was ). The film thickness was
ar ap set as a variable in the finite element analysis, ranging from 0.1
(13) #m to 10Qum for various combinations of film/substrate stiffness
ratios. In order to minimize shear deformation, the aspect ratio of
the plate was kept around 60. The aspect ratio of the finite ele-

\/( as, )2( 651)2 (Olsz )2( 552)2 ments were kept less than 10. Convergence of the finite element

solutions, particularly the displacement at the center of the plate,
0S; was assessed by employing more refined meshes. The applicable
¢S, range of Eq(1) was evaluated by comparing the curvature results
of Eg. (1) with that of the finite element analys{EEA).

The variation of the normalized radius of curvatu*j as a
function of the film deformability is shown in Fig. 2 as dependent
where on the film/substrate stiffness ratio. The lines in the figure repre-

sent the normalized curvature based on @g.with K expressed
s, Us, in Eq. (2) while the symbols are the results of FEA. One can see,
1 from Fig. 2, that Eq(1) does account for the change in curvature
M, = ( ) VBZ+1 (15) of a coated plate at a fixed temperature over the range of thickness

and stiffness ratios considered in this study. A noteworthy feature
of the results in Fig. 2 is the sensitivity of the change in curvature
to the presence of the film. As shown in the figure, for realistic
specimen dimensions in thin film applicationk; (hg<1), the
a 2 change in curvature is extremely sensitive to the film/substrate
_1)
f

and

modulus ratios of interest over a range of 4 decades.

Figure 3 presents the dependence of the ritfdK on the
ratios of the film to substrate stiffness and of the film to substrate
thickness. From the results of FEA, the applicability of replacing
K with K* in Eqg. (1) can be assessed by the deviation of the

) 55, 55, K*/K curve fromK*/K=1. Accordingly, the appropriateness of
with B:(S—)/ (g) (17) the two formulas in Egs(6) and (7) for deducing the elastic
1 modulus and CTE can be evaluated. For examplehyifhg
M, is the relative uncertainty propagation factor for CT¥, is =<0.001, the expression in Eq&) and (7) can be valid for any
the relative uncertainty propagation factor for the elastic modulusnge of stiffness ratio considered in this study.

(16)
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' ' ‘ ' culated elastic modulus is more sensitive to imperfection in the
10} —=— 7 measurements than the calculated CTE. One can also see from
N >~ Fig. 4 that as long as one of the substrates has a larger CTE than
AN N . the film and the other substrate has a smaller CTE than the film,
\, \ ' the magnitude oM, is less than/2 and the magnitude dfl is
A N less than 1. Such a combination of bimaterial plates will enhance
< o5t A A . the solution accuracy for the calculated elastic modulus and CTE.
& N AN Although the above discussion is based on the assumption that
hy/h =0.001 \.\ \ B=1, our analysis shows that the general information provided in
................ h/h =001 N N Fig. 4 is applicable for3 other than one. Thus, this uncertainty
———— hh=0.1 N analysis can provide a guidance for optimal selection of film/
ol = h/h=1.0 S | substrate combinations for deducing the desired thin film modulus
' and CTE. Finally, in a separate study, preliminary testing with a
100 102 100 100 10! 1 polymeric film deposited on two different inorganic substrates has
E/E shown the feasibility of this technique in deducing the
s temperature-dependent, in-plane CTE and modulus of the film.

Fig. 3 The dependence of the K*/K on the ratios of the film to Conclusions
substrate stiffness and of the film to substrate thickness . . .
A simple and direct method has been developed for deducing
the in-plane elastic modulus and CTE of a supported thin film.
The modulus and CTE are calculated by solving two coupled
Both Eqs.(15) and(16) show that whenrs ~as , the value of gquations that relate the thermally induced curvature of film
M, and M, becomes singular. This implies that the solutions fasamples deposited on two different substrates with the thermal and
a; andE; in Egs.(11) and(12) will be unstable and sensitive to mechanical properties of the constituents. This strain approach
any imperfection in the measurements. This is the basic reasdoes not require a temperature differentiation to calculate the
that why the two substrates need to be two different materials withodulus and in-plane CTE, and can provide the temperature-
a gross difference in CTE. The intensity of the singularity¥by dependence of these properties for a supported thin film at any
or M, depends on the value afs /a; and as,/a;. Figure 4 temperature of interest. The sensitivity analysis for the proposed

indicates ranges oM, and M, for certain combinations of Solution method provides a guideline for choosing the appropriate
as la; and ag /a; corresponding tg8=1, where it is assumed Substrate pair to improve the accuracy in the calculated elastic
1 2 '

that the relative uncertainties & andS, for the two bimaterial modulus and CTE.
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Certain commercial code is identified in this paper in order to specify ad-
equately the analysis procedure. In no case does such identification imply

Fig. 4 Ranges of the relative uncertainty propagation factor recommendation or endorsement by the National Institute of Standards and
for CTE (M,) and the elastic modulus  (M,) for certain combi- Technology(NIST) nor does it imply that they are necessarily the best avail-
nations of film /substrate able for the purpose.
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